研究生: |
曾奇 |
---|---|
論文名稱: |
四丁基氟化銨及無機鹼催化硫醇與α‚β-不飽和酸化合物進行加成反應之研究探討 |
指導教授: | 姚清發 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | α‚β-不飽和酸 |
論文種類: | 學術論文 |
相關次數: | 點閱:103 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分為兩個章節,第一章節為探討以α‚β-不飽和酸化合物為受質進行1,4-共軛加成反應的研究。而根據以往文獻所報導的研究結果中發現,當以α‚β-不飽和酸化合物為受質進行加成反應時,往往所獲得的產物產率皆為偏低,或同時會有其它副產物的生成。在此,本研究發展出以四丁基氟化銨為催化劑,催化硫醇與α‚β-不飽和酸化合物進行1,4-共軛加成反應,可獲得高產率的單一加成產物。
第二章節則為探討利用無機鹼催化硫醇對具有吲哚結構的α‚β-不飽和酸化合物進行加成反應,可得到高產率之去羧基化的3-(1-(thiol)ethyl)-1H-indoles產物。
The present work has been divided into two chapters, the first chapter deals with the 1,4-conjugate addition of thiols to α,β-unsaturated carboxylic acids catalyzed by a mild base tetrabutylammonium fluoride(TBAF). Herein, we have described a novel procedure for the synthesis of 3-sulfanylpropionic acid, which is often encountered in molecules of biologically active compounds. The reaction conditions described here are simple, mild, and efficient. The use of TBAF as a base has the advantages of being economically viable and more efficient for the conjugative addition. The reaction system can be successfully applied to a variety of α,β-unsaturated acids as well as thiols to synthesize a wide variety of sulfur containing carboxylic acids in excellent yields.
The second chapter illustrates the potassium hydroxide or potassium carbonate catalyzed conjugative addition of thiols to (3-(1H-indol-3-yl)acrylic acids leading to the formation of 3-(1-(aryl/alkylthio)ethyl)-1H-indoles via decarboxylation of the adduct. A wide range of thiols and (3-(1H-indol-3-yl)acrylic acids reacted under the present reaction conditions to produce 3-(1-(aryl/alkylthio)ethyl)-
1H-indoles in excellent yields.
1. (a) Michael, A. J. Prakt. Chem./ Chem.-Ztg, 1887, 35, 349. (b) Michael, A. J. Prakt, Chem./ Chem.-Ztg, 1894, 49, 20.
2. (a) Corain, B.; Basato, M.; Veronese, A. C. J. Mol. Catal. 1993, 81, 133. (b) Kobayashi, S.; Nagayama, S. J. Org. Chem. 1997, 62, 232.
3. (a) Yamamoto, Y.; Maruyama, K. J. Am. Chem. Soc. 1978, 100, 3240. (b) Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Maruyama, K. J. Org. Chem. 1982, 47, 119.
4. (a) Christoffers, J. J. Chem. Soc., Chem. Commun. 1997, 943. (b) Christoffers, J. J. Chem. Soc., Perkin Trans. 1 1997, 3141.
5. Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043.
6. (a) Shono, T.; Matsumura, Y.; Kashimura, S.; Hatanaka, K. J. Am. Chem. Soc. 1979, 101, 4752. (b) Kumar, A.; Salunkhe, R. V.; Rane, R. A.; Dike, S. Y. J. Chem. Soc., Chem. Commun. 1991, 485.
7. (a) Auburn, P. R.; Whelan, J.; Bosnich, B. J. Chem. Soc., Chem. Commun. 1986, 146. (b) Lu, X.; Ni, Z. Synthesis 1987, 66. (c) McDonald, J. W.; Corbin, J. L.; Newton, W. E. Inorg. Chem. 1976, 15, 2056. (d) Mukaiyama, T.; Izawa, T.; Saigo, K.; Takei, H. Chem. Lett. 1973, 355. (e) Ogawa, A.; Takeba, M.; Kawakami, J.; Ryu, I.; Kambe, N.; Sonoda, N. J. Am. Chem. Soc. 1995, 117, 7564. (f) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205.
8. Bakuzis, P.; Bakuzis, M. L. F. J. Org. Chem. 1981, 46, 235.
9. Ranu, B. C.; Dey, S. S.; Hajra, A. Tetrahedron 2003, 59, 2417.
10. Yadav, J. S.; Reddy, B. V. S.; Baishya, G. J. Org. Chem. 2003, 68, 7098.
11. Spencer, J. B.; Wabnitz, T. C. Org. Lett. 2003, 5, 2141.
12. (a) Rosssiter, B. E.; Swingle, N. M. Chem. Rev. 1992, 92, 771. (b) Cooke, M. P. Jr. J. Org. Chem. 1983, 48, 744.
13. Wotiz, J. H.; Matthews, J. S.; Greenfield, H. J. Am. Chem. Soc. 1953, 75, 6342.
14. Aurell, M. J.; Mestres, R.; Munoz, E. Tetrahedron Lett. 1998, 39, 6351.
15. Aurell, M. J.; Banuls, M. J.; Mestres, R.; Munoz, E. Tetrahedron 1999, 55, 831.
16. Gao, S. J.; Tzeng, T. K.; Sastry, M. N. V.; Chu, C. M.; Liu, J. T.; Lin, C. C.; Yao, C. F. Tetrahedron Lett. 2006, 47, 1889.
1. (a) Livingstone, R. In Rodd’s Chemistry of Carbon Compounds; Ansell, M. F., Ed., Elservier: Oxford, 1984; Vol. Ⅳ. (b) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New York, 1996, 113.
2. (a) Saito, M.; Kawamura, M.; Hiroya, K.; Ogasawara. Chem. Commun. 1997, 765. (b) Callaghan, O.; Lampard, C.; Kennedy, A. R.; Murphy, J. A. J. Chem. Soc., Perkin Trans. 1 1999, 995. (c) Sydorenko, N.; Zificsak, C. A.; Gerasyuto, A. I.; Hsung, R. P. Org. Biomol. Chem., 2005, 3, 2140
3. Iwao, M.; Motoi, O. Tetrahedron Lett. 1995, 36, 5929.
4. Komoto, I.; Kobayashi, S. Org. Lett. 2002, 4, 1115.
5. Alam, M. M.; Varala, R.; Adapa, S. R. Tetrahedron Lett. 2003, 44, 5115.
6. Reddy, A. V.; Ravinder, K.; Goud, V.; Krishnaiah, P.; Raju, T. V.; Venkateswar, Y. Tetrahedron Lett. 2003, 44, 6257.
7. Zhan, Z. P.; Yang, R. F.; Lang, K. Tetrahedron Lett. 2005, 46, 3895.
8. (a) Campbell, J. A.; Broka, C. A.; Gong, L.; Walker, K. A. M.; Wang, J.-H. Tetrahedron Lett. 2004, 45, 4073.
9. (a) Williams, T. M.; Ciccarone, T. M.; MacTough, S. C.; Rooney, C. S.; Balani, S. K.; Condra, J. H.; Emini, E. A.; Goldman, M. E.; Greenlee, W. J.; Kauffman, L. R.; O’Brien, J. A.; Sardana, V. V.; Schleif, W. A.; Theoha-rides, A. D.; Anderson, P. S. J. J. Med. Chem. 1993, 36, 1291. (b) Silvestri, R.; De Martino, G.; La Regina, G.; Artico, M.; Massa, S.; Vargiu, L.; Mura, M.; Loi, A. G.; Marceddu, T.; La Colla, P. J. Med. Chem. 2003, 46, 2482.
10. (a) Matsugi, M.; Gotanda, K.; Murata, K.; Kita, Y. Chem. Commun. 1997, 1387. (b) Matsugi, M.; Murata, K.; Gotanda, K.; Nambu, H.; Anilkumar, G.; Matsumoto, K.; Kita, Y.; J. Org. Chem. 2001, 66, 2434.
11. Maeda, Y.; Koyabu, M.; Nishimura, T.; Uemura, S. J. Org. Chem. 2004, 69, 7688.
12. Schlosser, K. M.; Krasutsky, A. P.; Hamilton, H. W.; Reed, J. E.; Sexton, K. Org. Lett. 2004, 6, 819.
13. Kametani, T. Synthesis 1974, 171.