簡易檢索 / 詳目顯示

研究生: 陳冠汝
Chen, Guan-Ru
論文名稱: 運用6E模式於STEAM教學活動中對大學生學習成效之研究-以開發樂齡生活科技輔助產品為例
Using 6E Model in STEAM Teaching Activities to Improve University Students’ Learning Effectiveness-A Case of Development Seniors Products by Assistive Technology
指導教授: 蕭顯勝
Hsiao, Hsien-Sheng
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 175
中文關鍵詞: 6E模式STEAM教學學習成效樂齡生活科技輔助產品
英文關鍵詞: 6E model, STEAM teaching, learning effectiveness, Seniors Products by Assistive Technology
DOI URL: http://doi.org/10.6345/THE.NTNU.DTAHRD.038.2018.F06
論文種類: 學術論文
相關次數: 點閱:372下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • STEAM(Science, Technology, Engineering, Art, and Mathematics)教學是一個跨學科整合的教學,每個學科之間存在著相輔相成的關係,培養學生連結理論與真實世界之能力,進而提高學生各項能力。6E模式(Engage, Explore, Explain, Engineer, Enrich, Evaluate)是以學習者為中心的教學模式,強調真實情境的呈現以及設計的核心概念,其融入STEAM教學相當合適。本研究運用6E模式於STEAM教學活動中,探討對大三、四年級學習者在總整課程學習成效(STEAM傾向、STEAM知識、創造力、實作能力及認知結構)之影響,讓學習者體驗高齡者生活,並思考符合高齡者需求之產品及發展價值,設計改善或創新樂齡生活科技輔助產品,利用Arduino相關科技來實作出產品,針對產品去評估是否真的適用於高齡者,藉以提升學生學習成效的完整性,而不是讓學生只知道科技的功能及便利性,卻忽略了如何產生及衍生的問題與影響。本研究對象為大三、四年級,共20位學習者,採前實驗設計之單組前後測設計,研究結果顯示:(1)運用6E模式於STEAM教學活動中有助於提升大學生STEAM傾向、STEAM知識、創造力、實作能力;(2)運用6E模式於STEAM教學活動中使大學生認知結構更加完善。本研究之貢獻為培育大學生製作樂齡生活科技輔助產品,進而提升學習者的學習成效(STEAM傾向、STEAM知識、創造力、實作能力及認知結構),除了基礎理論教學外,更能培養學習者具備創新能力、跨領域能力、產品實作能力,能有效培育能夠進行設計、開發產品與提出創新想法的跨領域工程人才。

    STEAM(Science, Technology, Engineering, Art, and Mathematics) teaching was an integrated interdisciplinary teaching improved students' abilities by cultivating student connection theory and the real world. The 6E model (Engagr , Explore, Explain, Engineer, Enrich, Evaluate) was a quite suitable learner-centered teaching model for STEAM teaching. Moreover, the 6E model can help learners to apply knowledge in life. The research used the 6E model in the STEAM teaching activities to explore the learning effectiveness (STEAM tendency, STEAM knowledge, creativity, practical ability, cognitive structure) of college students. This study was mainly designed to innovate seniors’ products by assistive technology. Let learners realize the life of senior citizens and think about products’ development that can satisfy senior citizens. In order to verify the integrity of students’ learning effectiveness, the final seniors products will be evaluated the degree of the suitable for elderly people. The research object was adopted 20 college students and the research design was a one-group pretest posttest design. The results was shown that 6E model in STEAM teaching could improve the college students’ STEAM tendency, STEAM knowledge, creativity, practical ability and cognitive structure. The main contributions of this study were trained college students to produce seniors’ products by assistive technology and improved students' learning effectiveness. In addition to basic theoretical teaching, students can have the ability to innovate cross-domain capabilities, and practical capabilities.

    謝  誌 i 中文摘要 ii ABSTRACT iv 目  錄 vi 表  次 ix 圖  次 xii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 8 第三節 待答問題 9 第四節 研究範圍與限制 10 第五節 研究流程 12 第六節 名詞解釋 14 第二章 文獻探討 21 第一節 STEAM教學 21 第二節 6E模式 26 第三節 創造力 31 第四節 實作能力 35 第五節 認知結構 40 第六節 樂齡生活科技輔助產品 46 第七節 文獻探討評析 52 第三章 研究方法與步驟 54 第一節 研究架構 54 第二節 研究對象 56 第三節 研究設計與實施 57 第四節 教學活動設計 61 第五節 研究工具 75 第六節 資料分析 86 第四章 研究結果與討論 89 第一節 運用6E模式於STEAM教學活動中對大學生STEAM傾向之影響 89 第二節 運用6E模式於STEAM教學活動中對大學生STEAM知識之影響 93 第三節 運用6E模式於STEAM教學活動中對大學生創造力之影響 95 第四節 運用6E模式於STEAM教學活動中對大學生實作能力之影響 102 第五節 運用6E模式於STEAM教學活動中對大學生認知結構之影響 109 第六節 依變項之關聯性 114 第五章 結論與建議 116 第一節 結論 116 第二節 建議 120 參考文獻 122 一、中文部分 122 二、英文部分 128 附 錄 141 附錄一 STEAM傾向量表 141 附錄二 STEAM知識前、後測驗試卷 144 附錄三 語意流程圖-逐字稿(前、後測) 152 附錄四 Arduino教案 153

    一、中文部分
    內政部(2017年03月11日)。106年第10週內政統計通報(我國老年人口數首次超過幼年人口數)。內政部統計處。取自http://www.moi.gov.tw/stat/news_content.aspx?sn=11735
    王鼎銘(1999)。科技發展與科技教育學習經驗。生活科技教育,32(11),2-9。
    王澄霞、謝昭賢(1997)。以認知圖評量 “酸雨” STS 教學的學習成就。師大學報:科學教育類,42,13-29。
    王睿千、林靜萍(2009)。創造思考教學模組對體育師資生創造力的影響。大專體育學刊,11(3),39-51。
    江美惠(2005)。創造性問題解決教學方案對資優學生創造力及問題解決能力影響之研究。資優教育研究,5(2),83-106。
    李堅萍(2006)。培育科技創造力應重視實作技能的教學與自我效能的激發。生活科技教育月刊,39(8),21-28。
    李賢哲(2001)。以動手做(DIY)工藝的興趣培養中小學童具科學創造力之人格特質。科學教育,243,2-7。
    吳文智(2017)。以整合型科技接受模式探討照護型機器人輔助於高齡者之服務研究。福祉科技與服務管理學刊,5(2)。
    吳科沅(2012)。適用於居家環境具止鼾功能之智慧型床墊設計與開發(碩士論文)。取自Airiti Library華藝線上圖書館。(DOI:10.6838/YZU.2012.00322)
    吳泓勳(2016年10月19日)。元智設計「關懷步履」鞋墊 遠端示警長者居家安全。中時電子報。取自http://www.chinatimes.com/realtimenews/20161019004671-260405
    吳清山、林天祐(1997)。實作評量、卷宗評量、真實評量。教育資料與研究,15,68-70。
    吳靜吉、陳甫彥、郭俊賢、林偉文、劉士豪、陳玉華等人(1998)。新編創造思考測驗研究。教育部輔導工作六年計畫研究報告。臺北市:教育部。
    吳穎沺、蔡今中(2005)。建構主義式的科學學習活動對國小高年級學生認知結構之影響-以“電與磁”單元為例。科學教育學刊,13(4),387-411。
    林妏軒、林欣蓓、林佳慧、蔡碧藍(2017)。大手拉小手─多功能復健手套。 福祉科技與服務管理學刊,5(2),157-164。
    林幸台、王木榮(1994)。威廉斯創造力測驗。台北:心理。
    林建佑(2015)。實施科技輔助合作問題解決教學於STEM課程中對學習成效、合作問題解決能力及實作技能影響之研究。(未出版之博士論文)。國立臺灣師範大學,台北市。
    林奕維(2017)。6E模式於機器人教學課程對國小高年級學習者學習動機、學習成效及實作能力影響之研究(未出版之碩士論文)。國立臺灣師範大學,台北市。
    林楚卿(2016)。Steps & Flowers-居家環境下銀髮族多元互動平台之開發。福祉科技與服務管理學刊,4(3),357-366。
    范光中、許永河(2010)。台灣人口高齡化的社經衝擊。台灣老年醫學會暨老年學雜誌,5,149-68。
    施良方(1996)。學習理論。高雄:麗文文化。
    洪宏、姚卿騰(2017)。運用代間學習提升日間照顧中心老人人際互動之研究。福祉科技與服務管理學刊,5(2),121-132。
    徐以臻、陸清達、王玲玲(2017)。年長者於數位遊戲使用現況之探討。福祉科技與服務管理學刊,5(3),179-190。
    徐雍智、蔡今中、陳明璋(2002)。數學創意類比與同儕評量及其網路案例設計之研究。師大學報:科學教育類,47(1),1-13。
    張又筑(2015年5月8日)。來電藥不藥,智能藥盒定時提醒。大學報,1596,5。取自https://zh.scribd.com/document/265395302/%E5%A4%A7%E5%AD%B8%E5%A0%B11596%E6%9C%9F-PDF
    張玉山、許雅婷(2008)。以問題解決為基礎的科技教學活動設計-以創意機器人研習為例。研習資訊,25(3),61-70。
    張玉山、楊雅茹(2014)。STEM 教學設計之探討:以液壓手臂單元為例。科技與人力教育季刊,1(1),2-17。
    張宇慧(2010)。以想法為中心的知識翻新學習對團隊創造力之影響(碩士論文)。取自Airiti Library華藝線上圖書館。
    張春興、林清山(1981)。教育心理學。台北:東華。
    張珈諭、江行全(2017)。高齡者之演進式廚房環境設計。福祉科技與服務管理學刊,5(2),147-156。
    莊謙本(1998)。技能評量的內在與外在因素。教學科技與媒體,42,38-42。
    陳李綢(1991)。個案研究。台北:心理出版社。
    陳建維(2013)。時間壓力對於工業設計創造力之影響(未出版之碩士論文)。國立成功大學,台南市。
    陳瑜芬、鄭凱文、賴銘娟(2006)。以內容分析法探討創造力對於企業技術創新之影響。遠東學報,23(4),591-604。
    陳學志、徐芝君(2006)。幽默創意課程對教師幽默感及創造力的影響。師大學報:教育類, 51,71-93。
    陳學志(2011)。從 [哈哈] 到 [啊哈]-統整知、情、意、行的幽默課程對創造力培養的影響。教育心理學報, 35(4)。
    許宜婷(2016)。應用工程設計思考的 STEM 專題本位學習活動對職前科技教師工程設計思考之影響(未出版之碩士論文)。國立臺灣師範大學,台北市。
    許碩倫(2016)。高齡者穿戴裝置產品開發(碩士論文)。取自http://thuir.thu.edu.tw/handle/310901/28435。
    程俊博、游光昭(2006)。透過科技史教學培養學生創造力之研究。生活科技教育月刊,39(5),3-15。
    曾葉強(2014)。專題研究課程對學習成效之影響-以 Arduino 為例(碩士論文)。取自Airiti Library華藝線上圖書館。(DOI:10.6820/NIU.2014.00118)
    馮靖惠(2017年6月4日)。全文∕李開復台大畢典致辭:智慧無法取代愛心。聯合新聞網。取自https://udn.com/news/story/7270/2502911
    楊開城(2018)。課程開發:一種技術學的視角。北京市:北京師範大學出版社。
    詹鎔瑄(2002)。學生創造力及其相關因素研究-以中原大學室內設計系為例(碩士論文)。取自Airiti Library華藝線上圖書館。
    趙貞怡(2013)。原住民學童在電腦樂高機器人課程中的創造力與團隊合作能力。Journal of Educational Practice and Research,26(1),33-62。
    蔡妍妮(2017)。高齡者的學習需求與學習壓力之調查研究。福祉科技與服務管理學刊,5(2),97-108。
    蔡依帆、吳心昀(2014)。STEM整合教學活動-空投救援物資。科技與人力教育季刊,1(1),40-54。
    盧珍瑩(2010)。運用鷹架理論於國小二年級科學概念學習之研究-以「聲音」教學為例(碩士論文)。取自http://140.127.82.166/handle/987654321/4964
    簡佑宏、朱柏穎、簡爾君(2017)。STEAM 取向之 Maker 教學。中等教育,68(2),12-28。
    蕭顯勝、張雨霖、陳冠汝(2018)。「大學生STEAM傾向量表」建構效度驗證之研究(Confirmatory Factor Analysis and Structural Validity of College Students STEAM Tendency Scale)。第二十二屆全球華人計算機教育應用大會(GCCCE 2018),p1337-1339,華南師範大學,中國廣州。
    羅希哲、蔡慧音、曾國鴻(2011)。高中女生 STEM 網路專題式合作學習之研究。高雄師大學報:教育與社會科學類,30,41-61。

    二、英文部分
    [2017 Technology show introduces innovative products for seniors, produced by industry news, 2017]. (n.d.). Retrieved from http://methwick.org/2017/02/2017-technology-show-introduces-innovative-products-seniors/
    Agassi, J. (1997). Thought, action and scientific technology. International Journal of Technology and Design Education, 7(1-2), 33-48.
    Anderson, O. R., & Demetrius, O. J. (1993). A flow-map method of representing cognitive structure based on respondents’ narrative using science content. Journal of Research in Science Teaching, 30, 953-969.
    Aydalot, P., & Keeble, D. (2018). High technology industry and innovative environments: the European experience. Retrieved from https://www.taylorfrancis.com/books/9781351369541
    Barry, N. B. (2014). The ITEEA 6E learning by DeSIGNTM model. Technology and Engineering Teacher, March, 14-19.
    Beard, J., Biggs, S., Bloom, D. E., Fried, L. P., Hogan, P. R., Kalache, A., & Olshansky, S. J. (2012). Global population ageing: peril or promise? (No. 8912). Program on the Global Demography of Aging.
    Benbow, C. P. (2012). Identifying and nurturing future innovators in science, technology, engineering, and mathematics: A review of findings from the study of mathematically precocious youth. Peabody Journal of Education, 87(1), 16-25.
    Berry III, R. Q., Reed, P. A., Ritz, J. M., Lin, C. Y., Hsiung, S., &Frazier, W. (2004). Stem initiatives: Stimulating students to improve science and mathematics achievement. The Technology Teacher, 64(4), 23-30.
    Besemer, S. P. (1998). Creative product analysis matrix: Testing the model structure and a comparison among products--three novel chairs. Creativity Research Journal, 11(4), 333-346.
    Besemer, S. P., & O'Quin, K. (1999). Confirming the three-factor creative product analysis matrix model in an american sample. Creativity Research Journal, 12(4), 287-296.
    Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: review and synthesis. The Journal of Creative Behavior, 15(3), 158-178.
    Blackwell, D., & Henkin, L. (1989). Mathematics: Report of the project 2061 phase I mathematics panel. Washington, D. C.: American Association for the Advancement of Science.
    Boy, G. A. (2013, August). From STEM to STEAM: toward a human-centred education, creativity & learning thinking. In Proceedings of the 31st European Conference on Cognitive Ergonomics (p. 3). ACM.
    Burke, B. N. (2014). The ITEEA 6E learning byDeSIGN™ model, maximizing informed design and inquiry in the integrative STEM Classroom.  Technology and Engineering Teacher, 73 (6), 14-19.
    Burke, B. N., Reed, P. A., & Wells, J. G. (2014). Integrating technology and engineering in a STEM context. Exemplary STEM programs: Designs for success, 353-372.
    Burton, J., Horowitz, R., & Abeles, H. (2000). Learning in and through the arts: The question of transfer. Studies in Art Education, 228-257.
    Bybee, R. W., Taylor, J. A., Gardner, A., Scotter, P. V., Powell, J. C., Westbrook, A., & Landers, N.(2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Retrieved on August 15, 2014 from http://bscs.org/sites/default/ files/_legacy/BSCS_5E_ Instructional _Model-Executive_Summary_0.pdf
    Cacioppo, J. T., Petty, R. E., Feinstein, J. A., & Jarvis, W. B. G. (1996). Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychological Bulletin, 119(2), 197-253.
    Chang, Y. (2014). 3D-CAD effects on creative design performance of different spatial abilities students. Journal of Computer Assisted Learning, 30(5), 397-407.
    Costa, P. T. J., McCrae, R. R., & Dye, D. A.(1991). Facet scales for agreeableness and conscientiousness: A revision of the NEO personality inventory. Personality and Individual Differences, 12(9): 887-898.
    Daugherty, M., & Wicklein, R. (1993). Mathematics, science, and technology teacher's perceptions of technology education. Journal of Technology Education, 4(2), 28-43.
    Dewey, J. (1938). Experience and education. New York, NY: Macmillan.
    Ejiwale, J. A. (2012). Facilitating teaching and learning across STEM fields. Journal of STEM Education: Innovations & Research, 13(3), 87-94.
    Facione, P.A., Sanchez, C.A., & Facione, N.C., (1994, April). Are college students disposed to think? (ERIC No. ED 368-311). Millbrae: California Academic Press. (1994)
    Fazio, R. H., & Zanna, M. P. (1981). Direct experience and attitude-behavior consistency. Advance in Experimental Social Psychology, 14, 161-202.
    Fletcher, S. (2011). The impact of the 6E model in a third grade science classroom (Doctoral dissertation). Retrieved from https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:bgsu1308431440
    Gerstner, S., & Bogner, F. X. (2010). Cognitive achievement and motivation in hands‐on and teacher‐centred science classes: Does an additional hands‐on consolidation phase (concept mapping) optimise cognitive learning at work stations?. International Journal of Science Education, 32(7), 849-870.
    Ghanbari, S. (2015). Learning across disciplines: A collective case study of two university programs that integrate the arts with STEM. International Journal of Education & the Arts, 16(7). Retrieved from http://www.ijea.org/v16n7/
    Glegg, G. L. (1969). The Design of design. London: Cambridge.
    Hashim, H., Ali, M. N., & Samsudin, M. A. (2017). Adapting thinking based learning approach and 6E instructional model in implementing green STEM Project. In: International Conference on the Scholarship of Teaching and Learning (ICSoTL 2017), 4 - 5 April 2017, UUM EDC Hotels & Resorts, Sintok, Kedah, Malaysia.
    Hatch, L. (1988). Problem-solving approach. In W. H. Kemp & A. E. Schwaller (Eds.), Instructional Strategies for technology education(pp.88-89), 37th Yearbook of Council on Technology Education Mission Hills, CA: Glencoe Publishing Company.
    Henriksen, D. (2011). We teach who we are: Creativity and trans-disciplinary thinking among exceptional teachers. (Doctoral Dissertation). Michigan State University. Retrieved from ProQuest Dissertations and Theses.
    Henriksen, D. (2014). Full STEAM ahead: Creativity in excellent STEM teaching practices. The STEAM journal, 1(2), 15.
    Hetland, L. (2013). Studio thinking 2: The real benefits of visual arts education. Teachers College Press.
    Im, S., Bhat, S., & Lee, Y. (2015). Consumer perceptions of product creativity, coolness, value and attitude. Journal of Business Research, 68(1), 166-172.
    Kahney, H. (1986). Problem solving -A cognitive approach.Milton Keynes: Open University Press.
    Kaniawati, D. S., & Suryadi, S. (2016). Integration of STEM education in learning cycle 6E to improve problem solving skills on direct current electricity. Proceeding of ICMSE, 3(1), M-106.
    Keefe, B. (2010). The perception of STEM: Analysis, issues, and future directions. Survey. Entertainment and Media Communication Institute.
    Khaeroningtyas, N., Permanasari, A., & Hamidah, I. (2016). Stem learning in material of temperature and its change to improve scientific literacy of junior high school. Jurnal Pendidikan IPA Indonesia, 5(1), 94-100.
    Kim, B. H., & Kim, J. (2016). Development and validation of evaluation indicators for teaching competency in STEAM Education in Korea. Eurasia Journal of Mathematics, Science & Technology Education, 12(7), 1909-1924.
    Kim, D. H., Ko, D. G., Han, M. J., & Hong, S. H. (2014). The Effects of science lessons applying STEAM education program on the creativity and interest levels of elementary students. Journal of the Korean Association for Science Education, 34(1), 43-54.
    Kim, J. A., Kim, B. S., Lee, J. H., & Kim, J. H. (2011). A study of teaching-learning methods for the it-based STEAM education model with regards to developing people of interdisciplinary abilities. Journal of Fisheries and Marine Sciences Education, 23(3), 445-460.
    Kim, Y., & Park, N. (2012). Development and application of STEAM teaching model based on the Rube Goldberg’s invention. In Computer Science and its Applications (pp. 693-698). Dordrecht: Springer Netherlands.
    Kim, Y., & Park, N. (2012). The effect of STEAM education on elementary school student’s creativity improvement. In Computer Applications for Security, Control and System Engineering (pp. 115-121). Berlin Heidelberg: Springer.
    Krause, D., Eyerer, P., Baborie, S., & Parrisius, M. (2016). Teaching natural sciences using the TheoPrax method doubles learning effectiveness. International Journal of Technology and Inclusive Education (IJTIE), 5(1).
    Laboy-Rush, D. (2011). Integrated STEM education through project-based learning. Retrieved from
    http://www. rondout. k12. ny. us/common/pages/DisplayFile. aspx.
    Lampert, N. (2006). Critical thinking dispositions as an outcome of art education. Studies in Art Education, 47(3), 215-228.
    Lai, C. H., & Chu, C. M. (2016, October). Development and evaluation of STEM based instructional design: An example of quadcopter Course. In International Symposium on Emerging Technologies for Education (pp. 176-191). Rome: Springer.
    Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547-552.
    Lee, J. V., Chuah, Y. D., & Chieng, K. T. (2013). Smart elderly home monitoring system with an android phone. Int. J. Smart Home, 7(3), 17-32.
    Lee, S. Y., & Lee, H. C. (2013). The effects of science lesson applying STEAM education on the creativity and science related attitudes of elementary school students. Journal of Korean Elementary Science Education, 32(1), 60-70.
    Lin, K. Y. (2014). Effects of science fiction films on junior high school students’ creative processes and products. Thinking Skills and Creativity, 14, 87-97.
    Lu, Y.-L., Lian, I.-B., & Lien, C.-J. (2015). The application of the analytic hierarchy process for evaluating creative products in science class and its modification for educational evaluation. International Journal of Science and Mathematics Education, 13(2), 413-435.
    Martin-Kniep, G., Feige, D., & Soodak, L. (1995). Curriculum integration: An expanded view of an abused idea. Journal of Curriculum and Supervision, 10(3), 227-249.
    Massachusetts Department of Education (2006). Massachusetts science and technology / engineering curriculum framework. Massachusetts.
    Mayer, R. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional Science, 26(1-2), 49-63.
    Maeda, J. (2013). Stem+ art= steam. The STEAM Journal, 1(1), 34.
    Murata, H. (2015). Consumer behavior in the super-aged society: Master the middle and senior citizens psychology, insight into the new trend of silver market(Y. Huang, Trans.). Taipei: EcoTrend Publications.
    National Research Council (NRC). (2010). Exploring the intersection of science education and 2lst century skills: A workshop summary. Washington, DC: National Academies Press.
    NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
    Norris, S. P. (1995). The meaning of critical thinking test performance: The effects of abilities and dispositions on scores. In D. F. Jr. (Ed.), Critical thinking: Current research, theory, and practice. Dordect, The Netherlands: Kluwer.
    Novak, J.D. (1990). Concept mapping: An useful tool for science education. Journal of Reseafch in Science Teaching, 27(10), 937-949.
    Oh, J., Lee, J., & Kim, J. (2013). Development and application of STEAM based education program using scratch: Focus on 6th graders’ science in elementary school. In Multimedia and ubiquitous engineering , edited by J. J. Park, J. K.-Y. Ng, H.-Y. Jeong, and B. Waluyo, 493–501. Dordrecht: Springer.
    Parnes, S. J. (1967). Creative behavior guidebook. New York : Scribner's.
    Pecen, R. R., Humston, J. L., & Yildiz, F. (2012). Promoting STEM to young students by renewable energy applications. Journal of STEM Education: Innovations & Research, 13(3), 62-73.
    Perkins, D.N., & Ritchhart, R. (2004). When is good thinking? In D.Y. Dai & R.J. Sternberg (Eds.), Motivation, emotion, and cognition: Integrative perspectives on intellectual functioning and development. 351-384. Mahwah, NJ: Erlbaum.
    Peterson, R. E. (2002). Establishing the creative environment in technology education. The Technology Teacher, 61(4), 7-10.
    Pinelli, T., & Haynie III, W. (2010). A case for the nationwide inclusion of engineering in the K-12 curriculum via technology education. Journal of Technology Education, 21(2), 52-68.
    Piro, J. (2010). Going from STEM to STEAM. Education Week, 29(24), 28-29.
    Porter, J., Morgan, J., Lester, R., Steele, A., Vanegas, J., & Hill, R. (2015, October). A course in innovative product design: A collaboration between architecture, business, and engineering. In Frontiers in Education Conference (FIE), 2015 IEEE (pp. 1-5). IEEE.
    Purser, R. K., & Renner, J. W. (1983). Results of two tenth‐grade biology teaching procedures. Science Education, 67(1), 85-98.
    Quigley, C. F., & Herro, D. (2016). “Finding the joy in the unknown”: implementation of STEAM teaching practices in middle school science and math classrooms. Journal of Science Education and Technology, 25(3), 410-426.
    Salinger, G., & Zuga, K. (2009). Background and history of the STEM movement. In International Technology and Engineering Educators Association (ITEEA) (Ed.), The overlooked STEM imperatives: Technology and engineering (pp. 4-9). Reston, VA: ITEEA.
    Sarah J. S. (2013, Dec 16). Top 5 products from 2013 that help seniors [Online forum comment]. Retrieved from https://www.aplaceformom.com/blog/2013-12-16-top-products-that-help-seniors/
    Shanshan, L., Xiaojun, W., & Chengbin, Q. (2017). Training students' practical and innovation ability in hardware experiment. 2017 IEEE Frontiers in Education Conference (FIE), 2017 IEEE (pp. 1-5). IEEE.
    Sochacka, N. W., Guyotte, K., & Walther, J. (2016). Learning together: A collaborative autoethnographic exploration of STEAM (STEM+ the arts) education. Journal of Engineering Education, 105(1), 15-42.
    Sternberg, R. J. (2001). What is the common thread to creativity: Its dialectical relation to intelligence and wisdom. American Psychologist, 56, 360–362.
    Stohlmann, M., Moore, T. J., & Roehrig, G. H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education Research (J-PEER), 2(1), 4.
    Tokunaga, S., Tamamizu, K., Saiki, S., Nakamura, M., & Yasuda, K. (2017). VirtualCareGiver: personalized smart elderly care. International Journal of Software Innovation (IJSI), 5(1), 30-43.
    Treffinger, D., Isaksen, S., & Dorval, B. (2000). Creative problem solving: An introduction (3rd ed.). Waco, TX: Prufrock Press.
    Tsai, C. C. (1998). Science learning and constructivism. Curriculum and Teaching, 13, 31-52.
    Tsai, C. C. (1999). Content analysis of Taiwanese 14 year olds’ information processing operations shown in cognitive structures following physics instruction, with relations to science attainment and scientific epistemological beliefs. Research in Science & Technological Education, 17(2), 125-138.
    Tsai, C. C. (2001). Probing students' cognitive structures in science: The use of a flow map method coupled with a meta-listening technique. Studies in Educational Evaluation, 27, 257 - 268.
    Tsai, C. C., & Huang, C. M. (2002). Exploring students' cognitive structures in learning science: a review of relevant methods. Journal of Biological Education, 36(4), 163-169.
    Tsai, K. C. (2016). Fostering creativity in design education: Using the creative product analysis matrix with chinese undergraduates in Macau. Journal of Education and Training Studies, 4(4), 1-8.
    Watson, A. D., & Watson, G. H. (2013). Transitioning STEM to STEAM: Reformation of engineering education. The Journal For Qualıty & Participation, 36(3), 1–4.
    Whitehead, A. N. (1955). The aims of education and other essays (p. 128). London: Williams and Norgate.
    Williams, F. E. (1972). Identifying and measuring creative potential. New Jersey:Educational Technology Publicatons.
    Yihua, L. (2012, July). Research- driven training of innovation and practical ability for college students. In Computer Science & Education (ICCSE), 2012 7th International Conference on (pp. 1785-1788). IEEE.
    Zhang, D., Kong, W., Kasai, R., Gu, Z., Shiguematsu, Y. M., Cosentino, S., ... & Takanishi, A. (2017, December). Development of a low-cost smart home system using wireless environmental monitoring sensors for functionally independent elderly people. In Robotics and Biomimetics (ROBIO), 2017 IEEE International Conference on (pp. 153-158). IEEE.

    下載圖示
    QR CODE