簡易檢索 / 詳目顯示

研究生: 黃哲男
論文名稱: 於動態幾何環境下國中生動態心像建構與幾何推理之研究
指導教授: 左台益
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 222
中文關鍵詞: 動態幾何軟體動態幾何環境心像心像操作動態心像
論文種類: 學術論文
相關次數: 點閱:429下載:109
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要

    本研究主要為探索個體於幾何解題活動時之動態心像的類型與運作機制,以及動態幾何環境對建構動態心像的影響。據此目的,選擇台北市內湖區某公立國中二年級之兩個班級作為研究對象,並將其分實驗與控制兩組;全程參與之學生共計63名,並從實驗組分層隨機抽樣選取14名個案,以經審訂之問題進行個案訪談,依此探究個體原生型之動態心像的種類與運作機制,而後以動態的觀點整合GSP環境設計實驗教學活動。於活動中期及結束時各進行一次訪談,並於末了進行紙筆測驗,以瞭解學生的變化及評估實驗組相對於控制組的學習成效。

    研究方法採質與量並重的方式進行,以質的詮釋性研究探究個體心像操作的機制,而以紙筆測驗之結果進行統計分析,由此獲得學習成效評估及各試題作答情形之關連性。依所得資料之類型,以紙筆測驗、個案動態心像類型、個案解題認知歷程分析與個案縱向分析等分別描述與討論本研究之發現。

    針對研究目的,本研究之主要的研究結果如下:
    1. 本研究發現14名個案皆會產生動態心像,且可將其引入解題活動中,然而不同的學生操作心像的頻率並不相同,與層次無關,唯高層次學生運用動態心像解題時較有系統。
    2. 在以動態及靜態語意所佈置之問題情境中,台法兩地學生的表現恰好相反,其中台灣的學生較偏好動態語意情境,其原因為學生可因此引進動態心像,擬定自己所認為之較佳的解題策略。
    3. 本研究所發現之動態心像類型有割補、變換、拓樸與動態模擬等四種主類型;除拓樸型之外,其餘三類可作為具威力之解題方法,而拓樸型雖不具此能力,然而仍對解題具有輔助的功能。
    4. 個體於解題活動中所運用之動態心像類型通常與問題情境有關,不過某些學生易傾向某種類型之心像操作方式。

    依據研究之結果,教師在進行教學時,應特別注意動態與靜態語意對學生理解方式與解題方法的影響,並且應以較為有系統的方式,配合動態幾何工具的使用,培養學生運用動態心像以增強學習的成效。未來則可以較多的樣本數、專家與生手的對比,以及幾何、分析與調和等類型的個體是否傾向使用某種特定類型之動態心像等方向進行相關的研究。

    關鍵字:動態幾何軟體、動態幾何環境、心像、心像操作、動態心像

    目 次 第壹章 緒論 1 第一節 研究背景與研究動機 1 第二節 研究目的與研究問題 4 第三節 研究問題 5 第四節 名詞界定 6 第貳章 文獻探討 8 第一節 訊息處理理論 8 第二節 心像之相關研究 17 第三節 幾何認知觀點 27 第四節 科技整合教學環境之相關研究 33 第參章 研究方法 43 第一節 研究設計 43 第二節 研究樣本 48 第三節 研究工具 58 第四節 教學活動實施 74 第五節 研究過程 76 第六節 資料蒐集與處理 84 第七節 研究限制 87 第肆章 研究結果與發現 89 第一節 紙筆測驗結果分析 89 第二節 個案動態心像類型 113 第三節 幾何解題認知歷程 137 第四節 個案縱向分析 148 第伍章 結論與建議 152 第一節 結論 152 第二節 建議 156 參考文獻 一、中文部分 158 二、英文部分 159 附 表 目 次 表1-1:Hadamard解題時的心智圖像之運作歷程 2 表2-1:敘述性與程序性知識之相異處 16 表3-1:研究班級一年級時之人數 48 表3-2:實驗組暑假人數 49 表3-3:研究班級於二年級時之實際參與人數 49 表3-4:全程參與之實驗組人數 50 表3-5:研究班級各次段考之數學平均成績及標準差 50 表3-6:研究樣本簡述 53 表3-7:個案研究樣本分組 55 表3-8:分組測驗數據及各式樣本分類詳表 56 表3-9:自編測驗題目說明 59 表3-10:訪談問卷之題組數與預定訪談時間 62 表3-11:第一次訪談問卷題目說明 62 表3-12:第二次訪談問卷題目說明 63 表3-13:第三次訪談問卷題目說明 64 表3-14:A、B卷人數說明 68 表3-15:紙筆測驗題目說明 69 表3-16:第一次訪談時間表 80 表3-17:暑期教學日期與相應之活動單元 81 表3-18:第二次訪談時間表 81 表3-19:學期教學日期及相應之活動單元 82 表3-20:第三次訪談時間表 83 表4-1:研究班級於紙筆測驗之作答結果 90 表4-2:兩組答對率之Z-test的P-Value 92 表4-3:A、B卷之答對率比較 93 表4-4:兩組作答A、B卷之差異比較 94 表4-5:同一試卷答對率之跨組比較 94 表4-6:割補與動態模擬型之出現次數表 103 附 圖 目 次 圖2-1:個體在處理外界刺激時的一般訊息處理模式 11 圖2-2:平行分佈處理模式中之單元活化示意圖 12 圖2-3:敘述性知識與程序性知識之間的交互作用 13 圖2-4:生產法則的領域特定性與自動性 15 圖2-5:個體訊息處理之心智歷程圖 17 圖2-6:概念之概念定義與概念心像結構 25 圖2-7:知覺性與構圖性理解對三角形之子圖分解的不同 30 圖2-8:幾何解題之個體認知模式圖 32 圖2-9:電腦應用於教學中之角色的轉變 34 圖2-10:正二十面體之靜態平面圖形 38 圖3-1:研究實驗設計模式圖 47 圖3-2:研究班級各次段考數學平均比較圖 51 圖3-3:實驗組的常態性檢定圖 51 圖3-4:控制組的常態性檢定圖 52 圖3-5:教材地位分析圖 72 圖3-6:研究流程圖 77 圖4-1:研究班級之A卷答對率比較圖 90 圖4-2:研究班級之B卷答對率比較圖 91 圖4-3:研究班級之整體答對率比較圖 91 圖4-4:視覺化、工具推理、心像操作與數學分析之關係模式圖 109 圖4-5:不需輔助線的割補型操作性理解 114 圖4-6:個體於心智中操作心像示意圖 128 圖4-7:H1解題歷程中之心像與實體圖像運作歷程圖 128 圖4-8:動態模擬型之心像操作範例 133 圖4-9:本研究發現之動態心像類型與Duval操作性理解類型之比較圖 136 圖4-10:幾何解題之認知歷程模式圖 138 圖4-11:Duval之基本模式的補充 139 圖4-12:具相同完形但構圖方法不同之圖形 142 圖4-13:因構圖程序與心像操作的變化使得推理歷程產生變動 146 圖4-14:因動態視覺化與心像操作的變化使得構圖歷程產生變動 148 附 錄 目 次 附錄一:自編測驗試題 164 附錄二:第一次訪談問卷試題 171 附錄三:第二次訪談問卷試題 177 附錄四:第三次訪談問卷試題 180 附錄五:紙筆測驗試題(A卷) 187 附錄六:紙筆測驗試題(B卷) 192 附錄七:實驗教學講義 197

    參考文獻
    一、中文部分
    1. Kline, M. (1995)。 西方文化中的數學(張祖貴 譯)。台北市:九章出版社。
    2. Papert, S. (1997)。 WWW.新家庭:開創網路時代的親子學習文化(李鐏龍、賴慈芸、周文萍 譯)。台北市:大塊文化出版股份有限公司。
    3. Patton, M. Q. (1995)。 質的評鑑與研究(吳芝儀、李奉儒 譯)。台北縣:桂冠圖書股份有限公司。
    4. 王文科 (2001)。 教育研究法(六版)。台北市:五南圖書出版有限公司。
    5. 左台益 (1998)。網路科技對高中教育的影響之研究—網路科技對高中數學教學之影響與效能(1/2)。台北市:行政院國家科學委員會專題研究計畫進度報告,NSC 87-2514-S-003-006-N。
    6. 左台益、王惠中 (2000)。動態幾何實驗設計。中華民國第十六屆科學教育學術研討會短篇論文彙編 (pp. 337-345)。台北市:國立台灣師範大學科學教育研究所。
    7. 林福來、陳美芳、吳毓瑩、金鈐、江南青、李源順、鄭英豪、林佳蓉、朱綺鴻、陳英娥、吳慧真、陳儀君、黃凡玲 (1997)。 教學思維的發展:整合數學教學知識的教材教法(1/3)。台北市:行政院國家科學委員會專題研究計畫進度報告,NSC 86-2511-S-003-025。
    8. 張春興 (1999)。 教育心理學:三化取向的理論與實踐(修訂版)。台北市:台灣東華書局。
    9. 蔡志仁 (2000)。 動態連結多重表徵視窗環境下橢圓學習之研究。國立台灣師範大學數學研究所碩士論文,未出版,台北市。
    10. 劉錫麒 (1997)。 數學思考教學研究。台北市:師大書苑。
    二、英文部分
    1. Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.
    2. Anderson, J. R. (1990). Cognitive psychology and its implications, (3rd ed.). New York: W. H. Freeman and Company.
    3. Balacheef, N., & Kaput, J. J. (1996). Computer-Based Learning Environments in Mathematics. In A. J. Bishop, & K. Clements, C. Keitel, J. Kilpatick, & C. Laborde (Eds.), International Handbook of Mathematics Education (pp. 469-501). Dordrecht: Kluwer Academic Publishers.
    4. Bishop, A. J. (1989). Review of research on visualization in mathematics education. Focus on Learning Problems in Mathematics, 11(1), 7-16.
    5. Brown, D. L., & Presmeg, N. C. (1993). Types of imagery used by elementary and secondary school students in mathematical reasoning. Proceedings of the 17th Annual Meeting of the International Group for the Psychology of Mathematics Education (Vol. II, pp. 137-144), Tsukuba, Japan.
    6. Clements, D. H., & Battista, M.T. (1992). Geometry and spatial reasoning. In D. A. Grouws(Ed.), Handbook of research on mathematics teaching and learning (pp. 437-442). New York: Macmillan.
    7. Cooper, L. A., & Shepard, A. N. (1973). Chronometric studies of the rotation of mental images. In W. G. Chase (Ed.), Visual information processing (pp. 75-176). New York, NY: Academic Press.
    8. Cuoco, A., & Goldenberg, P. (1997). Dynamic Geometry as a Bridge from Euclidean Geometry to Analysis. In J. King & D. Schattschneider (Eds.), Geometry Turned On (pp. 33-46). Washington, DC: The Mathematical Association of America.
    9. Dixon, J. K. (1997). Computer use and visualization in students’ construction of reflection and rotation concepts. School Science and Mathematics, 97(7), 352-358.
    10. Duval, R. (1995). Geometrical pictures: Kinds of Representation and Specific Processings. In R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 142-157). New York, NY: Springer-Verlag.
    11. Duval, R. (1998). Geometry from a Cognitive Point of View. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 37-52). Dordrecht: Kluwer Academic Publishers.
    12. Fischbin, E. (1987). Intuition in science and mathematics. Dordrecht, The Netherlands: D. Reidel.
    13. Fomenko, A. T. (1990). Mathematical Impressions. Providence, RI: American Mathematical Society.
    14. Gagn?, E. D. (1985). The cognitive psychology of school learning. Boston: Little, Brown.
    15. Gagn?, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology of school learning (2nd ed.). New York: HarperCollins.
    16. Gagn?, R. M. (1985). The conditions of learning and theory of instruction, (4th ed.). New York, NY: Holt, Rinehart and Winston.
    17. Goldenberg, E. P. (1995). Ruminations about Dynamic Imagery. In R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 202-224). New York, NY: Springer-Verlag.
    18. Hadamard, J. (1945). The psychology of Invention in the Mathematical Field. Princeton, NJ: Princeton University Press.
    19. Harada, K., Gallou-Dumiel, E., & Nohda, N. (2000). The role of figures in geometrical, proof-problem solving – students’ cognitions of geometrical figures in France and Japan. Proceedings of the 24th Annual Meeting of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 25-32), Hiroshima, Japan.
    20. Hershkowitz, R., Parzysz, B., & van Dormolen, J. (1996). Space and Shape. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatick, & C. Laborde (Eds.), International Handbook of Mathematics Education (pp. 161-204). Dordrecht: Kluwer Academic Publishers.
    21. Hoyles, C., & Healy, L. (1997). Unfolding meanings for reflective symmetry. International Journal of Computers for Mathematical Learning, 2, 27-59.
    22. Jackiw, N. (1997). The Geometer’s sketchpad (Version 3.10) [Computer Software]. Berkeley, CA: Key Curriculum Press.
    23. Jackiw, N. (2001). The Geometer’s sketchpad (Version 4.00) [Computer Software]. Emeryville, CA: Key Curriculum Press.
    24. Jonassen, D. H. (1996). Computers in the classroom: Mindtools for critical thinking. Englewood Cliffs, NJ: Prentice Hall.
    25. Kappraff, J. (2000). A Secret on Ancient Geometry. In C. A. Gorini (Ed.), Geometry at Work: A Collection of Papers Showing Applications of Geometry (pp. 26-36). Washington, DC: The Mathematical Association of America.
    26. Kaput, J. J. (1995). Overcoming Physicality and the Eternal Present: Cybernetic Manipulatives. In R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 161-177). New York, NY: Springer-Verlag.
    27. King, J. R. (1996). Geometry Through the Circle with the Geometer’s Sketchpad. Berkeley, CA: Key Curriculum Press.
    28. Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago, IL: University of Chicago Press.
    29. Lean, G., & Clements, M. A. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12, 267-299.
    30. Moreno A., L. E., & Sacrist?n R., A. I. (1995). On Visual and Symbolic Representations. In R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 178-189). New York, NY: Springer-Verlag.
    31. Morrow, J. (1997). Dynamic Visualization from Middle School through College. In J. King & D. Schattschneider (Eds.), Geometry Turned On: Dynamic software in learning, teaching, and research (pp. 47-54). Washington, DC: The Mathematical Association of America.
    32. National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: Author.
    33. Noss, R., & Hoyles, C. (1995). The Dark Side of the Moon. In R. Sutherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 191-201). New York, NY: Springer-Verlag.
    34. Osta, I. (1998). Computer Technology and the Teaching of Geometry. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 109-112). Dordrecht: Kluwer Academic Publishers.
    35. Papert, S. (1980). Mindstoms: Children, computer, and powerful ideas. New York: Basic Books.
    36. Paivio, A. (1983). The Empirical Case for Dual Coding. In J. C. Yuille (Ed.), Imagery, memory, and cognition: essays in honor of Allan Paivio (pp. 307-332). Hillsdale, NJ: Lawrence Erlbaum Associates.
    37. Paivio, A. (1986). Mental Representations: A dual coding approach (pp. 53-83). Oxford: Oxford University Press.
    38. Paivio, A., & Clark, J. M. (1991). Static versus dynamic imagery. In C. Cornoldi & M. A. McDaniel (Eds.), Imagery and Cognition (pp. 221-245). New York: Springer-Verlag.
    39. Presmeg, N. C. (1985). The role of visually mediated processes in high school mathematics: A classroom investigation. Unpublished doctoral dissertation. University of Cambridge, Cambridge, England.
    40. Presmeg, N. C. (1997). Generalization Using Imagery in Mathematics. In L. D. English (Ed.), Mathematical Reasoning: Analogies, Metaphors, and Images (pp. 299-312). Mahwah, NJ: Lawrence Erlbaum Associates.
    41. Reusser, K. (1996). From cognitive Modeling to the design of pedagogical tools. In S. Vosniadou, E. de Corte, R. Glaser, & H. Mandl (Eds.), International Perspectives on the Design of Technology-Supported Learning Environments (pp. 81-103). Mahwah, NJ: Lawrence Erlbaum Associates.
    42. Richardson, J. T. E. (1991). Imagery and the Brain. In C. Cornoldi & M. A. McDaniel (Eds.), Imagery and Cognition (pp. 1-45). New York: Springer-Verlag.
    43. Tall, D. (1992). The transition to advanced mathematical thinking: functions, limits, infinity, and proof. In D. A. Grouws(Ed.), Handbook of research on mathematics teaching and learning (pp. 495-511). New York: Macmillan.
    44. Thomas, N. J. T. (2001). Mental Imagery. Retrieved March 29, 2002, from the World Wide Web: http://plato.stanford.edu/entries/mental-imagery/
    45. Thomas, N. J. T. (2002). Mental Imagery, Philosophical Issues About. Retrieved March 29, 2002, from the World Wide Web:
    http://www.calstatela.edu/faculty/nthomas/mipia.htm
    46. Toffler, A. (1980). The Third Wave. New York: Morrow.
    47. Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry (Final report of the Cognitive Development and Achievement in Secondary School Geometry Project). Chicago, IL: University of Chicago, Department of Education.
    48. Vinner, S. (1983). Concept definition, concept image and notion of function. International Journal of Mathematical Education in Science and Technology, 14(3), 293-305
    49. Walter, M. (2001). Looking at a Painting with a Mathematical Eye. For the Learning of Mathematics, 21(2), 26-30.
    50. Wheatley, G. H. (1997). Reasoning with images in Mathematical activity. In L. D. English (Ed.), Mathematical Reasoning: Analogies, Metaphors, and Images (pp. 281-297). Mahwah, NJ: Lawrence Erlbaum Associates.
    51. Wu, D. B. (1994). A study of the use if the van Hiele model in the teaching of non-Euclidean geometry to prospective elementary school teachers in Taiwan, the Republic of China. Unpublished doctoral dissertation. University of Northern Colorado, Greeley, Colorado.
    52. Zimmermann, W., & Cunningham, S. (1991). What is Mathematical visualization? In W. Zimmermann & S. Cunningham (Eds.), Visualization in teaching and learning Mathematics. Washington, DC: The Mathematical Association of America.

    QR CODE