簡易檢索 / 詳目顯示

研究生: 林雅惠
Ya-Hui Lin
論文名稱: 以粒線體中細胞色素氧化酶Ⅰ部分基因片段探討台灣產溝渠豹蛛之族群遺傳結構及親緣地理關係
Study on population genetic structure and Phylogeography of Pardosa laura (Araneae: Lycosidae) in Taiwan based on COI of Mitochondrial DNA
指導教授: 陳世煌
Chen, Shyh-Hwang
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 52
中文關鍵詞: 溝渠豹蛛族群結構COI垂直分層結構
英文關鍵詞: Pardosa laura, population structure, COI, altitudinal patterns
論文種類: 學術論文
相關次數: 點閱:155下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣陸域動物親緣關係之分化模式,受於物種行為能力、氣候變遷、板塊活動及人為活動所影響,但是在眾多研究之中,尚未有針對廣泛分布的無脊椎動物的族群遺傳結構作探討。台灣地區溝渠豹蛛 (Pardosa laura Karsch, 1879)分布範圍從平地到海拔3200公尺以上,適合作為探討廣泛分布種之分群情形。本研究由34個樣點、150隻溝渠豹蛛,利用689bp粒線體DNA之色素氧化酶I (COⅠ)基因片段當作分子遺傳標誌,並輔以中國地區溝渠豹蛛、星豹蛛 (P. astrigera)和同科脈媧蛛 (Wadicosa fidelis)為外群,來建立台灣地區溝渠豹蛛的族群結構,推估其演化上經歷的歷史事件,評估是否有隱藏種存在的可能性。結果在24種基因型 (haplotype)所建構的最儉約法則 (Maximum parsimony criterion)、鄰聚法(Neighbor joining method) 及網狀親緣圖 (minimum spanning network)之親緣關係分析法,皆將本島本種分為兩大系群,其中系群I可再分成三個小單群,包括台灣島內IA亞群、IB亞群和中國亞群,顯示台灣地區溝渠豹蛛為多系群 (polyphyletic group),且族群結構呈現出垂直分層分化的地理分布類型 (altitudinal patterns or stratum patterns),與過去研究所認知的陸域動物地理分化模式不相同。而其偏高的核苷酸歧異度 (π)和基因型歧異度 (h)數値指出族群結構為不同系群再次接觸所形成,因而推估溝渠豹蛛的族群結構可能受多次入侵(mutli- incursion)作用而形成兩大系群。然而再重新檢測台灣地區溝渠豹蛛的形態特徵,卻未能從生殖器上有相對應其遺傳結構變異的形態,僅有B群的胸板有穩定的全黑斑紋,因此建議未來研究者能夠加強台灣地區三個分群間的交配行為探討和微棲地調查。

    Geographic barriers for inland animals would affect their phylogeography in Taiwan. The phylogeographic differentiation pattern could be limited by the behavior of the species, ancient climate change, plate movement of Taiwan or human activities. However, the study of population structure is seldom focus on the widely distributed invertebrate species in Taiwan. The distribution of Pardosa laura (Araneae: Lycosidae) ranges from low to high elevation that can be served as a model species to investigate the genetic differentiation pattern on the widely distributed species. Totally, 150 specimens were obtained from 34 localities in Taiwan. The 689bp of partial sequence of mtDNA cytochrome oxidase subunit I (COI) were used as a genetic marker in order to understand the population structure, the history of P. laura and the possibility of cryptic species in Taiwan. Using P. astrigers and Wadicosa fodelis as outgroups, the phylogenetic relationship among 24 haplotypes of P. laura from Taiwan all can be grouped into two major clades based on Maximum parsimony criterion or Neighbor joining method or minimum spanning network. The clade I can be subdivided into subclade IA, subclade IB and subclade China. The genetic differentiation of P. laura in Taiwan belongs to the altitudinal pattern which is different from those of previously reports and is a polyphyletic group. Higher values of both the nucleotide diversity (π) and the haplotype diversity (h) indicate that the genetic structure of P. laura is composed of different major groups and might be affected by the muti-incursion. However, the morphology of genital structures cannot be recognized for each group, only individuals of subclade IB all have the dark-marked sternum. A mating behavior investigation or microhabitat comparisons among three major groups of P. laura in Taiwan are strongly suggested in the future study.

    附表目次…………………………………………………………..……Ⅱ 附圖目次………………………………………………………………..Ⅲ 摘要……………………………………………………………………..Ⅳ 英文摘要………………………………………………………………..Ⅴ 前言………………………………………………………………………1 材料與方法……………………….………………………………….....10 結果……………………………………………………………………..17 討論……………………………………………………………………..23 結論……………………….………..…………………………………...29 參考文獻…………………………………………….……………….....30 附錄一:溝渠豹蛛 (Pardosa laura)基因型A之部分mtDNA COI基因序列……………………………………………………..50 附錄二:台灣地區溝渠豹蛛 (Pardosa laura)之基因型A和中國地區溝渠豹蛛,以及星豹蛛 (P. astrigera)與同科脈媧蛛(Wadicosa fidelis)之部分COI序列比較…………………...51

    朱巧雯。2005。台灣地區兩種葉鼻蝠科蝙蝠之遺傳變異。私立東海大學生物學系碩士論文。
    李峻瑋。2001。以粒線體之細胞色素氧化脢I部分序列探討臺灣地區人面蜘蛛
    (Nephila maculata)之族群遺傳結構。私立東海大學生物學系碩士論文。
    李宜欣。2004。臺灣島內緣點白粉蝶與白粉蝶粒線體DNA變異研究。國立臺灣
    師範大學生命科學系碩士論文。
    林朝棨。1963。台灣之第四紀。臺灣文獻。14: 1-53。
    林俊宏、李錦年、楊智傑、呂柏緯、陳世煌、呂光洋、方剛。1999。台灣產褸網
    蜘蛛分子遺傳結構之分析。生物學報。 34: 95-104。
    林唯潁。2002。青斑蝶族群遺傳結構之研究。國立台灣大學昆蟲學研究所碩士論
    文。
    官淑蕙。2004。應用粒線體DNA D-loop片段探討彰化地區澤蛙之族群遺傳結構。
    國立彰化師範大學生物學系碩士論文。
    周常恩。2006。以細胞色素b序列和外部形態分析台灣特有種短肢攀蜥之親緣地
    理。國立中山大學生物科學系博士論文。
    許譽騰。1998。由族群遺傳結構探討白頭翁與烏頭翁之演化關係。國立台灣大學動物學研究所碩士論文。
    孫承拒。1997。台灣地區石龍子類生物地理類源關係之初探。國立台灣師範大學
    生物學系碩士論文。
    袁守立。2003。以粒線體細胞色素b區域序列探討臺灣地區短尾鼩族群的地理親
    緣變異。私立東海大學生物學系碩士論文。
    黃仁磐。2008。台灣特有種短腹幽蟌的多次入侵暨更新世晚期族群擴張事件。私
    立東海大學生物學系碩士論文。
    郭瓊華。2002。臺灣蜓蜥族群遺傳結構之研究。國立臺灣師範大學生物研究所碩
    士論文。國立台灣師範大學生物學系碩士論文。
    陳惠琦。1993。梭德氏蛙 (Rana sauteri)的粒線體DNA序列與族群變異之初探。
    國立台灣大學動物學研究所碩士論文。
    陳世煌。2001。台灣常見蜘蛛圖鑑。行政院農業委員會。台北。
    陳柏豪。2006。農村地景中赤腹松鼠 (Callosciurus erythraeus)的族群遺傳結構。
    私立東海大學生物學系碩士論文。
    張智涵。2005。利用形態特徵與粒線體DNA探討Metaphire formosae種群蚯蚓的
    系統分類、生物地理與演化。國立台灣大學動物學研究所碩士論文。
    張天祐。2008。台灣區白頷樹蛙複合種群 (Polypedates leucomystax species
    complex)族群遺傳結構與分類地位之探討。國立台灣師範大學生命科學系碩士論文。
    彭鉯雯。2005。台灣藪鳥族群遺傳結構。國立臺灣大學森林環境暨資源學系碩士
    論文。
    楊懿如。1993。台北樹蛙生殖生態與族群基因組成差異。國立台灣大學動物學研
    究所碩士論文。
    楊尚達。1997。台灣地區小家鼠粒線體DNA控制區序列變異及族群遺傳之研究。
    國立台灣大學動物學研究所碩士論文。
    劉秀晶。2007。台灣特有種鳥類金亦白梅之微衛星序列選殖及族群遺傳結構探討。
    國立成功大學生物多樣性研究所碩士論文。
    賴俊祥。2008。台灣產山椒魚的分類與阿里山山椒魚生態與族群遺傳研究。國立
    台灣師範大學生命科學系博士論文。
    儲瑞華。2004。台灣獼猴的親緣地理與族群遺傳學研究。台灣大學動物學研究博
    士論文。
    謝佳蓉。2005。台灣產標蛇屬之親緣地理。國立中山大學生物科學系碩士論文。
    魏宏仁。2004。台灣產狼蛛科分類研究。國立台灣師範大學生命科學系碩士論文。
    羅育發。2004。中國狼蛛科 (Lycosidae)主要類群的遺傳多樣性及分子系統發育
    研究。湖南師範大學碩士學位論文。
    羅英元。2007。台灣產溪狡蛛 (Dolomedes raptor)地理親緣關係之研究。國立臺
    灣師範大學生命科學系碩士論文。
    Avise, J. C.. 2000. Phylogeography: The history and formation of species. Harvard
    College Press, Cambridge.
    Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb,
    and N. C. Saunders. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics. 18: 489-522.
    Ayoub, N. A., and S. E. Riechert. 2004. Molecular evidence for Pleistocene glacial
    cycles drivingdiversification of a North American desert spider, Agelenopsis aperta. Molecular Ecology. 13: 3453-3465.
    Bond, J. E., M. C. Hedin, M. G. Ramirez, and B. D. Opell. 2001. Deep molecular
    divergence in the absence of morphological and ecological change in the Californian coastal dune endemic trapdoor spider Aptostichus simus. Molecular Ecology. 10: 899-910.
    Bonte, D., L. Lens, J. P. Maelfait, M. Hoffmann, and E. Kuijken. 2003. Patch quality
    and connectivity influence spatial dynamics in a dune wolfspider. Oecologia. 135: 227-233
    Bonte, D., J. V. Borre, L. Lens, and E. P. Maelfait. 2006. Geographical variation in
    wolf spider dispersal behaviour is related to landscape structure.Animal Behaviour
    . 72: 655-662.
    Boulton, A. M., M. G. Ramirez, and C. P. Blair. 1998. Genetic structure in a coastal
    dune spider (Geolycosa pikei) on Long Island, New York barrier islands.
    Biological Journal of the Linnean Society. 64: 69–82.
    Chang , J., D. Song, and K. Zhou. 2007. Incongruous nuclear and mitochondrial
    phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China. Molecular Phylogenetics and Evolution. 42: 104–121.
    Colgan, D. J., S. Brown, R. E. Major, F. Christie, M. R. Gray, and G. Cassis. 2002. Population genetics of wolf spiders of fragmented habit in the wheat belt of New South Wales. Molecular Ecology. 11: 2295-2305.
    Croucher, P. J. P., G. S. Oxford, and J. B. Searle. 2004. Mitochondrial differentiation,
    introgression and phylogeny of species in the Tegenaria atrica group (Araneae:
    Agelenidae). Biological Journal of the Linnean Society. 81: 79–89.
    Eberhard, W. G.. 1985. Sexual selection and animal genitalia. Harvard university
    press, Cambridge.
    Emery, K. O., H. Nino, and B. Sullivan. 1971. Post-Pleistocene levels of the east
    China sea. Woods Hole Oceanographic Institute Press, Woods Hole, MA.
    Excoffier, L., and P. E. Smouse. 1994. Using allele frequencies and geographic
    subdivision to reconstruct gene tress within a specie: molecular variance parsimony. Genetics. 136: 343-359.
    Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance
    inferred from metric distance among DNA haplotype: application to human
    mitochondrial DNA restriction data. Genetics. 131: 479-491.
    Evans, T., and M. A. D. Goodisman. 2002. Nestmate relatedness and population
    genetic structure of the Australian social crab spider Diaea ergandros (Araneae: Thomisidae). Molecular Ecology. 11: 2307-2316.
    Felsenstein, J.. 1985. Confidence limits on phylogenies: an approach using the
    bootstrap. Evolution. 39: 783-791.
    Ford, M. J.. 1978. Locomotory activity and the predation strategy of the wolf spider
    Pardosa amentata (Clerck) (Lycosidae). Animal Behaviour. 26: 31-35.
    Grant, W. S., and B. W. Bowen. 1998. Shallow population histories in deep
    evolutionary lineages of marine fishes: insights from the sardines and anchovies
    and lessons for conservation. The American Genetic Association. 89: 415-426.
    Graur, D., and W. H. Li. 2000. Fundamentals of molecular evolution. Sinauer
    Associates, Inc. USA.
    Hedin, M., and D. A. Wood. 2002. Genealogical exclusivity in geographically
    proximate populations of Hypochilus thorelli Marx (Araneae, Hypochilidae) on
    the Cumberland Plateau of North America. Molecular Ecology. 11: 1975 - 1988.
    Hedrick, P. W. 2000. Genetics of Populations. 2nd ed. pp. 374. Jones and Bartlett
    Publishers, Inc. Sudbury Massachusetts.
    Hendrixson, B. E., and J. E. Bond. 2005a. Testing species boundaries in the
    Antrodiaetus unicolor species complex (Araneae: Mygalomorphae:
    Antrodiaetidae): ” Paraphyly” and cryptic diversity. Molecular Phylogenetics and
    Evolution. 36: 405-416.
    Hendrixson, B. E., and J. E. Bond. 2005b. Two sympatric species of Antrodiaetus
    from southwestern North Carolina (Araneae, Mygalomorphae, Antrodiaetidae) .
    Zootaxa. 872: 1-19.
    Hudson, R. R., M. Slatkin, and W. P. Waddison. 1992. Estimation of levels of gene
    flow from DNA sequence data. Genetics. 132: 583-589.
    Karsch, F. 1879. Baustoffe zu eniner Spinnenfauna von Japan. Verh. Naturh. Ver.
    Preuss, Rheinl Westfal. 36: 102-103, fig. 21.
    Kimura, M.. 1980. A simple method of estimating evolutionary rates of base
    substitutions through comparative studies of nucleotide sequence. Journal of
    Molecular evolution. 16: 111-120.
    Kimura, M. 1983. Rare variant alleles in the light of the neutral theory. Molecular
    and Biological Evolution. 1: 84-93.
    Kimura, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. Molecular evolutionary
    genetics analysis software. Bioinformatics. 17: 1244-1245.
    Liu, T. K., Y. G. Chen, W. S. Chen., and S. H. Jing. 2000. Rates of cooling and
    denudation of early Pengli Orogency, Taiwan, as assessed by fission-track constraints. Tectonophysics. 320:69-82.
    Muster, C. T., and T.U. Berendonk 2006. Divergence and diversity: lessons from an
    arctic-alpine distribution group (Pardosa saltuaria, Lycosidae). Molecular
    Ecology. 5: 2921-2953.
    Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New
    York.
    Nei, M., and F. Tajima. 1983. Maximum likelihood estimation of the number of
    nucleotide substitutions from restriction sites data. Genetics 105: 2007-217.
    Opell, B.D. 2006. Molecular phylogenetic evidence for the parallel evolution of rock
    ecomorphs in the New Zealand orb-weaving spider Waitkera waitakerenesis
    (Family Uloboridae). Journal of Arachnology. 34: 467–475.
    Platnick, N. I. 2009. The world spider catalog, version 9.5. American Museum of
    Natural History, online at
    http://research.amnh.org/entomology/spiders/catalog/COUNTS.html. .
    Ramirez, M. G., and B. Chi. 2004. Cryptic speciation, genetic diversity and gene flow
    in the California turret spider Atypoides riversi (Araneae: Antrodiaetidae).
    Biological Journal of the Linnean Society. 82: 27–37.
    Richardson, B. J., P. R. Baverstock , and M. Adams. 1986. Allozyme electrophoresis:
    a handbook for animal systematic and population studies. Academic Press, New
    York.
    Richter, C. J. J. 1970 Aerial dispersal in relation to habitat in eight wolf spider species
    (Pardosa, Araneae, Lycosidae). Oecologia. 5: 200-214.
    Rickers,_S., and S. Scheu. 2005. Cannibalism in Pardosa palustris (Araneae,
    Lycosidae):effects of alternative prey, habitat structure, and density. Basic and
    Applied Ecology. 6: 471-478
    Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer, and R. Rozas. 2003. DnaSP, DNA
    polymorphism analysis by the coalescent and other methods. 19: 2496-2497.
    Samu, F., A. Sziranyi, and B. Kiss. 2003. Foraging in agricultural fields: local ‘sit-and
    -move’ strategy scales up to risk-averse habitat use in a wolf spider. Animal
    Behaviour. 66: 939–947.
    Schneider, S., D. Roessli, and L. Excoffier. 2000. ARLEQUIN 2.0: A software for
    population genetic data analysis. Genetics and Biometry Laboratory, University
    of Geneva, Switzerland.
    Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. 1994. Evolution,
    weighting, and phylogenetic utility of mitochondrial gene sequences and a
    compilation of conserved polymerase chain reaction primers. Annals of the
    Entomological Society of America. 87: 651-701
    Slatkin, M.. 1987. Gene flow and geographic structure of nature population. Science.
    239: 787-792.
    Starrett, J., and M. Hedin. 2007. Multilocus genealogies reveal multiple cryptic
    species and biogeographical complexity in the California turret spider
    Antrodiaetus riversi (Mygalomorphae, Antrodiaetidae). Molecular Ecology.
    16: 583–604.
    Su, Y. C., Y. H. Chang, S. C. Lee , and I. M. Tso. 2007. Phylogeography of the giant
    wood spider (Nephila pilipes, Araneae) from Asian- Australian regions. Journal
    of Biogeography. 34: 177-191.
    Suwa, M.. 1980. Courtship behavior of the wolf spider Pardosa laura complex.
    Japanese Journal of Ecology. 30: 63-74.
    Suwa, M.. 1984. Courtship behavior of 3 new forms in the wolf spider Pardosa laura
    complex. Japanese Journal of Ecology. 2: 99-107.
    Tajima, F.. 1989. Statistical method for testing the neutral mutation hypothesis by
    DNA polymorphism. Genetics. 123: 585-595.
    Tanaka, H.. 1976. Three forms distinguished in Pardosa laura. Atypus. 66:52.
    Tanaka, H.. 1985. Descriptions of new species of Lycosidae (Araneae) from Japan.
    Acta Arachnologica. 33: 51–87.
    Tanaka, H., and M. Suwa. 1986. Descriptions of three new spiders of the Pardosa
    laura complex (Araneae: Lycosidae)based on their morphology and ecology. Acta
    Arachnologica. 34: 49–60.
    Templeton, A. R., E. Routman and C. A. Phillips. 1995. Separating population
    structure from population history: A cladistic analysis of the geographical
    distribution of mitochondrial DNA haplotypes in the Tiger salamander,
    Ambystoma tigrinum. Genetics. 140: 767-782.
    Walker, S. E., S. D. Marshall, A. L. Rypstra and D. H. Taylor. 1999. The effects of
    hunger on locomotors behaviour in two species of wolf spider (Araneae,
    Lycosidae). Animal Behaviour. 58: 515–520.
    Weyman, G.. S. 1993. A review of the possible causative factors and significance
    of ballooning in spiders. Ethology Ecology and Evolution. 5: 279-291.
    Wright, S.. 1978. Evolution and genetics of populations. Chicago University Press,
    Chicago.
    Yeh, W. B., Y. L. Chang, J. S. Lin, F. S. Wu and J. T. Yang. 2004. Genetic
    differentiation of Loxoblemmus appendicularis complex (Orthoptera: Gryllidae
    ): speciation via vicariant and glaciation events. Annals of the Entomological Society of America. 97: 613-623.

    下載圖示
    QR CODE