簡易檢索 / 詳目顯示

研究生: 陳姵君
Chen, Pei-Chun
論文名稱: 3D列印溶液槽鑲嵌毛筆尖電噴灑/質譜法的開發與研究
Development and application of a 3D-printed cell for loading a spray-brush in electrospray ionization/mass spectrometry
指導教授: 林震煌
Lin, Cheng-Huang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 66
中文關鍵詞: 3D列印溶液槽毛筆尖電噴灑質譜法
英文關鍵詞: 3D-Printed Cell, Writing brush-spray/MS
論文種類: 學術論文
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究基於紙片電噴灑(paper-spray)的原理,首度開發毛筆尖電噴灑技術,並以3D印表機印製可鑲嵌毛筆尖之溶液容槽,不僅可以穩定電噴灑現象,並可提供長時間質譜測量之用。這是利用棉線的毛細現象,將揮發性溶劑輸送至毛筆尖端處。在筆尖處施加高電壓,即可進行電噴灑。有別於傳統紙片電噴灑中使用的三角形濾紙,筆的尖端比三角形濾紙更尖銳,電噴灑效果更好。此外,毛筆尖不僅具有製作簡單、操作容易、可以長期使用、清洗方便等多項優點,而且設計新穎、便於攜帶、對於現場即時採樣(包括液體、粉末或固體表面等)也非常方便。3D樣品溶液槽是選用耐酸鹼材料的ABS樹脂(丙烯腈-丁二烯-苯乙烯共聚物)。溶液槽重量不及1克,製作成本也低於一百元。溶劑容槽的體積為1 mL,可連續滋潤筆尖約3小時以上。實驗發現,選用尼龍毛筆裁製的電噴灑筆尖的效果最好。推測其原因可能是尼龍纖維表面較平整光滑,可使樣品快速噴灑並離子化,使質譜儀瞬間可以接收到較多量的離子,有助於提高偵測的靈敏度。以亞甲基藍為測試樣品,偵測靈敏度可達2 ppb。同質譜條件之下,靈敏度較三角濾紙高出一個數量級以上。對於尿液及唾液檢體中藥物的檢測,皆可快速且準確的偵測出樣品的分子量。

    A novel type of electro-spray ionization technique for mass spectrometer measurement was developed by using a writing brush which can be loaded on a 3D-printed plastic cell. It can not only stabilize the spray phenomenon but also provide to the long time mass spectrometer measurement. The cotton can transfer the volatile solvent to the brush tip by capillary phenomenon. Electrically spraying can be done by applying high voltage at the brush tip. The result of this electro-spray method is better than traditional chromatography paper in PS-MS because the brush tip is sharper than triangle chromatography paper. The advantages of the device are simple, easy to operate, long-term use and easy to clean. The model of 3D cell is produce by using ABS (Acrylonitrile Butadiene Styrene) which is acid alkali resistant as material. The weight of cell is less than 1 gram and its cost is under 100 NT dollars. The volume of cell is 1 mL. The brush tip can be soaked in the cell over 3 hours. The experiment result showed that choosing nylon as the brush works best. The most possible reason might be that nylon fiber surface is smooth, which make sample can spray faster. Therefore, mass spectrometer can receive a relatively large amount of ions. It may increase the sensitivity of detection. The detection of Methylene blue is 2 ppb. The sensitivity is one order higher than triangle chromatography paper. It can quickly and accurately detect the molecular weight of drugs in urine and saliva.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1-1 研究目的 1 1-2 研究背景介紹 2 1-3 分析物簡介 4 第二章 分析方法及原理 7 2-1 液相層析電噴灑串聯式質譜儀(LC/ESI-MS) 7 2-1-1電噴灑游離質譜法發展歷程 8 2-1-2電噴灑離子化原理與機制 14 2-1-3離子阱質量分析器簡介 19 2-1-4質量偵測器 20 2-2 3D印表機列印技術原理 21 第三章 儀器、藥品與實驗方法 27 3-1 改良式毛筆尖製作工法 27 3-2 3D繪圖設計 30 3-3 毛筆尖電噴灑游離質譜法(brush-spray/ESI-MS) 34 3-4 儀器及周邊設備列表 36 3-5 藥品列表 39 3-6 唾液及尿液真實樣品前處理 41 第四章 結果與討論 42 4-1 標準品的偵測 42 4-1-1實驗條件 42 4-1-2樣品配製 42 4-2 毛筆尖電噴灑游離法尖端持續噴灑的狀況 43 4-3 不同材質的毛筆對電噴灑效果的影響 45 4-4 改良式毛筆的最低偵測極限 50 4-5 3D列印溶液槽鑲嵌毛筆尖電噴灑法的穩定性 52 4-6 依樣品不同型態進行採樣上機定性分析 54 4-7 毛筆尖電噴灑法對生物檢體中取締藥錠定性分析 58 第五章 結論 61 參考文獻 62 期刊論文與研究發表 66 第一章 緒論 1 第二章 分析方法及原理 7 圖2-1 電噴灑游離現象示意圖 14 圖2-2 液滴形成氣相離子過程游離機制 18 圖2-3 離子阱質量分析器示意圖 19 圖2-4 立體光刻成型技術(SLA)示意圖 22 圖2-5 熔融沉積成型技術(FDM)示意圖 24 圖2-6 選擇性雷射燒結(SLS)示意圖 25 第三章 儀器、藥品與實驗方法 27 圖3-1 各式材質毛筆尖實體圖 28 圖3-2 尼龍(Nylon)材質毛筆尖 29 圖3-3 3D列印溶液槽設計圖 31 圖3-4 3D列印溶液槽鑲嵌毛筆尖實體圖 32 圖3-5 3D印表機結構正面圖 33 圖3-6 3D列印溶液槽鑲嵌毛筆尖示意圖及實照圖 35 第四章 結果與討論 42 圖4-1 不同條件(電壓、流速)毛筆尖持續噴灑情形拍攝圖 44 圖4-2 掃描式電子顯微鏡(Scanning Electron Microscope;SEM) 46 拍攝毛筆表面 (a) 黃鼠狼毛 (b) 馬腹毛 46 圖4-3 掃描式電子顯微鏡(Scanning Electron Microscope;SEM) 47 拍攝毛筆表面 (a) 羊毛 (b) 貂毛 47 圖4-4 掃描式電子顯微鏡(Scanning Electron Microscope;SEM) 48 拍攝毛筆表面 (a) 孔雀羽 (b) 尼龍(人造纖維) 48 圖4-5 三種材質之4-氯安非他命毛筆尖電噴灑質譜圖 49 圖4-6 亞甲基藍樣品毛筆尖電噴灑質譜圖及檢量線 51 圖4-7 3D列印溶液槽鑲嵌毛筆尖電噴灑質譜圖 53 圖4-8 直接滴加樣品於毛筆尖端電噴灑質譜圖 55 圖4-9 使用毛筆尖端對粉末表面採樣後電噴灑質譜圖 56 圖4-10 使用毛筆尖端對液態樣品採樣後電噴灑質譜圖 57 圖4-11 唾液中添加編號504C-1取締藥錠brush-spray質譜圖 59 圖4-12 尿液中添加編號726-1取締藥錠brush-spray質譜圖 60 第二章 分析方法及原理 7 表2-1 電噴灑質譜法的發展歷程 10

    [1] H. Wang, J. J. Liu, R. G. Cooks, Z. Ouyang, Angew. Chem. 49 (2010) 877.
    [2] J. J. Liu, H. Wang, N. E. Manicke, J. M. Lin, R. G. Cooks, Z. Ouyang, Anal. Chem. 82 (2010) 2463.
    [3] W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, J. Assoc. Lab. Auto 15 (2010) 433.
    [4] S. Jain, A. Heiser, A. R. Venter, Analyst 136 (2011) 1298.
    [5] H. Wang, N. E. Manicke, Q. A. Yang, L. X. Zheng, R. Y. Shi, R. G. Cooks, O. Y. Zheng, Anal. Chem. 83 (2011) 1197.
    [6] Z. Zhang, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2011) 931.
    [7] A. Y. Li, H. Wang, Z. Ouyang, R. G. Cooks, Chem. Commun. 47 (2011) 2811.
    [8] N. E. Manicke, Q. A. Yang, H. Wang, S. Oradu, Z. Ouyang, R. G. Cooks, Int. J. Mass. Spectrom. 300 (2011) 123.
    [9] N. E. Manicke, P. Abu-Rabie, N. Spooner, Z. Ouyang, R. G. Cooks, J. Am. Soc. Mass. Spectrom. 22 (2011) 1501.
    [10] R. D. Espy, N. E. Manicke, Z. Ouyang, R. G. Cooks, Analyst 137 (2012) 2344.
    [11] Z. Zhang, R. G. Cooks, Z. Ouyang, Analyst 137 (2012) 2556.
    [12] S. A. Oradu, R. G. Cooks, Anal. Chem. 84 (2012) 10576.
    [13] Z. Zhang, W. Xu, N. E. Manicke, R. G. Cooks, Z. Ouyang, Anal. Chem. 84 (2012) 31.
    [14] Q. Yang, N. E. Manicke, H. Wang, C. Petucci, R. G. Cooks, Z. Ouyang, Anal. Bioanal. Chem. 404 (2012) 1389.
    [15] R. D. Espy, A. R. Muliadi, Z. Ouyang, R. G. Cooks, Int. J. Mass. Spectrom. 167 (2012) 325.
    [16] Q. Yang, H. Wang, J. D. Mass, W. J. Chappell, N. E. Manicke, R. G. Cooks, Z. Ouyang, Int. J. Mass Spectrum. 312 (2012) 201.
    [17] Z. Takats, J. M. Wiseman, B. Gologan, R. G. Cooks, Science 306 (2004) 471.
    [18] A. B. Costa, R. G. Cooks, Chem. Phys. Lett. 464 (2008) 1-8.
    [19] J. M. Wiseman, D. R. Ifa, A. Venter, R. G. Cooks, Nat. Protocol. 3 (2008) 517-524.
    [20] A. Venter, P. E. Sojka, R. G. Cooks, Anal. Chem. 78 (2006) 8549.
    [21] D. R. Ifa, N. E. Manicke, A. L. Dill, R. G. Cooks, Science 321 (2008) 805.
    [22] H. Wang, J. Liu, R.G. Cooks, Z. Ouyang, Angew. Chem. Int. Ed. Engl. 49 (2010) 877.
    [23] H. Lee, C. S. Jhang, J. T. Liu, C. H. Lin, J. Sep. Sci. 35 (2012) 2822.
    [24] H. K. Chen, C. H. Lin, J. T. Liu, C. H. Lin, Int. J. Mass Spectrom. 356 (2013) 37-40.
    [25] B. Hu, P. K. So, Z. P. Yao, J. Am. Soc. Mass Spectrum 65 (2013) 2457.
    [26] Y. Nakahara, Forensic Sci. Int. 70 (1995) 135-153.
    [27] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, C. M. Whitehouse,
    Science 246 (1989) 64-71.
    [28] J. Zeleny, Phys. Rev. 10 (1917) 1.
    [29] M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, M. B. Alice, J. Chem. Phys. 49 (1968) 2240.
    [30] L. L. Mack, P. Kralic, A. Rheude, M. Dole, J. Chem. Phys. 52 (1970) 4977.
    [31] M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4451.
    [32] M. Yamashita, J. B. Fenn, J. Phys. Chem. 88 (1984) 4671.
    [33] S. F. Wong, P. Kralic, J. B. Fenn, J. phys. Chem. 92 (1988) 546.
    [34] N. B.Cech, C. G. Enke, Mass Spectrom. Rev. 20 (2001) 362.
    [35] M. L. Aleksandrov, L. N. Gall, V. A. Shkurov, V. A. Pavlenko, N. V. Krasnov, V. I. Nikolaev, Anal. Chem. 39 (1984) 1268.
    [36] A. P. Bruins, T. R. Covey, J. D. Henion, Anal. Chem. 59 (1987) 2642.
    [37] J. A. Olivares, N. T. Nguyen, C. R. Yonker, R. D. Smith, Anal. Chem. 59 (1987) 1232.
    [38] M. Wilm, M. Mann, Anal. Chem. 68 (1996) 1.
    [39] M. Wilm, M. Mann, J. Mass Spectrom. Ion Process 136 (1994) 167.
    [40] M. G. Ikonom J. H. Wahl, D. R. Goodlett, H. R. Udseth, R. D. Smith, Anal. Chem. 64 (1992) 3194.
    [41] A. J. Link, J. Eng, D. M. Schieltz, E. Carmack, G. J. Mize, D. R. Morris, B. M. Garvik, J. R. Yates, Nat Biotechnol. 17 (1999) 676.
    [42] M. G. Ikonomou, A. T. Blades, P. Kebarle, Anal. Chem. 63 (1991) 1989.
    [43] A. Gomez, K. Tang, Phys. Fluid. 65 (1994) 404.
    [44] G. R. Agnes, I. I. Stewart, G. Horlick, Appl. Spectrosc. 48 (1994) 1347.
    [45] P. Kebarle, L. Tang, Anal. Chem. 65 (1993) 972.
    [46] J. V. Iribarne, B. A. Thornson, J. Chem. Phys. 64 (1976) 15.
    [47] J. B.Fenn, J. Am. Soc. Mass Spectrom. 4 (1993) 524.
    [48] 葉錫誼,3D 列印技術之發展現況與醫學上之應用
    [49] 林鼎勝,3D 列印的發展與現況,科學發展2014年11月503期
    [50] Gert I. J. Salentijn, H. P. Permentier, E. Verpoorte, Analytical Chemistry 86 (2014) 11657.

    無法下載圖示 本全文未授權公開
    QR CODE