研究生: |
連文宏 Lien, Wen-Hung |
---|---|
論文名稱: |
計算核心課程對數學學習障礙高危險群學童介入成效-不同統計法在小樣本研究之應用 The Arithmetic Core Competence Intervention for Students with High-Risk Mathematical Learning Disabilities: Different Statistic Methods Apply to the Small-Sample Study |
指導教授: |
洪儷瑜
Hung, Li-Yu |
學位類別: |
博士 Doctor |
系所名稱: |
特殊教育學系 Department of Special Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 172 |
中文關鍵詞: | 數學學習障礙 、數感 、數學事實提取 、分解與重組 、自助法 、線性混合效果模式 、教學反應 |
英文關鍵詞: | mathematical learning disabilities, number sense, math fact retrieval, decomposition and regrouping, bootstrap, linear mixed effect model, response to intervention |
DOI URL: | http://doi.org/10.6345/DIS.NTNU.DSE.014.2018.F02 |
論文種類: | 學術論文 |
相關次數: | 點閱:331 下載:36 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國內針對數學學習障礙學童(MLD)的教學介入之素材多偏重數學學科內容,本研究則聚焦在計算核心能力,整合「數感」、「數學事實提取」和「分解與重組」等三項能力之計算核心課程作為教學素材,據以對應MLD學童的認知核心能力缺陷,亦結合國內外實徵證據支持有效的教學方法與原則,實施教學介入成效與相關議題之研究。另考量小樣本研究若僅採取傳統統計考驗,有可能因違反統計假設而造成偏誤,故本研究利用自助法和線性混合效果模式等統計技術和傳統的重覆量數變異數分析一起分析,期應用三種統計的分析,解決小樣本研究的問題。本研究分兩階段探討本課程之成效,先用前驅研究試行本課程並探討其成效之趨勢,經過前驅研究調整課程後,以準實驗研究繼續探討三項研究問題,(1) 計算核心課程對MLD高危險群學童之成效,(2)本課程作為鑑定MLD之教學反應(RTI)之可行性,(3)自助法和線性混合效果模式,相較於重覆量數變異數分析,在小樣本重覆量數研究之優勢。
本研究之準實驗研究樣本篩選自北區一所國小全體一年級合計217位學童參與本研究,經過兩學期之數學能力表現篩選,符合MLD高危險群之實驗組學童共計10位,接受總時數400分鐘之計算核心課程。經智力配對且數學核心能力表現等資料控制選出對照學童計11位,該組學童未接受教學介入。兩組在前測和後測均實施「看數」、「數學事實提取」、「進階數學事實提取」和「分解與重組」等四項計算核心能力測驗。
本研究發現如下:(一)計算核心課程對MLD高危險群學童具備教學介入成效;(二)MLD高危險群學童在教學介入後,初步發現「成長速率無反應」和「最終表現水準無反應」雙低個案,綜合評估可肯定本課程在MLD鑑定的RTI鑑定實施有其可行性;(三)應用自助法和線性混合效果模式之統計技術進行資料分析,對小樣本教學介入研究有助益。
基於上述研究結果,本研究對於MLD之未來研究與補救教學之實務提出相關看法及建議。
The materials of intervention for students with mathematical learning disabilities (MLD) have been placed particular emphasis on curriculum content for years in Taiwan. However, the arithmetic core competences, including abilities of “number sense”, “math fact retrieval”, and “decomposition and regrouping” were neglected, which could correspond to the core deficits in students with MLD. Therefore, the study aimed to investigate the effect of the intverention based on the the arithmetic core competences. However, the small-sample study might confront the problem of violating statistical assumptions, but small-sample is common in the intervention of MLD. Therefore, the statistical methods of “bootstrap” and “linear mixed effect model” are applied to deal with the assumption-violating issues of the small-size. Additionally, after the intervention is approved as effective in the above purposes, the feasibility of this intervention as a pre-referral stage of MLD identification when using dual discrepancy criteria of response to intervention (RTI).
The second-grade students from one primary school in the northern Taiwan participated in the study. The students were screened by the measurement in two semesters. Those met the high-risk criteria of MLD and had parents’ consent were recruited in the experimental group. Ten students participated in the intervention and 11 high-risk MLD students without having parents’ consent were in the control group. They were compatible with the intelligent quotient and screen test of arithemetic competence. Both group were admininstrated pretest and posttest, including “subtizing”, “math fact retrieval”, “advanced math fact retrieval”, and “decomposition and regrouping.”
The main findings of this study were concluded as follows:
1. The arithmetic core competence intervention was approved to significantly improve the arithemetic competence of students with high-risk MLD by comprehensive analysis of three statistical methods.
2. The students with non-responder both of growth and final status could be identified after the intervention. As a result, this intervention program seemed to be feasible as a pre-referral stage of MLD identification.
3. The small-sample study would get benefit from the statistical methods of “bootstrap” and “linear mixed effect model”.
支毅君(1997)。我國國小三年級數感教學研究。台東師院學報,8,83-116。
王國亨、簡清華(2008)。屏東縣國小一年級新生的數與計算能力。教育實踐與研究,21(2),1-32。
江美娟、周台傑(2003)。後設認知策略教學對國小數學學習障礙學生解題成效之研究。特殊教育學報,18,107-151。
朱經明、林正豪(2012)。學習障礙學生應用基模化影片解原數未知多步驟文字題成效之研究。特殊教育與輔助科技學報,8,7-12。
吳明隆、王玉珍(2005)。國小三年級學童數感表現之個案詮釋。高雄師大學報,18,245-263。
吳雅琪、孟瑛如(2005)。資訊融入解題策略教學對國小數學學習障礙學生乘除法文字題解題成效之研究。特殊教育學報,21,103-128。
吳宜蓁、蕭伊倫(2015)。自我教導策略對國小中年級學習障礙學生在多位數乘法運算題的學習成效。雲嘉特教期刊,21,36-44。
林秀柔(1989)。國小數學學習障礙兒童鑑定方式之研究(未出版碩士論文)。國立臺灣教育學院特殊教育研究所,彰化。
林素微(2002)。國小高年級學童數感特徵暨數感動態評量發展之探
討。國立台灣師範大學教育心理與輔導研究所博士論文,未出版,臺北市。
林寀雯、鄭鈐華、王又禾、吳昭容(2013)。從課前診斷的觀點省視七年級數學補救教材暑期推廣的教學成效。科學教育月刊,362,32-42。
徐偉民、劉曼麗(2015)。國小攜手計畫數學補救教學課程決定與教學實施之探究。當代教育研究季刊,23(1),113-147。
許惠欣(1997)。我國幼稚園幼兒數算策略之研究。國立台南師範學院學報,30,339-372。
陳怡如(2011)。不同社經地位與性別幼兒的加法運算能力與策略之研究。國立臺南大學幼兒教育學系碩士論文,未出版,臺南市。
陳淑麗(2008)。國小弱勢學生課業輔導現況調查之研究。台東大學教育學報,19(1),1-32。
李淑娟(2008)。父親和幼兒的互動與幼兒簡單加法運算能力之關係。國立臺南大學幼兒教育學系碩士論文,未出版,臺南市。
李源順(2014)。數學這樣教:國小數學感教育(二版)。台北:五南。
陳秀芬(2014)。教學反應模式在國中閱讀障礙鑑定系統之建構。國立臺灣師範大學特殊教育研究所博士論文,未出版,臺北市。
陳彥廷(2008)。數概念教學活動實踐中幼兒的表現分析:以「十以內合成與分解」為例。科學教育研究與發展季刊,51,60-90。
柯華葳(1999)。基礎數學概念評量-四、五、六年級題本。臺北:行政院國家科學委員會。
柯華葳(2005)。數學學習障礙學生診斷與確認。特殊教育研究學刊,29,113-126。
洪儷瑜(2005):學習障礙鑑定工作檢討與建議-由「各縣市實施學習障礙學生鑑定工作調查表」談起。教育部委託報告。
洪儷瑜、何淑玫(2010):「介入反應」在特殊教育的意義與運用。特殊教育季刊,115, 1-12。
洪儷瑜、連文宏(2015)。基本數學核心能力測驗。臺北:中國行為科學社。
洪儷瑜、連文宏(2017)。數學學習障礙學生的鑑定。載於詹士宜、楊淑蘭(主編),突破數學學習困難:理論與實務,-。臺北:心理出版社。
洪儷瑜、連文宏(印製中)。國小學童計算能力之測量、發展軌跡與預測路徑。測驗學刊。
袁媛、王淑芬、陳國龍(2016):國小二年級學生在數值線段上的數字估計能力與數學學習成就之相關研究。臺灣數學教育期刊,3(1),1-18。
連文宏、洪儷瑜(2017)。數學學障與數學合併閱讀障礙國中生計算能力表現之特徵及其差異分析。台灣數學教育期刊,4(1),35-62。
連文宏、洪儷瑜(2018)。國小數學學習困難學童之心理數線表徵發展及其數線估計能力之研究。特殊教育研究學刊,43(1),1-25。
連文宏、洪儷瑜、闕嫣男、蔡明蒼。(2013)。三個轉介時程之疑似學習障礙學生後續鑑定結果比較─臺北市國中階段學習障礙學生之鑑定通報資料庫分析。特殊教育季刊,127,9-21。
莊其臻、黃秋霞(2013)。電腦圖示表徵教學對學習障礙學生的乘除法文字題解題之學習成效。國小特殊教育,55,1-26。
黃秋霞、方美珍(2007)。圖示表徵解題策略對國小學習障礙學生數學文字題學習成效之研究。中華民國特殊教育學會年刊,257-278。
楊德清(1997)。數學教育中目前大家關切之一個主題-數字常識。科學教育月刊,200,12-18。
楊德清(1998):筆算能力與數字常識表現之差異性的探討。科學教育月刊,212,3-10。
楊德清(2000)。國小六年級學童回答數字常識問題所使用的方法。科學教育學刊,8(4),374-394。
楊德清(2002):從教學活動中幫助國小六年級學生發展數字常識之研究。科學教育學刊,10(3),233-259。
鄭鈐華、吳昭容(2013)。與八年級課程同步實施的數學補救教學:成效與反思。台東大學教育學報,24(2),1-31。
劉曼麗、侯淑芬(2006)。整數數感融入國小四年級數學科教學之研究。科學教育學刊,14(2),121-147。
蕭金土(1995)。國小數學學習障礙學生的鑑定、學習問題診斷及學習策略教學效果之研究(未出版博士論文)。國立政治大學教育研究所,臺北。
American Psychological Association (2001). Publication manual of the American Psychological Association (5th ed.). Washington, DC: Author.
American Psychiatric Association. (2004). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC: Author.
American Psychological Association (2010). Publication manual of the American Psychological Association (6th ed.). Washington, DC: Author.
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.).Arlington, VA: American Psychiatric Publishing.
Ando, M., & Ikeda, H. (1971). Learning multiplication facts—more than a drill. Arithmetic Teacher, 18, 365-368.
Ardoin, S. P., Witt, J. C., Connell, J. E., & Koenig, J. L. (2005). Application of a three-tiered response to intervention model for instructional planning, decision making, and the identification of children in need of services. Journal of Psychoeducational Assessment, 23,362–380.
Ashcraft, M, H. (1992). Cognitive arithmetic: A review of data and theory. Cognition, 44, 75-106,
Ashcraft, M.H., Fierman, B.A., & Bartolotta, R. (1984). The production and verification tasks in mental addition: An empirical comparison. Developmental Review, 4, 157–170. Ashkenazi, S., Mark-Zigdon, N., & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve
pattern recognition weakness? Developmental Science, 16, 35–46
Ashlock, R. B. (1971). Teaching the basic facts: Three classes of activities. The Arithmetic Teacher, 18.
Barth, H., La Mont, K., Lipton, J., & Spelke, E. S.(2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116-21.
Beirne-Smith, M. (1991). Peer tutoring in arithmetic for children with learning disabilities. Exceptional Children, 57, 330–337.
Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up to 100 in Dutch second graders. Journal for Research in Mathematics Education, 24, 295–323.
Beishuizen, M., Van Putten, C. M., & Van Mulken, F.(1997). Mental arithmetic and strategy use with indirect number problems up to one hundred. Learning and Instruction, 7, 87–106.
Berkovits, I., & Hancock G. R. (2000). Bootstrap resampling approaches for repeated measure designs:
relative robustness to sphericity and normality violations. Educational and Psychological Measurement,60(6), 877-892.
Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental Psychology, 46(2), 545-551.
Bezuk, N. S. &Cegelka, P. T. (1995). Effective mathematics instruction for all students. In P. T. Cegelka & W. H. Berdine. (Eds.) Effective instruction for students with learning difficulties.(pp. 345-384). Needham Heights, MA: Allyn and Bacon.
Bjorklund, D.F., & Rosenblum, K.E. (2001). Children’s use of multiple and variable addition strategies in a game context. Developmental Science, 4(2), 184-194.
Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 41, 189-201.
Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79(4), 1016-1031.
Brannon, E. M., Wusthoff, C. J., Gallistel, C. R., & Gibbon, J. (2001). Numerical subtraction in the pigeon: Evidence for a linear subjective number scale. Psychological Science, 12, 238-243.
Bryant, D., Bryant, B. R., Gersten, R., Scammacca, N., & Chavez, M. M. (2008a). Mathematics intervention for first- and second-grade students with mathematics difficulties: The effects of Tier 2 intervention delivered as booster lessons. Remedial & Special Education, 29(1), 20–32.
Bryant, D., Bryant, B. R., Roberts, G., Vaughn, S., Pfannenstiel, K., Porterfield, J., & Gersten, R. (2011). Early numeracy intervention program for first-grade students with mathematics difficulties. Exceptional Children, 78(1), 7–23.
Bryant, D. P., Bryant, B. R., Gersten, R. M., Scammacca, N. N., Funk, C., & Winter, A. (2008b). The effects of Tier 2 intervention on the mathematics performance of first-grade students who are at risk for mathematics difficulties. Learning Disability Quarterly, 31(2), 47–63.
Brysbaert, M. (1995). Arabic number reading: On the nature of the numerical scale and the origin of phonological recoding. Journal of Experimental Psychology General, 124(4), 434-452.
Burns, M. K., & Wagner, D. (2008). Determining an effective intervention within a brief experimental analysis for reading: A meta-analytic review. School Psychology Review, 37, 126–136.
Butterworth, B. (2005). The development of arithmetical abilities. Journal of Child Psychology and Psychiatry, 46(1), 3-18.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafo`, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14, 365-376.
Campbell, J. I. D., & Gunter, R. (2002). Calculation, culture, and the repeated operand effect. Cognition, 86, 71-96.
Canobi, K. H., Reeve, R. A., & Pattison, P. E. (1998). The role of conceptual understanding in children’s addition problem solving. Developmental Psychology, 34, 882-891.
Cappelletti, M., Kopelman, M. D., Morton, J., & Butterworth, B. (2005). Dissociations in numerical abilities revealed by progressive cognitive decline in a patient with semantic dementia. Cognitive Neuropsychology, 22, 771-793.
Carr, M., & Alexeev, N. (2011). Fluency, accuracy, & gender predict developmental trajectories of arithmetic strategies. Journal of Educational Psychology, 103, 617–631.
Carnine, D. W.,& Stein, M. (1981). Organizational strategies and practice procedures for teaching basic facts. Journal for Research in Mathematics Education, 12(1), 65-69.
Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (1999). Children’s mathematics: Cognitively Guided Instruction. Portsmouth, NH: einemann.
Cohen, J. (1962) The statistical power of abnormal–social psychological research: a review. Journal of Abnormal and Social Psychology, 65, 145-153.
Cumming, J.J., & Elkins, J. (1999). Lack of automaticity in the basic addition facts as a characteristic of arithmetic learning problems and instructional needs. Mathematical Cognition, 5 (2), 149-180.
Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: Oxford University.
Dehaene, S. (2003). The neural basis of the Weber-Fechner law: A logarithmic mental number line. Trends in Cognitive Sciences, 7, 145-147.
Dehaene, S., & Mehler, J. (1992). Cross-linguistic regularities in the frequency of number words. Cognition, 43, 1-29.
Dehaene, S., Bossini, S., & Giraux, P. (1993). The mental representation of parity and number magnitude. Journal of Experimental Psychology: General, 122, 371-396.
Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in western and Amazonian indigene cultures. Science, 320, 1217-1220.
Desoete, A., & Grégoire, J. (2006). Numerical competence in young children and in children with mathematics learning disabilities. Learning and Individual Differences, 16, 351-367.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
Fias, W. (2001). Two routes for the processing of verbal numbers: Evidence from the SNARC effect. Psychological Research, 65, 250-259.
Fias, W., Brysbaert, M., Geypens, F., & d’Ydewalle, G. (1996). The importance of magnitude information in numerical processing: Evidence from the SNARC effect. Mathematical Cognition, 2(1), 95-110.
Fischer, M. H., Castel, A. D., Dodd, M. D., & Pratt, J. (2003). Perceiving numbers causes spatial shifts of attention. Nature Neuroscience, 6, 555-556.
Fischer, B., Kongeter, A., & Hartnegg, K. (2008). Effects of daily practice on subitizing. Optometry & Vision Development, 39, 30-34.
Fischer, U., Moeller, K., Bientzle, M., Cress, U., & Nuerk, H. C. (2011). Sensori-motor spatial training of number magnitude representation. Psychonomic Bulletin & Review, 18(1), 177-183.
Flanagan, D. P., Ortiz, S. O., & Alfonso, V. C. (2007). Essentials of cross-battery assessment (2nd ed.). Hoboken, NJ: John Wiley & Sons, Inc.
Fletcher, J. M., & Vaughn, S. (2009). Response to intervention: Preventing and remediating academic difficulties. Child Development Perspectives, 3(1), 30–37.
Fuchs, L. S. (2003). Assessing intervention responsiveness: conceptual and technical issues. Learning Disabilities Research and Practice, 18(3), 172-186.
Fuchs, L. S., Compton, D. L., Fuchs, D., Paulson, K., Bryant, J. D., & Hamlett, C. L. (2005). The prevention, identification, and cognitive determinants of math difficulty. Journal of Educational Psychology, 97(3), 493–513.
Fuchs, D., & Deshler, D. (2007). What we need to know about responsiveness to intervention (and shouldn’t be afraid to ask). Learning Disabilities Research and Practice, 22(2), 129-136.
Fuchs, L. S., Fuchs, D, Powell, S. R., Seethaler, P. M., Cirino, P. T., & Fletcher, J. M. (2008). Intensive intervention for students with mathematics disabilities: Seven principles of effective practice. Learning Disability Quarterly, 31 (2), 79-92.
Fuchs, L. S., Powell, S. R., Seethaler, P. M., Cirino, P. T., Fletcher, J. M., Fuchs, D., Hamlett, C. L., Zumeta, R. O. (2009). Remediating number combination and word problem deficits among students with mathematics difficulties: A randomized control trial. Journal of Educational Psychology, 101(3), 561-576.
Gallistel, C. R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43-74.
Gallistel, C. R., & Gelman, R. (2000). Nonverbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59-65.
Garnett, K. (1992). Developing fluency with basic number facts: Intervention for students with learning disabilities. Learning Disabilities Research and Practice,7 (4),210-216.
Garnett, K. & Fleischner, J. E. (1983). Automatization and basic fact performance of normal and learning disabled children. Learning Disability Quarterly, 6(2), 223-230.
Geary, D. C. (1993). Mathematical disabilities, cognitive, neuropsychological and genetic components. Psychological Bulletin, 114, 345-362.
Geary, D. C. (2003). Learning disabilities in arithmetic: Problem solving differences and cognitive deficits. In H. L. Swanson, K. Harris, & S. Graham (Eds.), Handbook of learning disabilities (pp. 199-212). New York: Guilford Press.
Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37, 4-15.
Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achieve-ment in mathematics. Journal of Developmental & Behavioral Pediatrics, 33, 250–263.
Geary, D.C., Bow-Thomas, C.C., Liu, F., & Siegler, R.S. (1996). Development of arithmetical competencies in Chinese and American children: Influence of age, language, and schooling. Child Development, 67, 2022–2044.
Geary, D.C. & Brown, S.C. (1991). Cognitive addition: Strategy choice and speed of processing differences in gifted, normal, and mathematically disabled children. Developmental Psychology, 27, 398-406.
Geary, D., Fan, L., & Bow-Thomas, C. (1992). Numerical cognition: Loci of ability differences comparing children from China and the US. Psychological Science, 3, 180–185.
Geary, D.C., Hoard, M.K., Byrd-Craven, J., & Desoto, M. (2004). Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. Journal of Experimental Child Psychology, 88, 121-151.
Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78 (4), 1343-1359.
Geary, D. C., Hoard, M., Nugent, L., & Byrd Craven, J. (2007). Strategy use, long-term memory, and working memory capacity. In D. Berch, & M. Mazzocco (Eds.), Why is math so hard for some children? (pp.83-105). Baltimore, MD: Paul H. Brookes.
Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line rep-resentations in children with mathematical learning disability. Developmental Neuropsychology ,33(3), 277-299.
Geary, D.C., Liu, F., Chen, G.P., Saults, S.J., & Hoard, M.K. (1999). Contributions of computational fluency to cross-national differences in arithmetical reasoning abilities. Journal of Educational Psychology, 91, 716-719.
Gelman, R. & Tucker, M. F. (1975). Further investigations of the young child’s conception of number. Child Development, 46, 167-175.
Gerlanc, D., & Kirby, K. N. (2016). BootES Package (version 1.2) [Software]. Available from https://cran.r-project.org/web/packages/ bootES/index.html.
Gersten, R., Chard, D. J., Jayanthi, M., Baker, S. K., Morphy, P., & Flojo, J. (2009). Mathematics instruction for students with learning disabilities: A meta-analysis of instructional components. Review of Educational Research, 79 (3), 1202-1242.
Gersten, R. & Dimino, J. A. (2006). RTI (Response to Intervention): Rethinking special education for students with reading difficulties (yet again). Reading Research Quarterly, 41(1), 99-108.
Gersten, R., Jordan, N. C., & Flojo, J. R. (2005). Early identification and inter-ventions for students with mathematics difficulties. Journal of Learning Disabili¬ties, 38(4), 293–304.
Glover, T. A., & Vaughn, S. (Eds.). (2010). The promise of response tointervention: Evaluating current science and practice. New York: The Guilford Press.
Goldman, S. R., Pellegrino, J. W., & Mertz, D. L. (1988). Extended practice of basic addition facts: Strategy changes in learning disabled students. Cognition and Instruction, 5, 223–265.
Guskey, T. R. (1985). Implementing mastery learning. Wadsworth Publishing Company.
Halberda, J., Feigenson L., & Mazzocco, M. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665-668.
Haring, N. G., & Eaton, M. D. (1978). Systematic instructional procedures: An instructional hierarchy. In N. G. Haring, T. C. Lovitt, M. D. Eaton, & C. L. Hansen (Eds.), The fourth R: Research in the classroom (pp. 23–40). Columbus, OH: Merrill.
Hedges, L. V., & Olkin, I. (1985). Statistical methods for meta-analysis. New York: Academic Press.
Hopkins, S. L., & Egeberg, H. (2009). Retrieval of simple addition facts: Complexities involved in addressing a commonly identified mathematical learning difficulty. Journal of Learning Disabilities, 42(3), 215-229.
Hopkins, S. L., & Lawson, M. J. (2002). Explaining the acquisition of a complex skill: Methodological and theoretical considerations uncovered in the study of simple addition and the moving-on process. Educational Psychology Review, 14, 121-154.
Howell, D. C. (2007). Repeated measures designs. In D. C. Howell (Ed.), Statistical methods for psychology (pp. 439-492). Belmont, CA: Thomson Wadsworth.
Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435-448.
Imbo, I., & Vandierendonck, A. (2007). The development of strategy use in elementary school children: Working memory and individual differences. Journal of Experimental Child Psychology, 96, 284-309.
Individuals with Disabilities Education Improvement Act (2004). searched on April1 2005 at http://www.vesid.nysed.gov/special ed / idea / idea2004_files/textonly/slide41.html
Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10382-10385.
Jitendra, A. K., Lein, A. E., Im, S. H.., Alghadi, A. A., Hefte, S. B., & Mouanoutoua, J. (2018). Mathematical interventions for secondary students with learning disabilities and matheatics difficulties: A meta-analysis. Exceptional Children, 84(2), 177-196.
Jordan, N.C., & Hanich, L.B. (2003). Characteristics of children with severe mathematics deficiencies: A longitudinal perspective. Learning Disabilities Research & Practice, 18(4), 213-221.
Jordan, N. C., Hanich, L. B., & Kaplan, D. (2003). A longitudinal study of mathematical competencies in children with specific math difficulties versus children with comorbid mathematics and reading difficulties. Child Development, 74, 834–850.
Jordan, N. C., Kaplan, D. K., Olah, L. N., & Locuniak, M. N. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153–175.
Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. N. (2008). Development of number combination skill in the early school years: When do fingers help? Developmental Science, 11, 662-668.
Jordan, N. C., & Montani, T. O. (1997). Cognitive arithmetic and problem solving: A comparison of children with specific and general mathematics difficulties. Journal of Learning Disabilities, 30, 624–634.
Kirby, K. N., & Gerlanc, D. (2013). BootES: An R package for bootstrap confidence intervals on effect sizes. Behavioral Research, 45, 905-927.
Koontz, K. L., & Berch, D., B. (1996). Identifying simple numerical stimuli: Processing inefficiencies exhibited by arithmetic learning disabled children. Mathematical Cognition, 2, 1-24.
Kosc, L. (1974). Developmental dyscalculia. Journal of Learning Disabilities, 7, 164-177.
Kucian , K., Grond, U., Rotzer, S., Henzi, B., Schönmann a, C., Plangger, F., Gälli, M., Martin, E., von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57, 782-795.
Landerl K., Bevan A., & Butterworth B. (2004). Developmental dyscalculia and basic numerical capacities. Cognition, 93(2), 1-25.
Laski, E. V., & Siegler, R. S. (2007). Is 27 a big number? Correlational and causal connections among numerical categorization, number line estimation, and numerical magnitude comparison. Child Development, 78(6), 1723-1743.
LeFever, J., Sadesky, G. S., & Bisanz, J. (1996). Selection of procedures in mental addition: Reassessing the problem size effect in adult. Journal of Experimental Psychology: Learning, Memory, & Cognition, 22, 216-230.
Lemaire, P., & Siegler, R. S. (1995). Four aspects of strategic change: Contributions to children's learning of multiplication. Journal of Experimental Psychology: General, 124, 83-97.
Lien, W. H., & Hung, L. Y. (2017). Development of numerical estimation in elementary students in Taiwan: An analytical method exploring children’s representation of mental number line. Manuscript submitted for publication.
Link, T., Moeller, K., Huber, S., Fischer, U., & Nuerk, H. C. (2013). Walk the number line -An embodied training of numerical concepts. Trends in Neuroscience and Education, 2(2), 74-84.
Lix, L. M., Keselman, J. C., & Keselman, H. J. (1994, April). Analysis of single-group repeated measures designs: A quantitative review. Paper presented at the annual meeting of the American Educational Research Association, New Orleans, LA.
Locuniak, M. N., & Jordan, N. C. (2008). Using Kindergarten Number Sense to Predict Calculation Fluency in Second Grade. Journal of Learning Disabilities, 41(5), 451-459.
Longo, M. R., & Lourenco, S. F. (2007). Spatial attention and the mental number line: Evidence for characteristic biases and compression. Neuropsychologia, 45, 1400-1407.
Lourenco, S. F., & Longo, M. R. (2009). Multiple spatial representations of number: Evidence of coexisting compressive and linear scales. Experimental Brain Research, 193, 151-156.
Lucangeli, D., Tressoldi, P. E., Bendotti, M., Bonanomi, M., & Siegel, L. (2003). Effective strategies for mental and written arithmetic calculation from the third to the fifth grade. Educational Psychology, 23, 507–521.
Maddock, J. E., & Rossi, J. S. (2001) Statistical power of articles published in three health psychology-related journals. Health Psychology, 20, 76-78.
Mair, P., & Wilcox, R. (2017). Robust Statistical Methods in R Using the WRS2 Package (version 0.9-2) [Software]. Available from https://cran.r-project.org/web/packages/WRS2/index.html.
Mandler, G., & Shebo, B. J. (1982). Subitizing: An Analysis of Its Component Processes. Journal of Experimental Psychology: General, 111 (1), 1-22.
Marita, S., & Hord, C. (2017). Review of mathematics interventions for secondary students with learning disabilities. Learning Disability Quarterly, 40(1). 29-40.
Maxwell, S. E. (2004) The persistence of underpowered studies in psychological re-search: causes, consequences, and remedies. Psychological Methods, 9(2), 147-163.
McCloskey, M., Aliminosa, D., & Sokol, S. M. (1991). Facts, rules, and procedures in normal calculation: Evidence from multiple single-patient studies of impaired arithmetic fact retrieval. Brain and Cognition, 17, 154-203.
McCloskey, M., Carramazza, A., & Basili, A. (1985). Cognitive mechanisms in unmber processing and calculation: Evidence form dyscalculia. Brain and Cognition, 4, 171-196.
McCloskey, M., Harley, W., & Sokol, S. M. (1991). Models of arithmetic fact retrieval: An evaluation in light of findings from normal and brain-damaged subjects. Journal of Experimental Psychology: Learning, Memory, & Cognition, 17, 377-397.
McKenna, J. W., Shin, M., & Ciullo, S. (2015). Evaluating reading and mattheatics instruction for students with learning disabilities: A synthesis of observation research. Learning Disability Quarterly, 38(4), 195-207.
McKnight, S. D., McKean, J. W., & Huitema, B. E. (2000). A double bootstrap method to analyze linear models with autoregressive error terms. Psychological Methods, 5(1), 87–101.
Mundy, E., & Gilmore, C. K. (2009). Children’s mapping between symbolic and nonsymbolic representations of number. Journal of Experimental Child Psychology, 103(4), 490-502.
Myers, J. A., Wang, J., Brownell, M. T., & Gagnon, J. C. (2015). Mathematics interventions for students with learning disabilities (LD) in secondary school: A review of the literature. Learning Dsiabilities: A contemporary Journal, 13(2), 207-235.
Ng, S. S. N., & Rao, N. (2010). Chinese number words, culture, and mathematics learning. Review of Educational Research, 80(2), 180-206.
Nieder, A., & Miller, E. (2004). A parietal-frontal network for visual numerical information in the monkey. Proceedintgs of the National Academy of Science of the United States of America, 101, 7457-7462.
Penner-Wilger, M., Fast, L., LeFèvre, J., Smith-Chant, B. L., Skwarchuk, S., Kamawar, D., & Bisanz, J. (2007). “The foundations of numeracy: subitizing, finger gnosia, and fine-motor ability,” in Proceedings of the 29th Annual Cognitive Science Society, eds D. S. McNamara and J. G. Trafton (Austin, TX: Cognitive Science Society), 1385–1390.
Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547-557.
Poncy, B. C., Skinner, C. H., & Jaspers, K. J. (2007). Evaluating and comparing interventions designed to enhance math fact accuracy and fluency: Cover, copy, and compare versus taped problems. Journal of Behavioral Education, 16, 27–37.
Powell, S. R., Fuchs, L. S., Fuchs, D., Cirino, P. T., & Fletcher, J. M. (2009).Effects of fact retrieval tutoring on third-grade students with mathdifficulties with and without reading difficulties. Learning Disabilities Research & Practice, 24, 1–11.
R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
Ratinckx, E., & Brysbaert, M. (2002). Interhemispheric stroop-like interference in number comparison: evidence for strong interhemispheric integration of semantic number information. Neuropsychology, 16(2), 217-229.
Rossi, J. S. (1990) Statistical power of psychological research: what have we gained in 20 years? Journal of Consulting and Clinical Psychology, 58, 646-656.
Royer, J.M., Tronsky, L.N., Chan, Y., Jackson, S.J., & Marchant III, H.G. (1999). Math fact retrieval as the cognitive mechanism underlying gender differences in math achievement test performance. Contemporary Educational Psychology, 24, 181-266.
Raghubar, K., Cirino, P., Barnes, M., Ewing-Cobbs, L., Fletcher, J., & Fuchs, L. (2009). Errors in multi-digit arithmetic and behavioral inattention in children with math difficulties. Journal of Learning Disabilities, 42(4), 356-371.
Rubin, L. H., Witkiewitz, K., Andre, J. S., & Reilly, S. (2007). Methods for handling missing data in the behavioral neurosciences: Don’t throw the baby rat out with the bath water. Journal of Undergraduate Neuroscience Education, 5(2), A71.
Ruiz Fernández, S., Rahona, J. J., Hervás, G., Vázquez, C., & Ulrich, R. (2011). Number magnitude determines gaze direction: Spatial-numerical association in a free-choice task. Cortex, 47(5), 617-620.
Russell, R., & Ginsburg, H. (1984). Cognitive analysis of children’s mathematics difficulties. Cognition and Instruction, 1, 217-244.
Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14, 280–291.
Schneider, M., Grabner, R. H., & Paetsch, J. (2009). Mental number line, number line estimation, and mathematical achievement: Their interrelations in grades 5 and 6. Journal of Educational Psychology, 101(2), 359-372.
Sedlmeier, P., & Gigerenzer, G. (1989). Do studies of statistical power have an effect on the power of studies? Psychological Bulletin, 105, 309-316.
Shaki, S., Fischer, M. H., & Petrusic, W. M. (2009). Reading habits for both words and numbers contribute to the SNARC effect. Psychonomic Bulletin & Review, 16, 328-331.
Sharon X. L., Leanne M., Peter W. F. S., Charlie H., Mark W., & Lucy Y. (2016). Properties of bootstrap tests for N-of-1 studies. British Journal of Mathematical and Statistical Psychology , 69, 276–290.
Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428-444.
Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: Lawrence Erlbaum Associates.
Siegler, R. S., & Opfer, J. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237-243.
Sood, S., & Jitendra, A. K. (2011). An exploratory study of a number sense program to develop kindergarten students’ number proficiency. Journal of Learning Disabilities, 46(4), 328-346.
Snyder, P., & Lawson, S. (1993). Evaluating results using corrected and uncorrected effect size estimates. Journal of Experimental Evaluation, 61, 334–349.
Steedly, K., Dragoo, K., Arafeh, S., & Luke, S. D. (2008). Effective mathematics instruction. Evidence for Education, 3(1), 1-12.
Starkey, P., & Cooper, R. (1995). The development of subitizing in young children. British Journal of Developmental Psychology, 19, 399-420.
Sugai, G., & Smith, P. (1986). The equal additions method of subtraction taught with a modeling technique. Remedial and Special Education, 7, 40–48.
Thompson, B. (2007). Effect sizes, confidence intervals, and confidence intervals for effect sizes. Psychology in the Schools, 44, 423–432.
Torgesen, J. K., Alexander, A., Wagner, R., Rashotte, C., Voeller, K., & Conway, T. (2001). Intensive remedial instruction for children with severe reading disabilities: Immediate and long-term outcomes from two instructional approaches. Journal of Learning Disabilities, 34, 33–58.
Tronsky, L.N. & Royer, J.M. (2003). Relationships among basic computational automaticity, working memory, and complex mathematical problem solving. What we know and what we need to know. In J.M. Royer (Ed.), Mathematical cognition (pp. 117 - 146). Greenwich, CT: Information Age Publishing.
Vasilyeva, M., Laski, E. V., & Shen, C. (2015). Computational fluency and strategy choice predict individual and cross-national differences in complex arithmetic. Developmental Psychology, 51, 1489-1500.
Whalen, J., Gallistel, C. R., & Gelman, R. (1999). Nonverbal counting in humans: The psychophysics of number representation. Psychological Science, 10, 130-137.
Widaman, K.F., Little, T.D., Geary, D.C., & Cormier, P. (1992). Individual differences in the development of skill in mental addition: Internal and external validation of chronometric models. Learning and Individual Differences, 4, 167-213.
Wilkinson, L., & APA Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594-604.
Wilson, A. J., Revkin, S. K., Cohen, D., Cohen, L., & Dehaene, S. (2006). An open trial assessment of “The Number Race”, an adaptive computer game for remediation of dyscalculia. Behavioral and Brain Function, 2(20), 1-16.
Xin, Y. P., & Jitendra, A. K. (1999). The effect of instruction in solving mathematical word problems for students with learning probles: A meth-analysis. The Journal of Special Education, 32, 207-225.
Zentall, S.S. (1990). Fact-retrieval automatization and math problem solving by learning disabled, attention disordered, and normal adolescents. Journal of Educational Psychology, 82, 856-865.