簡易檢索 / 詳目顯示

研究生: 黃炎峰
Yan-Feng Huang
論文名稱: 高中生對於直流電路概念及其類比模型理解之研究
A study of senior high school students’ reasoning of DC circuits conceptions and analogy models.
指導教授: 楊文金
Yang, Wen-Gin
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 119
中文關鍵詞: 直流電路類比凱利方格
英文關鍵詞: DC circuits, analogy, RGT
論文種類: 學術論文
相關次數: 點閱:256下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高中生對直流電路概念及其類比模型理解之研究
    中文摘要
    本研究旨在探討學生對直流電路概念的理解、對直流電路類比的理解及其間的關係。
    以「水槽模型」、「人背重物模型」、「封閉水流模型」和「火車模型」等四模型為研究題材,以高一學生三班122名及高三學生三班120名為研究對象。先讓學生閱讀四個類比模型之「直流電路類比閱讀教材」,然後作答「直流電路與類比評比測驗」,以診斷學生的迷思概念及瞭解學生對於各模型的評比。並以物理專家的評比為基礎,利用凱利方格法(RGT)交換方格理論,計算出學生的「類比理解程度」。然後以「類比學習態度問卷」瞭解學生對類比模型的整體評價。最後分別對高一學生7名和高三學生4名進行晤談。
    主要的研究發現包括:
    1. 高三學生在局部推理、電池輸出固定電流、短路等迷思概念上的比例與高一學生相近外,其餘均低於高一。
    2. 高三學生對封閉和火車模型之理解程度比高一好;在另兩個模型上,兩個年級之理解程度相當。
    3. 學生所持有的迷思概念會與學生所察覺的模型特徵相對應。
    4. 學生對類比的評價會因其對該類比的理解程度之高低而異。
    5. 許多所謂「概念正確」之學生,其對類比不瞭解的原因是由於對微觀的電路概念不瞭解。
    6. 在此四個模型中,高一學生對「封閉」類比的理解程度最低,而且會因呈現模型順序的不同,而影響學生對於該類比模型的理解;然而此情形並未在高三學生中發現。

    A study of senior high school students’ reasoning of DC circuits conceptions and analogy models.
    Yan-Feng Huang
    Abstraction
    This study investigates the senior high school students’ understanding of DC circuit analogies by their reasoning of DC circuit conceptions.
    Four analogy models were studied, including "Water tank model", "People with loading model", "Closed water-circuit model", and "Train model". The sample included 122 10th grade students and 120 12th grade students from 6 different classes. All students had studied the topic of DC circuits before. They were required to read the "DC circuits analogies material", and then take a test. The test included the misconceptions test designed to diagnose students’ misconceptions and the level-explaining item to let students judge how accurate each model can be used to explain their answers. The evaluation of students has been transformed into grid on the basis of Repertory Grid Technique(RGT), and compared with the grid completed through literature review and experts, then calculated the "Analogy reasoning score" by RGT "EXCHANGE" theory. Finally, students finished the questionnaire to make the overall evaluation of the four models. After the test, interviewing with some students to make sure the conceptions they had and the reasons of evaluation.
    Major findings were summarized as the following︰
    1. The 12th grade students were better than 10th grade students except in "local reasoning", "battery producing constant electric current", "short-circuit" misconceptions etc…
    2. In the closed water circuit model and train model, the 12th students’ reasoning are better than 10th grade students, the other models are equal.
    3. The misconceptions were mapping with some attributes of the four models students perceived.
    4. The evaluation of analogy would change with the reasoning level of the analogy.
    5. Some students who had "correct concepts" but didn't understand the analogy was due to their not understanding of micro conception of circuits.
    6. When we changed the presenting order of the closed water circuit model, which is the least understanding one for 10th grade students. It will affect their understanding of the model, but such situation didn’t occur in the 12th grade students.

    目  次 第壹章 緒 論…………………………………………………………………1 第一節 研究背景與研究動機…………………………………………………1 第二節 研究目的與研究問題…………………………………………………4 第三節 名詞釋義………………………………………………………………5 第四節 研究限制………………………………………………………………6 第貳章 文獻探討………………………………………………………………7 第一節 類比……………………………………………………………………7 第二節 直流電路類比模型的探討…………………………………………..17 第三節 直流電路迷思概念…………………………………………………..32 第四節 結論…………………………………………………………………..36 第參章 研究方法……………………………………………………………..37 第一節 研究設計……………………………………………………………..37 第二節 研究對象……………………………………………………………..40 第三節 研究工具……………………………………………………………..41 第四節 資料的分析…………………………………………………………..47 第肆章 研究結果……………………………………………………………..54 第一節 直流電路迷思概念分佈情形………………………………………..54 第二節 類比模型結構性特徵之了解情形…………………………………..61 第三節 類比理解程度的分析與高一高三差異比較………………….…….75 第四節 類比評價與類比理解間的關係……………………………….…….85 第五節 類比呈現順序的影響………………………………………..………92 第伍章 結與討論…………………………………………...………………94 第一節 結論…………………………………………………..………………95 第二節 討論…………………………………………………………………101 第三節 研究建議……………………………………………………………104 參考文獻……………………………………………………………………………109 中文部份………………………………………………………………………109 英文部份………………………………………………………………………110 附錄…………………………………………………………………………………113 附錄一 直流電路類類閱讀教材……………………………………………113 附錄二 直流電路與類比評類測驗…………………………………………115 附錄三 類比學習態度問卷…………………………………………………119

    參考文獻
    中文部份︰
    王心詠、黃台珠(1997)︰教師信念與實驗室教學實務對學習環境的影響:一位國中生物教師的個案研究。中華民國第十三屆科學教育學術研討會論文彙編,頁347-353,台北市國立臺灣師範大學裡學院。
    李宜靜(1997)︰教學實務與班級經營:一位國中生物教師的個案研究。高師大科教所碩士論文。未出版。
    林孟慧(1998)︰理化類比對國三學生地球科學概念學習之影響。國立臺灣大學科學教育研究所碩士論文。
    林靜雯(2000)︰由概念改變及心智模式初探多重類比對國小四年級學生電學概念學習之影響。國立臺灣師範大學科學教育研究所碩士論文。
    邱美虹(1993)︰類比與科學概念的學習。教育研究資訊,第一卷第六期,頁79-90。
    翁敏婷(2000)︰國中生理化學習環境知覺及其與學術地位、自我效能關係之探討。國立台灣師範大學科學教育研究所碩士論文。
    高淑芬(1997)︰類比對國二學生科學概念學習之影響。國立臺灣大學科學教育研究所碩士論文。
    郭人仲(1994)︰國中生物概念的類比學習之研究。國立彰化師範大學科學教育研究所碩士論文。
    陳恆迪(1993)︰國中學生物理概念類比學習之研究。國立彰化師範大學科學教育研究所碩士論文。
    陳啟明(1990)︰發展紙筆測驗以探究高一學生對直流電路的迷思概念。國立彰化師範大學科學教育研究所碩士論文。
    陳瓊森(1996)︰類比和模型:電學迷思概念轉變研究。認知學習專題研究計畫成果與學術研討會結案報告。中正大學認知學研究中心。
    楊文金(1992)︰在職國小教師對基本電路之概念研究。中華民國第八屆科學教育學術研討會。
    楊榮祥、林陳涌(1998)︰利用凱利方格晤談法探討教師對科學本質的觀點--個 案研究。科學教育學刊,6(2),頁113-128。
    楊榮祥、林陳涌(1998)︰利用凱利方格晤談法探討教師對科學本質的觀點--個案研究。科學教育學刊,6(2),頁113-128。
    蔡秀芳(1999)︰營造學生為主動學習者之合作行動研究。高師大科教所碩士論文。
    鄭斐娟(2000)︰探討國中學生生物科自我效能與教師期望之係。國立台灣師範大學科學教育研究所碩士論文。
    蕭碧茹(1996)︰圖形類比融入國中理化教學之研究。國立高雄師範大學科學教育研究所碩士論文。
    蕭碧茹、洪振方(2000)︰「物質的狀態」單元類比教材之研究,第十六屆科學教育年會論文集。
    賴萱和(1999)︰新制實習制度下生物實習教師專業成長之個案研究。高師大科教所碩士論文。
    國立編譯館(1998)︰國民中學理化第四冊改編本八版。台北市︰國立編譯館。
    國立編譯館(2000)︰國民中學理化第二冊正式本初版。台北市︰國立編譯館。
    國立編譯館(2000)︰國民中學理化第四冊初版。台北市︰國立編譯館。
    英文部份︰
    Arnold, M., & Millar, R. (1987). Being constructive︰An alternative approach to the teaching of introductory ideas in electricity. Int. J. Sci. Educ, 9(5), 553-563.
    Bean, T. W., Singer, H., & Cowen, S. (1990). Learning concepts from biology text through pictorial analogies and an analogical study guide. Journal of Educational Research, 83(4), 233-237.
    Benseghir, A. (1996). The electrostatics- electro kinetics transition:historical and educational difficulties. International Journal of Science Education, 18(2), 179-191.
    Bezzi, A. (1996). Use of Repertory Grids in Facilitating Knowledge Construction and Reconstruction in Geology. Journal of Research in Science teaching, 33(2), p179-204.
    Bezzi, A. (1999). What is this thing called geosciences? Epistemological dimensions elicited with Repertory Grid and their implications for scientific literacy. Science Education, 83: 675-700.
    Brown, D. E., & Clement, J. (1987). Overcoming Misconceptions in mechanics:A comparison of two examples-based teaching strategies. Paper presented at Annual Meeting of the American Educational Research Association, Washington, DC(ERIC Document Reproduction Service No:ED283712).
    Clement, C. A., & Gentner, D. (1991). Systematicity as a Selection Constraint in Analogical Mapping, Cognitive Science, 12, 563-86.
    Cohen, R., Eylon, B., & Ganiel, U. (1982). Potential difference and current in simple electric circuits︰A study of students’ concepts. Am. J. of Phys. 51(5), 407-412.
    Corporaal, A. H. (1991). Repertory grid research into cognitions of prospective primary school teachers. Teaching & Teacher Education, 7(4), 315-329.
    Cunliffe, A. (1994). How do science teachers become professionals? Implications of case studies of two beginning teachers. Paper presented at the Annual Meeting of the Australian Education Association, Brisbane, Queens land, Australia.
    Cunliffe, A. (1995). How Do My Students Believe They Learn? Paper presented at the Annual Conference of the Australian Science Teachers' Association, Australian.
    Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s ideas in science. Philadelphia︰Open University Press.
    Driver, R., Leach, J., Millar, R., and Scott, P. (1996). Young people’s images of science. Buckingham: Open University Press.
    Duit, R. (1991). On the role of analogies and metaphors in learning science, Science Education, 75(6), 649-72.
    Dunbar(2000). The Analogies Paradox:Why analogies is so easy in naturalistic settings, yet so difficult in the psychological laboratory, MIT press. Cambridge:MA. 2001.
    Dupin & Johsua. (1989). Analogies and “Modeling Analogies” in Teaching: Some Examples in Basic Electricity. Science Education, 73(2), 207-224.
    Fetherstonhaugh, T. (1994). Using the repertory grid to probe students' ideas about energy. Research in Science & Technological Education, 12(2), 117-127.
    Furuness, L. B., & Cohen, M. R. (1989). Children's conceptions of the seasons: A comparison of three interview techniques. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, San Francisco.
    Gabel, D. L., & Sherwood, R. (1980). Effect of using analogies on chemistry achievement according to Piagetian levels. Science Education, 64, 709-716.
    Gentner, D. (1989). The mechanism of analogical learning. In Vosniadous, S. & Ortory, A. (Eds.) Similarity and analogical reasoning. N.Y.: Cambridge.
    Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355.
    Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38.
    Glynn, S. M. (1991). Explaining science concepts:A teaching with analogical model. In S Glynn, R. Yeany & B. Britton (Eds), The Psychology of Learning Science, 219-240. Hillsdale, N. J.:Erlaum.
    Glynn, S. M., Duit, R., & Thiele, R. B. (1995). Teaching science with analogies:A strategy for constructing knowledge. In M. Shawn, S. M. Glynn, Reinders, & R. Duit (Eds.), Learning Science in School:Research Reforming Practice. Mahwah, New Jersey:Lawence Erlbaum Associates.
    Osborne, R. (1983). Towards modifying children's ideas about electric current. Research in Science & Technological Education, 1(1), 73-82.
    Shaw, M., & Gaines, B. (1995). Comparing Conceptual Structures: Consensus, Conflict, Correspondence and Contrast. http://ksi.cpsc.calgary.ca/articles.
    Shipstone, D. M. (1985). Electricity in simple circuits. In Driver, R. (ed.) Children’s ideas in Science. Milton Keunes. Philadephia︰Open university Press.
    Solomon, I. D. G. (1991). Effect of Task Context and Domain Knowledge on Analogical Transfer of Science Knowledge. Unpublished doctoral dissertation, City university of New York.
    Solomon, I. D. G. (1994). Analogical Transfer and “Functional Fixedness” in the Science Classroom, Journal of Educational Research, 87(6), 371-377.
    Spiro, R. J., Feltovich, P. J., Coulson, R. L. & Anderson, D. K. (1989). Multiple analogies for complex concepts:Antidotes for analogy-induced misconception in advanced knowledge acquisition. In S. Vosniadou. & A. Ortony(Eds.), Similarity and analogical reasoning. London:Cambridge University Press.
    Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 28(4), 305-313.
    Steinberg, M.S. (1983). Reinventing electricity. Misconceptions and educational strategies in science and mathematics. Proceedings of the international seminar (1st, Ithaca). N.Y. 792-819.
    Stocklmayer, M, & Theagust ,F. (1994). A Historical Analysis of Electric Currents in Textbook︰A century of Influence on Physics Education. Science & Education, 3, 131-154.
    Treagust, D. F., Duit, R, & Joslin, P. (1992), Science teachers’ use of analogies:Observations from Classroom Practice, International Science Education, 14(4), 413-22.
    Webb, M. J. (1985). Analogies and their limitations. School Science and Mathematics, 85(8), 645-650.

    QR CODE