簡易檢索 / 詳目顯示

研究生: 林冠宇
Lin, Kuan-Yu
論文名稱: 利用一價銠金屬催化α-重氮-β,γ-不飽和酯類化合物與苯胺化合物進行不對稱加成反應 : 合成γ-胺基α,β-不飽和酯類化合物與八氫吲哚衍生物
Highly Enantioselective and Regioselective Rh (I)-Catalyzed Addition of Anilines to α-Diazo-β,γ-unsaturated esters:Synthesis of Chiral γ-Amino α,β-unsaturated Esters and An Octahydroindole Derivative
指導教授: 吳學亮
Wu, Hsyueh-Liang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 331
中文關鍵詞: 一價銠金屬銠金屬碳烯重氮酯類掌性雙環[2.2.2]雙烯配基
英文關鍵詞: rhodium (I)-catalyzed, rhodium carbenoid, chiral bicyclo [2.2.2] octadiene ligand, α-diazo β,γ-unsaturated esters
DOI URL: http://doi.org/10.6345/NTNU202000866
論文種類: 學術論文
相關次數: 點閱:308下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文論述利用一價銠金屬與掌性雙環[2.2.2]雙烯配基L3d形成錯合物,催化α-重氮-β,γ-不飽和酯類化合物11,反應形成銠金屬碳烯(rhodium carbenoid)中間體,與苯胺化合物12進行不對稱加成反應,成功地合成出一系列具有掌性中心之主要產物γ-胺基α,β-不飽和酯類化合物13,產率為6–85%,鏡像超越值為22–>99.5%,及副產物為具有掌性中心之α胺基β,γ-不飽和酯類化合物14,產率為15–54%,鏡像超越值為15–90%。將具有掌性的γ胺基α,β-不飽和乙酯化合物13al經由數步反應步驟,可合成出八氫吲哚衍生物99。

    An unprecedented rhodium (I)-catalyzed asymmetric N−H insertion reaction of α-diazo β,γ-unsaturated esters with available anilines 12 was reported. The asymmetric reaction permitted an efficient synthesis of chiral γ-amino α,β-unsaturated esters 13, in the presence of a Rh-catalyst in situ generated from [RhCl(C2H4)2]2 and chiral bicyclo [2.2.2] octadiene ligand L3d, with excellent enantioselectivities (22–>99.5% ees) and in good yields (6–85%) under mild conditions, along with α-amino β, γ-unsaturated esters 14 in 15–54% yields and with 15–90% ees. The method was applied in the synthesis of a bioactive octahydroindole derivative 99 .

    中文摘要 i Abstract ii 謝誌 iii 目錄 iv 圖目錄 vi 表目錄 viii 縮寫對照表 ix 第一章 緒論 1 第二章 文獻回顧 5 第三章 實驗設計與概念 14 3-1 掌性雙烯配基62之開發 14 3-2 製備本實驗室開發之掌性雙環[2.2.1]雙烯配基L1 15 3-3 製備本實驗室開發之含醯胺類掌性雙環[2.2.1]雙烯配基L2 16 3-4 製備掌性雙環醯胺類[2.2.2]雙烯配基L3 17 3-5 製備α-重氮-β,γ-不飽和酯類化合物11 18 3-6 製備α-重氮-β,γ-不飽和乙酯化合物88 19 第四章 實驗結果與討論 20 4-1 探討親核試劑之效應 20 4-2 探討溫度之效應 25 4-3 探討配基之效應I 27 4-4 探討配基之效應II 28 4-5 探討配基之效應III 29 4-6 探討配基之效應IV 30 4-7 探討溶劑之效應 31 4-8 探討反應滴加時間之效應 32 4-9 親核試劑效應之探討I 33 4-10 親核試劑效應之探討II 35 4-11 親核試劑效應之探討III 37 4-12 親核試劑效應之探討IV 39 4-13 親核試劑效應之探討V 41 4-14 動力學拆析效應之探討 42 4-15 動力學同位素效應之探討 45 4-16 絕對立體化學之探討 47 4-17 反應機構之探討 48 第五章 合成應用 49 第六章 結論 52 第七章 實驗部分 53 參考文獻 126 附錄一 X-ray單晶數據與ORTEP解析圖譜 130 附錄二 核磁共振光譜圖 183

    參考文獻
    1. (a) Flack, H.-D. Acta Cryst. 2009, 65, 371–389. (b) Kauffman, G.-B.; Myers, R.-D. J. Chem. Educ. 1975, 52, 777781. (c) Yoshito, T. Mendeleev Commun. 2003, 13, 93–94.
    2. (a) Shallenberger, R.-S. J. Food Science. 1963, 28, 584–589. (b) Shallenberger, R.-S. Nature. 1967, 216, 480–482. (c) Aronson, J. K. Meyler’s Side Effects of Analgesics and Antiinflammatory Drugs. 1st edn. (Elsevier, 2009)
    3. Van Caillie-Bertrand M.; Degenhart H.-J.; Luijendijk, I.; Bouquet, J.; Sinaasappel M. Arch. Dis. Child. 1985, 60, 652–655.
    4. (a) Jin, Z.; Lia, Z.-G.; Huanga, R.-Q.; Nat. Prod. Rep. 2002, 19, 454–476. (b) Lewis, J.-R. Nat. Prod. Rep. 2002, 19, 223–258. (c) Jin, Z. Nat. Prod. Rep. 2009, 26, 363–381.
    5. (a) Martin, S.-F.; Campbell, C.-L. J. Org. Chem. 1988, 53, 3184–3190. (b) Pearson, W.-H.; Lovering, F.-E. J. Org. Chem. 1998, 63, 3607–3617. (c) Lebeuf, R.; Robert, F.; Schenk, K.; Landais, Y. Org. Lett. 2006, 8, 4755–4758. (d) Zhang, F.-M.; Tu, Y. Q.; Liu, J.-D.; Fan, X.-H.; Shi, L.; Hu, X.-D.; Wang, S.-H.; Zhang, Y.-Q. Tetrahedron Lett. 2006, 62 , 9446–9455. (e) McNulty, J.; Nair, J.-J.; Codina, C.; Bastida, J.; Pandey, S.; Gerasimoff, J.; Griffin, C. Phytochemistry. 2007, 68 , 1068–1074. (f) Jeffs, P.-M. The Alkaloids, R. G. A. RodrigoAcademic Press, New York, 1981, 19, 1–80. (g) Martin, S.-F. The Alkaloids, A. BrossiAcademic Press, New York, 1987, 30, 251–376. (h) Jeffs, P.-M. MTP International Review of Science, Alkaloids, Organic Chemistry, Series One, D. H. Hey and K. F. Wiesner, Butterworth, London, 1973, 9, 273–318.
    6. (a) Yasuzawa, T.; Iida, T.: Muroi, K.; Ichimura, M.; Takahashi, K.; Sano, H. Chemical & Pharmaceutical Bulletin. 1988, 36, 3728–3731. (b) Tietze, L.-F.; Krewer B. Chem Biol Drug Des. 2009, 74, 205–211. (c) Cacciari, B.; Romagnoli, R.; Baraldi, P.-G.; Da Ros, T.; Spalluto, G. Expert Opin. Ther. Pat. 2000, 12, 1853–1871.
    7. (a) Wang, Y.; Beerman, T.-A.; Kowalski, D. Cancer Research. 2001, 61, 3787–3794. (b) Liu, J.-S.; Kuo, S.-R.; Beerman, T.-A.; Melendy, T. MOL. CANCER. THER. 2003, 2, 41–47.
    8. (a) Frank, M.-E.; Macpherson, G.-R.; Figg, W.-D. The Lancet. 2004, 363, 1802–1811. (b) Moghe, V.-K.; Kulkarni, U.; Parmar, U.-I. Bombay. Hosp. J. 1982, 3, 241–263. 
    9. (a) Katsuki, T.; Sharpless, K.-B. J. Am. Chem. Soc. 1980, 102, 5974–5976. (b) Rossiter, B.; Katsuki, T.; Sharpless, K.-B. J. Am. Chem. Soc. 1981, 103, 464–465. (c) Martin, V.; Woodard, S.; Katsuki, T.;Yamada, Y.; Ikeda, M.; Sharpless, K.-B. J. Am. Chem. Soc. 1981, 103, 6237–6240. (d) Sharpless, K.-B.; Behrens, C. H.; Katsuki, T.; Lee, A.-W.-M.; Martin, V.-S.; Takatani, M.; Viti, S.-M.; Walker, F.-J.;Woodard, S.-S. Pure Appl. Chem. 1983, 55, 589–604. (e) Hanson, R.-M.; Sharpless, K.-B. J. Org. Chem. 1986, 51, 1922–1925. (f) Gao, Y.; Klunder, J.-M.; Hanson, R.-M.; Masamune, H.; Ko, S.-Y.; Sharpless, K.-B. J. Am. Chem. Soc. 1987, 109, 5765–5780. (g) Jacobsen, E.-N.; Marko, I.; Mungall, W.-S.; Schroeder, G.; Sharpless, K.-B. J. Am. Chem. Soc. 1988, 110, 1968–1970. (h) Johnson, R.-A.; Sharpless, K.-B. Comp. Org. Synth. 1991, 7, 389–436. (i) Finn, M.-G.; Sharpless, K.-B. J. Am. Chem.Soc. 1991, 113, 113–126. (j) Sharpless, K.-B., et al. J. Org. Chem. 1992, 57, 2768–2771. (k) Kolb, H.-C.; VanNieuwenhze, M.-S.; Sharpless, K.-B. Chem. Rev. 1994, 94, 2483–2547. (l) DelMonte, A.-J.; Haller, J.; Houk, K.-N.; Sharpless, K.-B.; Singleton, D.-A.; Strassner, T.; Thomas, A.-A. J. Am. Chem. Soc. 1997, 119, 9907–9908.
    10. (a) Vineyard, B.-D.; Knowles, W.-S.; Sabacky, M.-J.; Bachman, G.-L.; Weinkauff, D.-J. J. Am. Chem. Soc. 1977, 99, 5946–5952. (b) Knowles, W.-S. Angew. Chem. Int. Ed. 2002, 41, 1998–2007 (c) Angew.Chem. 2002, 114, 2096–2107.
    11. (a) Noyori, R.; Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akutagawa, S. J. Am. Chem. Soc. 1987, 109, 5856–5858. (b) Takaya, H.; Akutagawa, S.; Noyori, R. Org. Synth. 1989, 67, 20–32. (c) Kitamura, M.; Tokunaga, M.; Ohkuma, T.; Noyori, R. Org. Synth. 1993, 71, 1–13.
    12. (a) Hu, W.-H.; Timmons, D. J.; Doyle, M.-P. Org. Lett. 2001, 3, 933–935. (b) Org. Lett. 2001, 3, 3741–3744. (c) DeAngelis, A.; Taylor, M.-T.; Fox, J.-M. J. Am. Chem. Soc. 2009, 131, 1101–1105.
    13. (a) Wang, H.-B.; Guptill, D.-M.; Alvarez, A.-V.; Musaev, D.-G.; Davies, H. M.-L. Chem. Sci., 2013, 4, 2844–2850. (b) Lian, Y.-J.; Davies, H.-M. L.; J. Am. Chem. Soc. 2010, 132, 440–441.(c) Reddy, R.-P.; Davies, H. M.-L.; J. Am. Chem. Soc. 2007, 129, 10312–10313.
    14. Paulissen, R.; Reimlinger, H.; Hayez, E.; Hubert, A. J.; Teyssié, P. Tetrahedron Lett. 1973, 24, 2233–2236.
    15. Hansen, T.; Davies, H. M.-L.;. J. Am. Chem. Soc. 1997, 119, 9075–9076.
    16. Huang, H.-X.; Wang, Y.-H.; Chen, Z.-Y.; Hu, W.-H. Adv. Synth. Catal. 2005, 347, 531–534.
    17. Xie, X.-L.; Zhu, X.-F.; Guo, J.-X.; Cai, Y.; Zhuo, Q.-L. Angew. Chem. Int. Ed. 2014, 53, 2978–2981.
    18. Liu, G.; Li, J.; Qiu, L.; Liu, L.; Xu, G.-Y.; Ma, B.; Sun, J.-T. Org. Biomol. Chem. 2013, 11, 5998–6002.
    19. Zhu, Y.; Liu, X.; Dong, S.-X.; Zhou, Y,-H.; Li, W.; Lin, L.-L.; Feng, X.-M. Angew. Chem. Int. Ed. 2014, 53, 1636–1640.
    20. Arredondo, V.; Hiew, S.-C.; Gutman, E.-S.; Premachandra, I. D. U. A.; Vranken, D. L.-V. Angew. Chem. Int. Ed. 2017, 56, 1–5.
    21. Ramakrishna, K.; Sivasankar, C. Org. Biomol. Chem. 2017, 15, 2392–2396.
    22. Harada, S.; Tanikawa, K.; Homma, H.; Sakai, C.; Ito, T.; Nemoto, T. Chem. Eur. J. 2019, 25, 12058–12062.
    23. Demonceau, A.; Simal, F.; Noels, A.-F. Tetrahedron Lett. 1997, 38, 7879–7882.
    24. Nishimura, T.; Maeda, Y.; Hayashi. T. Angew. Chem. Int. Ed. 2010, 49, 7324–7327.
    25. Ghorai, J.; Anbarasan, P. J. Org, Chem. 2015, 80, 3455–3461
    26. Chen, D.; Zhang, X.; Qi, W.-Y.; Xu, B.; Xu, M.-H. J. Am. Chem. Soc. 2015, 137, 5268–5271.
    27. Chen, D; Zhu, D.-X.; Xu, M.-H. J. Am. Chem. Soc. 2016, 138, 1498–1501.
    28. Ma, X.-C.; Jiang, J.; Lv, S.; Yao, W.-F.; Yang, Y.; Liu, S.-Y.; Xia, F.; Hu, W.-H. Angew. Chem. Int. Ed. 2014, 53, 13136–13139.
    29. Uozumi, Y.; Lee, S.-Y.; Hayashi, T. Tetrahedron Lett. 1992, 33, 7185–7188.
    30. Wei, W.-T.; Yeh, J.-Y.; Kuo, T.-S.; Wu, H.-L. Chem. Eur. J. 2011, 17, 11405–11409.
    31. Syu, J.-F.; Lin, H.-Y.; Cheng, Y.-Y.; Tsai, Y.-C.; Ting, Y.-C.; Kuo, T.-S.; Janmanchi, D.; Wu, P.-Y.; Henschke, J.-P.; Wu, H.-L. Chem. Eur. J. 2017, 23, 14515–14522.
    32. Stefan, A,; Roman, I.; Dirk, S.; Christian, M. J. Org. Chem. 2012, 77, 4765−4773.
    33. (a) Hari, D.-P.; Waser, J. J. Am. Chem. Soc. 2016, 138, 2190–2193. (b) Padwa, A.;
    Kulkarni, Y. S.; Zhang, Z. J. Org. Chem. 1990, 55, 4144−4153.
    34. Shim, S.-Y.; Cho, S.-M.; Venkateswarlu, A.; Ryu, D.-H. Angew. Chem. Int. Ed. 2017, 56, 8663–8666.
    35. Hansen, J.-H.; Parr, B.-T.; Pelphrey, P.; Jin, Q.-H.; Autschbach, J.; Davies, H. M.-L. Angew. Chem. Int. Ed. 2011, 50, 2544–2548.
    36. Damien, C.; Bernard, F.; Fabienne, F. Org. Biomol. Chem. 2012, 10, 6587–6594.
    37. (a)Ersmark, K.; Del Valle, J.-R.; Hanessian, S. Angew. Chem., Int. Ed. 2008, 47, 1202–1223. (b) Murakami, M.; Okita, Y.; Matsuda, H.; Okino, T.; Yamaguchi, K. Tetrahedron Lett. 1994, 35, 3129–3132.
    38. Blankley, C.-J.; Kaltenbronn, J.-S.; DeJohn, D.-E.; Werner, A.; Bennett, L.-R.; Bobowski, G.; Krolls, U.; Johnson, D.-R.; Pearlman, W.-M.; Hoefle, M.-L.; Essenburg, A.-D.; Cohen D.-M.; Kaplan, H.-R. J. Med.Chem. 1987, 30, 992–998.
    39. Silverio, D.-L.; Fu, P.; Carswell, E.-L.; Snapper, M.-L.; Hoveyda, A.-H.; Tetrahedron Lett. 2015, 56, 3489–3493.
    40. Zakharkin, L.-I.; Khorlina, I.-M. Tetrahedron Lett. 1962, 3, 619–620.

    無法下載圖示 電子全文延後公開
    2025/12/31
    QR CODE