簡易檢索 / 詳目顯示

研究生: 蕭明玉
Hsiao, Ming-Yu
論文名稱: 利用苯炔與亞胺經由 π 鍵的嵌入反應合成 苯并噁嗪化合物及經由化學選擇性氧-醯化反應或氮-醯化反應與分子內 Wittig 反應合成三取代噁唑化合物或高官能基苯并呋喃化合物
Synthesis of 1,3-Benzoxazines via π-insertion reactions of Arynes and N-Acyl imines and Chemoselective Intramolecular Wittig Reactions for the Synthesis of Oxazoles and Benzofurans.
指導教授: 林文偉
Lin, Wen-Wei
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 162
中文關鍵詞: 苯并呋喃噁唑苯炔
英文關鍵詞: benzofuran, oxazole, benzyne
論文種類: 學術論文
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩大部分,第一部分為利用苯炔與亞胺經由 π 鍵的嵌入反應合成苯并噁嗪化合物,第二部分為經由化學選擇性氧-醯化反應或氮-醯化反應與分子內 Wittig 反應合成三取代噁唑化合物或高官能基苯并呋喃化合物。
    第一部分 : 苯炔為高活性的反應中間體,因其多樣化的反應形式總是吸引許多化學家的注意,我們嘗試利用它與同樣高活性且缺電子的氮-醯基亞胺反應,出乎我們意料之外的,得到的產物為經由 π 鍵的嵌入反應形成的苯并噁嗪化合物,我們也可以使用具取代基的芳香炔化合物與氮-醯基亞胺進行反應,來探討其化學選擇性。
    第二部分 : 噁唑化合物與苯并呋喃化合物的合成,在有機合成領域之中為重要的研究重點之一,我們可以藉由添加不同的醯氯試劑,像是立體阻礙較大的三甲基乙醯氯 (t-BuCOCl) 或高活性的三氟乙酸酐 (TFAA) 與同時具有兩個反應官能基的亞胺起始物來進行反應,控制其化學選擇性分別經由化學選擇性氮-醯化反應得到苯并呋喃化合物 (t-BuCOCl) 或經由化學選擇性氧-醯化反應得到噁唑化合物 (TFAA)。

    The thesis is devided into two parts:
    Part 1
    Synthesis of 1,3-Benzoxazines via π-insertion reactions of Arynes and N-Acyl imines.

    Because arynes are highly reactive species and can undergo a variety of transformations, their chemistry attract chemist a lot of attention. We have successfully utilized the eletron-deficient N-acyl imines to trap the in situ generated intermediates, benzyne, to obtain the corresponding benzoxazine derivatives in moderate yields. These unprecedented reactions are assumed to be via an unexpected [2+2] cycloaddtion of N-acyl imine and benzyne as the key step.

    Part 2
    Chemoselective Intramolecular Wittig Reactions for the Synthesis of Oxazoles and Benzofurans.

    A chemoselective approach was developed for the synthesis of highly functionalized oxazoles and benzofurans using an intramolecular Wittig reaction as the key step. By choosing proper trapping reagent or method of addition of reagents, chemoselectivity can be controlled toward either oxazole or benzofuran derivatives.

    第一章 利用苯炔與亞胺經由 π 鍵的嵌入反應合成苯并噁嗪化合物 1 1-1 前言 1 1-2 苯炔的文獻介紹 3 1-2-1 [4+2] 環加成反應 ([4+2] Cycloadditions),又稱為 Diels-Alder 反應 3 1-2-2 [2+2] 環加成反應 ([2+2] Cycloadditions) 6 1-2-3 偶極環加成反應 (Dipolar Cycloadditions) 9 1-2-4 過渡金屬催化反應 (Transition-metal Catalyzed Reactions) 13 1-2-5 多組分反應 (Multicomponent Reactions,MCRs) 16 1-2-6 嵌入反應 (Insertion Reactions) 19 1-3 研究動機 26 1-5 實驗部分 32 1-5-1 分析儀器及基本實驗操作 32 1-6 參考文獻 33 第二章 經由化學選擇性氧-醯化反應或氮-醯化反應與分子內 Wittig 反應合成三取代噁唑化合物或高官能基苯并呋喃化合物 36 2-1 前言 36 2-1-1 噁唑化合物的介紹 36 2-1-2 苯并呋喃化合物的介紹 37 2-2 噁唑化合物的合成策略及文獻介紹 38 2-2-1 利用噁唑啉 (oxazolines) 直接氧化法來合成噁唑化合物 39 2-2-2 利用噁唑增加官能基化法來合成噁唑化合物 40 2-2-3 利用過渡金屬或有機試劑催化經由環化反應合成噁唑化合物 43 2-2-4 利用其他方法來合成噁唑化合物 51 2-3 苯并呋喃化合物的合成策略及文獻介紹 53 2-3-1 利用過渡金屬進行合環反應來合成苯并呋喃化合物 54 2-3-2 利用呋喃分子來合成苯并呋喃化合物 61 2-3-3 利用其他方式來合成苯并呋喃化合物 63 2-4 研究動機 65 2-5 實驗結果與討論 72 2-5-1 利用亞胺起始物 293a 與醯氯試劑 268 進行反應之最佳化篩選 72 2-5-2 苯醯氯 268a 與亞胺起始物 293 反應之探討 76 2-5-3 不同醯氯試劑 268 與亞胺起始物 293 反應之探討 79 2-5-4 三甲基乙醯氯 268g 與亞胺起始物 293 反應之探討 85 2-5-5 三氟醋酸酐 268h 與亞胺起始物 293 反應之探討 91 2-5-6 亞醯胺取代苯并呋喃化合物 297 進行去保護與進行官能化反應 94 2-5-7 噁唑化合物 290 進行去保護與利用苯炔前驅物 5 進行衍生化反應 96 2-5-8 藉由控制實驗進行亞胺起始物化學選擇性的探討 99 2-5-9 亞胺起始物 293 與三丁基膦進行控制實驗 102 2-5-10 苯并呋喃化合物 308h 與醯氯試劑 268a 及三乙基胺在膦催化下進行反應 104 2-5-11 反應機構探討 105 2-5-12 結論 107 2-6 實驗部分 107 2-6-1 分析儀器及基本實驗操作 107 2-6-2 實驗步驟及光譜數據 109 2-7 參考文獻 160

    [1] Smith, T. E.; Kuo, W.-H.; Balskus, E. P.; Bock, V. D.; Roizen, J. L.; Theberge, A. B.; Carroll, K. A.; Kurihara, T. and Wessler, J. D. J. Org. Chem. 2008, 73, 142.
    [2] Wu, J. and Panek, J. S. Angew. Chem. Int. Ed. 2010, 49, 6165.
    [3] Jain, J.; Almquist, S. J.; Yakhter, D. S. and Harding, M. W. J. Pharm. Sci. 2001, 90, 625.
    [4] Parodi, F. J. and Fischer, N. H. J. Nat. Prod. 1988, 51, 594.
    [5] Masubuchi, M.; Ebiike, H.; Kawasaki, K.; Sogabe, S.; Morikami, K.; Shiratori, Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh, H.; Aoki, Y.; Ohtsuka, T. and Shimma, N. Bioorg. Med. Chem. 2003, 11, 4463.
    [6] Inoue, M.; Carson, M. W.; Frontier, A. J. and Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 1878.
    [7] Cornforth, J. W.; Cornforth, R. H. Journal of the Chemical Society (Resumed) 1947, 96.
    [8] (a) Bredereck, H.; Bangert, R. Angew. Chem. Int. Ed. 1962, 1, 662.; (b) Bredereck, H.; Bangert, R. Chem. Ber. 1964, 97, 1414.
    [9] Murai, K.; Takahara, Y.; Matsushita, T.; Komatsu, H. and Fujioka, H. Org. Lett. 2010, 12, 3456.
    [10] Wang, Y.; Li, Z.; Huang, Y.; Tang, C.; Wu, X.; Xu, J. and Yao, H. Tetrahedron 2011, 67, 7406.
    [11] Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J. and Wilson, J. E. Org. Lett. 2010, 12, 3578.
    [12] Odani, R.; Hirano, K.; Satoh, T. and Miura, M. J. Org. Chem. 2015, 80, 2384.
    [13] Hu, Y.; Yi, R.; Wu, F. and Wan, B. J. Org. Chem. 2013, 78, 7714.
    [14] Zheng, M.; Huang, L.; Huang, H.; Li, X.; Wu, W. and Jiang, H. Org. Lett. 2014, 16, 5906.
    [15] Bai, Y.; Chen, W.; Chen, Y.; Huang, H.; Xiao, F. and Deng, G.-J. RSC Adv. 2015, 5, 8002.
    [16] Zhang, J.; Coqueron, P.-Y.; Vors, J.-P. and Ciufolini, M. A. Org. Lett. 2010, 12, 3942.
    [17] Xie, J.; Jiang, H.; Chenga, Y. and Zhu, C. Chem. Commun. 2012, 48, 979.
    [18] Yu, X.; Xin, X.; Wan, B. and Li, X. J. Org. Chem. 2013, 78, 4895.
    [19] Robinson, R. J. Chem. Soc. 1909, 95, 2167.
    [20] (a) Gabriel, S. Berichte der deutschen chemischen Gesellschaft 1910, 43,134.; (b) Gabriel, S. Berichte der deutschen chemischen Gesellschaft 1910, 43,1283.
    [21] Liang, Z.; Hou, W.; Du, Y.; Zhang, Y.; Pan, Y.; Mao, D. and Zhao, K. Org. Lett. 2009, 11, 4978.
    [22] Li, J.; Zhu, Z.; Yang, S.; Zhang, Z.; Wu, W. and Jiang, H. J. Org. Chem. 2015, 80, 3870.
    [23] Anxionnat, B.; Pardo, D. G.; Ricci, G.; Rossen, K. and Cossy, J. Org. Lett. 2013, 15, 3876.
    [24] Li, C.; Zhang, Y.; Li, P. and Wang, L. J. Org. Chem. 2011, 76, 4692.
    [25] Liu, Y.; Wang, H. and Wan, J.-P. J. Org. Chem. 2014, 79, 10599.
    [26] Hashmi, A. S. K.; Yang, W. and Rominger, F. Angew. Chem. Int. Ed. 2011, 50, 5762.
    [27] Yin, B.; Cai, C.; Zeng, G.; Zhang, R.; Li, X. and Jiang, H. Org. Lett. 2012, 14, 1098.
    [28] Liu, Y. and Ma, S. Org. Lett. 2012, 14, 720.
    [29] Osyanin, V. A.; Osipov, D. V.; Demidov, M. R. and Klimochkin, Y. N. J. Org. Chem. 2014, 79, 1192.
    [30] Kao, T.-T.; Syu, S.; Jhang, Y.-W. and Lin, W. Org. Lett. 2010, 12, 3066.
    [31] Syu, S.; Lee, Y.-T.; Jang, Y.-J. and Lin, W. Org. Lett. 2011, 13, 2970.
    [32] Lee, Y.-T.; Jang, Y.-J.; Syu, S.; Chou, S.-C.; Lee, C.-J. and Lin, W. Chem. Commun. 2012, 48, 8135.
    [33] Tsai, Y.-L.; Fan, Y.-S.; Lee, C.-J.; Huang, C.-H.; Das, U. and Lin, W. Chem. Commun. 2013, 49, 10266.
    [34] 103年度研究生范宇琇之碩士論文
    [35] Lee, Y.-T.; Lee, Y.-T.; Lee, C.-J.; Sheu, C.-N.; Lin, B.-Y.; Wang, J.-H.; Lin, W. Org. Biomol. Chem. 2013, 11, 5156.
    [36] (a) Cowen, B. J.; Saunders, L. B.; Miller, S. J. J. Am. Chem. Soc. 2009, 131, 6105; (b) Mecozzi, T.; Petrini, M. J. Org. Chem. 1999, 64, 8970; (c) Sisko, J.; Mellinger, M.; Sheldrake, P. W.; Baine, N. H. Tetrahedron Lett. 1996, 37, 8113; (d) Unterhalt, B.; Mohr, R. Synthesis 1985, 1985, 973; (e) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.; Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696; (f) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2007, 129, 15398.
    [37] Moriarty, K. J.; Winters, M.; Qiao, L.; Ryan, D.; DesJarlis, R.; Robinson, D.; Cook, B. N.; Kashem, M. A.; Kaplita, P. V.; Liu, L. H.; Farrell, T. M.; Khine, H. H.; King, J.; Pullen, S. S.; Roth, G. P.; Magolda, R.; Takahashi, H. Bioorg. Med. Chem. Lett. 2008, 18, 5537.
    [38] Fan,Y.-S.; Das, U.; Hsiao, M.-Y.; Liu, M.-H. and Lin, W. J. Org. Chem. 2014, 79, 11567.

    無法下載圖示 本全文未授權公開
    QR CODE