研究生: |
李嘉雯 Chia-Wen Li |
---|---|
論文名稱: |
水稻 (Oryza sativa L.) 第三型幾丁質酶的分子研究 Molecular studies of rice (Oryza sativa L.) class III chitinases |
指導教授: |
王玉麒
Wang, Yu-Chie |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 146 |
中文關鍵詞: | 水稻 、幾丁質酶 、病原相關基因 、茉莉酸 、離層酸 |
英文關鍵詞: | rice, chitinase, pathogenesis-related gene, jasmonate, ABA |
論文種類: | 學術論文 |
相關次數: | 點閱:151 下載:30 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們自水稻懸浮培養細胞所分泌的蛋白質當中,鑑定出兩種第三型的幾丁質酶 (Osm30和Osm34)。本研究不但針對這兩種幾丁質酶進行生化特性與生理功能的探討,也就水稻基因組資料庫中的32個第三型幾丁質酶成員,進行親緣系統樹的分析,結果顯示Osm30及Osm34分別歸類為第IIIa和IIIb亞型。
幾丁質酶屬於pathogenesis-relative (PR) 蛋白質家族成員,常參與植物的抗病防禦機制。當水稻細胞受到四種病原真菌:Rhizoctonia solani、Sarocladium oryzae、Gibberella fujikuroi和Bipolaris oryzae的感染時,Osm30和Osm34的表現量,均會被誘導增加。此外,Osm30和Osm34也受到甲基茉莉酸 (MeJA) 處理的誘導,而水楊酸 (SA) 的處理則不影響兩者基因的表現,顯示此兩種第三型幾丁質酶可能是經由JA/ethylene-dependent訊息傳導路徑,而非以SA-dependent路徑,來參與植物的抗病機制。
本研究培養水稻細胞的過程中也發現,每當更換新培養液後,水稻細胞的Osm30和Osm34基因都會被短暫誘導而增加表現,隨後又降回基礎表現量。此暫時性表現的情形可能受到繼代培養的攪拌動作 (agitation),及更換新舊培養液時產生的滲透壓差的正向調控;此外,水稻細胞在培養過程中,會新生成並分泌一些抑制幾丁質酶表現的成分,以調節Osm34基因的表現。當水稻細胞以與逆境有關的植物生長調節劑ABA處理時,結果顯示其對於Osm30為正向的促進表現,對Osm34卻為負向的抑制表現,顯示此兩個幾丁質酶在不同的逆境下,其基因表現的調控機制可能有所不同。
綜合上述資料,Osm30和Osm34幾丁質酶在水稻細胞內平常只有基礎量的表現,當細胞感受到環境的變化,包括滲透勢改變、受到機械傷害或病原菌感染時,可能經由JA/ethylene訊息路徑,和/或由其他未知的因子,來調控共同調控其基因的表現,當水稻細胞已適應環境或威脅去除後,水稻細胞有另外的機制來節制幾丁質酶基因的表現。
Rice is one of the most important agricultural crops; biotic stresses are limiting crop productivity worldwide, hence studies aiming at identification and characterization of novel pathogen related gene(s) is gaining momentum. Chitinases belong to the pathogenesis-related protein families and play significant role in plant defense mechanism. In the present study, we identified several chitinases in rice suspension-culture, among Osm30 and Osm34 (class III) are selected for further investigations including biochemical properties, physiological functions, gene expression and regulation for future application. The phylogenetic trees of Osm30 and Osm34 with other 30 putative class III chitinases in the rice genome defines the evolutionary relationship and are classified into subclasses IIIa and IIIb respectively, indicating diverse functions in vivo. The phylogenetic analysis of Osm30 and Osm34 with other 32 putative class III chitinases in the rice genome revealed subclasses IIIa and IIIb, respectively. The expression of Osm30 and Osm34 genes was up-regulated in the presence of common rice pathogens, such as Rhizoctonia solani, Sarocladium oryzae, Gibberella fujikuroi and Bipolaris oryzae, ethylene and methyl jasmonate (MeJA), but not salicylic acid (SA). These results indicate that the expressions of these chitinases are JA/ethylene dependent and may participate in SA independent signal transduction pathway in the plant defense mechanism. Upon transfer of rice cells into fresh culture medium, Osm30 and Osm34 transcripts displayed a transient expression pattern in rice cells and subsequently reduce to basal expression level. This phenomenon may be due to mechanical agitation and osmotic change in the culture medium. In addition, rice cells secreted some inhibitory factors that regulated the Osm30 and Osm34 gene expression during culturing. It was interesting to note that ABA positively regulated the expression of Osm30 gene and inhibited Osm34. Taken together, the expression of Osm30 and Osm34 was basal level under normal culture conditions, the changes in the expression level of chitinase genes was observed after transferring into fresh culture medium. Thus rice cells sense the environmental alternation such as osmotic shock, agitation and pathogen infection probably via JA/ethylene-dependent pathway and/or other unidentified factors, to augment cellular defense mechanism.
參考文獻
李嘉雯 1997 水稻懸浮培養細胞33-kDa分泌性蛋白質的生物功能鑑定與基因選殖之研究 國立台灣師範大學生物系碩士論文
Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D and Shinozaki K. 1997. Role of arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell. 19: 1859-1868.
Bairoch A, Bucher P and Hofmann K. 1997. The PROSITE database, its status in 1997. Nucleic Acids Res. 25: 217-221.
Beintema JJ. 1994. Structural features of plant chitinases and chitin-binding proteins. FEBS Lett. 350: 159-163.
Bokma E, Rozeboom HJ, Sibbald M, Dijkstra BW and Beintema JJ. 2002. Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis. Eur. J. Biochem. 269: 893-901.
Boter M, Ruiz-Rivero O, Abdeen A and Prat S. 2004. Conserved MYC transcription factors play a key role in jasmonate signaling both in tomato and Arabidopsis. Genes Dev. 18: 1577-1591.
Boyle B and Brisson N. 2001. Repression of the Defense Gene PR-10a by the Single-Stranded DNA Binding Protein SEBF. Plant Cell. 13: 2525–2538.
Brameld KA, Shrader WD, Imperiali B and Goddard WA 3rd. 1998. Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors. J. Mol. Biol. 280: 913-923.
Brunner FSA, Fritig B and Legrand M. 1998. Substrate specificities of tobacco chitinases. Plant J. 14: 225-234.
Chan MT, Chao YC, Yu SM. 1994. Novel gene expression system for plant cells based on induction of alpha-amylase promoter by carbohydrate starvation.
J. Biol. Chem. 269: 17635-17641.
Chen C and Chen Z. 2000. Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco. Plant Mol. Biol. 42: 387-396.
Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X and Zhu T. 2002. Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559-574
Clendennen SK, Lopez-Gomez R, Gomez-Lim M, Arntzen CJ and May GD. 1998. The abundant 31-kilodalton banana pulp protein is homologous to class-III acidic chitinases. Phytochemistry. 47: 613-619.
Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U and Vad K. 1993. Plant chitinases. Plant J. 3: 31-40.
Datta K, Tu J, Oliva N and Ona I. 2001. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Science 160: 405-414.
de Jong AJ, Cordewener J, Lo Schiavo F, Terzi M, Vandekerckhove J, van Kammen A and De Vries SC. 1992. A carrot somatic embryo mutant is rescued by chitinase. Plant Cell 4: 425-433.
Denekamp M. and Smeekens SC. 2003. Integration of wounding and osmotic stress signals determines the expression of the AtMYB102 transcription factor gene. Plant Physiol. 132:1415-1423.
Durrant W.E. and Dong X. 2004. Systemic acquired resistance. Annu. Rev. Phytopathol. 42: 185-209.
Ezcurra I, Wycliffe P, Nehlin L, Ellerstrom M and Rask L.2000. Transactivation of the Brassica napus napin promoter by ABI3 requires interaction of the conserved B2 and B3 domains of ABI3 with different cis-elements: B2 mediates activation through an ABRE, whereas B3 interacts with an RY/G-box. Plant J. 24: 57-66
Farmer EE and Ryan CA. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA. 87: 7713-7716.
Felix G, Regenass M and Boller T. 2000. Sensing of osmotic pressure changes in tomato cells. Plant Physiol. 124: 1169-1179.
Fujimoto SY, Ohta M, Usui A, Shinshi H and Ohme-Takagi M. 2000. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell. 12: 393-404.
Gal SW, Choi JY, Kim CY, Cheong YH, Choi YJ, Bahk JD, Lee SY and Cho MJ. 1998. Cloning of the 52-kDa chitinase gene from Serratia marcescens KCTC2172 and its proteolytic cleavage into an active 35-kDa enzyme. FEMS Microbiol. Lett. 160: 151-158.
Grover A and Gowthaman. 2003. Strategies for development of fungus-resistant transgenic plants. Current Science. 84: 330-340.
Hamel F, Boivin R, Tremblay C and Bellemare G. 1997. Structural and evolutionary relationships among chitinases of flowering plants. J. Mol. Evol. 44: 614–624.
Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
Hong JK and Hwang BK. 2002. Induction by pathogen, salt and drought of a basic class II chitinase mRNA and its in situ localization in pepper (Capsicum annuum). Physiol. Plant. 114: 549-558.
Itzhaki H, Maxson JM and Woodson WR. 1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-S-transferase (GSTI) gene. Proc. Natl. Acad. Sci. USA. 91: 8925-8929.
Kasprzewska A. 2003. Plant chitinases--regulation and function. Cell Mol. Biol. Lett. 8: 809-824.
Kim YK, Baek JM, Park HY, Choi YD and Kim SI. 1994. Isolation and characterization of cDNA clones encoding class I chitinase in suspension cultures of rice cell. Biosci. Biotechnol. Biochem. 58: 1164-1166.
Kim CY, Gal SW, Choe MS, Jeong SY, Lee SI, Cheong YH, Lee SH, Choi YJ, Han C, Kang YH and Cho MJ. 1998. A new class II rice chitinase, Rch2, whose induction by fungal elicitor is abolished by protein phosphatase 1 and 2A inhibitor. Plant Mol. Biol. 37: 523-534.
Kunkel BN and Brooks DM. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology. 5: 325-331.
Laemmli UK. 1970. Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature. 227: 680-685.
Lee SC, Kim YJ and Hwang BK. 2001. A pathogen-induced chitin-binding protein gene from pepper: its isolation and differential expression in pepper tissues treated with pathogens, ethephon, methyl jasmonate or wounding. Plant Cell Physiol. 42: 1321-1330.
Lee SC and Hwang BK. 2005. Induction of some defense-related genes and oxidative burst is required for the establishment of systemic acquired resistance in Capsicum annuum. Planta. 221: 790-800.
Li C-W and Wang Y-C. 2006. Biochemical and functional characterization of rice (Oryza sativa L.) Osm30 secretory protein — A Class III Chitinase. Bioformosa 41 (1): 31-43.
Li C-W and Wang Y-C. 2006. Gene cloning of rice (Oryza sativa L.) Osm34 secretory protein and phylogenetic analysis of the class III chitinase gene family. Bioformosa 41 (1): 44-57.
Mauch F, Mauch-mani FB and Boller T. 1988. Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combination of chitinase and -1,3-glucanase. Plant Physiol. 88: 936-942.
Meins F, Fritig B, Linthorst HJM, Mikkelsen JD, Neuhaus J-M and Ryals J. 1994. Plant chitinase genes. Plant Mol. Biol. Rep. 12: 22–28.
Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJ and Linthorst HJ. 1994. A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J. 5: 469-480.
Morimoto K, Karita S, Kimura T, Sakka K, and Ohmiya K. 1997. Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase ChiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179: 7306-7314.
Montgomery J, Goldman S, Deikman J, Margossian L and Fischer RL. 1993. Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc. Natl. Acad. Sci. USA. 90: 5939-5943
Murashige T and Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15: 473-479.
Nagasaki H, Yamamoto K, Shomura A, Koga-ban Y, Takasuga A, Yano M, Minobe Y and Sasaki T. 1997. Rice class III chitinase homologues isolated by random cloning of rice cDNAs. DNA Res. 4: 379-385.
Neuhaus J-M, Fritig B, Linthorst HJM, Meins F, Mikkelsen JD and Ryals J. 1996. A revised nomenclature for chitinase genes. Plant Mol. Biol. Rep. 14: 102-104.
Nishizawa Y, Kawakami A, Hibi T, He D-Y, Shibuya N and Minami E. 1999. Regulation of the chitinase gene expression in suspension-cultured rice cells by N-acetylchitooligosaccharides: differences in the signal transduction pathways leading to the activation of elicitor-responsive genes. Plant Mol. Biol. 39: 907-914.
Park H-Y, Pan C-H, So M-Y, Ahn J-H, Jo D-H and Kim S-I. 2001. Purification, Characterization, and cDNA Cloning of Rice Class III Chitinase. Mol. Cells. 13: 69-76.
Park CH, Kim S, Park JY, Ahn IP, Jwa NS, Im KH and Lee YH. 2004. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice. Mol Cells. 17: 144-150.
Patil RS, Ghormade V and Deshpande MV. 2000. Chitinolytic enzymes: an exploration. Enzyme Microb. Technol. 26: 473-483.
Peumans WJ, Proost P, Swennen RL and Van Damme EJ. 2002. The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins. Plant Physiol. 130: 1063-1072.
Pieterse CM and van Loon LC. 1999. Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4: 52-58.
Rakwal R, Yang G and Komatsu S. 2004. Chitinase induced by jasmonic acid, methyl jasmonate, ethylene and protein phosphatase inhibitors in rice. Mol. Biol. Rep. 31: 113-119.
Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY and Hunt MD. 1996. Systemic acquired resistance. Plant Cell. 8: 1809-1819.
Sambrook J, Maniatis T and Fristsch EF. 1989. Molecular Cloning: A Library Manual, 2nd ed. Cold Spring Harbor Laboratory press, Cold Spring Harbor, New York.
Selitrennikoff CP. 2001. Antifungal proteins. Applied and Environmental Microbiology. 67: 2883-2894.
Shirzadegan M, Christie P and Seemann J. 1991. An efficient method for isolation of RNA from tissue cultured plant cells. Nucleic Acids Res 19: 6055-6056.
Suzukawa K, Yamagami T, Ohnuma T, Hirakawa H, Kuhara S, Aso Y and Ishiguro M. 2003. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs. Biosci. Biotechnol. Biochem. 67: 341-346.
Takakura Y, Ito T, Saito H, Inoue T, Komari T and Kuwata S. 2000. Flower-predominant expression of a gene encoding a novel class I chitinase in rice (Oryza sativa L.). Plant Mol. Biol. 42: 883-897.
Theis T. and Stahl U. 2004. Antifungal protein: targets, mechanism and prospective applications. Cell. Mol. Life Sci. 61: 437-455.
Thomashow MF. 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571–599.
Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA. 95: 15107-15111.
Thompson JD, Higgins DG and Gibson TJ. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673–4680.
Titarenko E, Rojo E, Leó J and Sánchez-Serrano JJ. 1997. Jasmonic acid-dependent and -independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiol. 115: 817–826.
Truong NH, Park SM, Nishizawa Y, Watanabe T, Sasaki T and Itoh Y. 2003. Structure, heterologous expression, and properties of rice (Oryza sativa L.) family 19 chitinases. Biosci. Biotechnol. Biochem. 67: 1063-1070.
Van Loon LC. and van Strien EA. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55: 85-97.
Verwoerd TC, Dekker BM and Hoekema A. 1989. A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Res. 17: 2362-2362.
Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M and Tanaka H. 1993. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J. Biol. Chem. 268:18567-18572.
Wu L, Ueda T, Messing J. 1995. The formation of mRNA 3'-ends in plants. Plant J. 8: 323-329.
Xu Y, Zhu Q, Panbangred W, Shrasu K and Lamb C. 1996. Regulation, expression and function of a new basic chitinase gene in rice (Oryza sativa L.). Plant Mol. Biol. 30: 387-401.
Yamagami T, Mine Y and Ishiguro M. 1998. Complete amino acid sequence of chitinase-a from bulbs of gladiolus (Gladiolus gandavensis). Biosci. Biotechnol. Biochem. 62: 386-389.
Yamagami T, Tsutsumi K and Ishiguro M. 2000. Cloning, sequencing, and expression of the tulip bulb chitinase-1 cDNA. Biosci. Biotechnol. Biochem. 64: 1394-1401.
Yeh S, Moffatt BA, Griffith M, Xiong F, Yang DS, Wiseman SB, Sarhan F, Danyluk J, Xue YQ, Hew CL, Doherty-Kirby A and Lajoie G. 2000. Chitinase genes responsive to cold encode antifreeze proteins in winter cereals. Plant Physiol. 124: 1251-1264.
Yen SK, Chung MC, Chen PC and Yen HE. 2001. Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant. Plant Physiol. 127: 517-528.
Yu D, Chen C and Chen Z. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13: 1527-1540.
Yu S-M, Kuo Y-H, Sheu G, Sheu Y-J and Liu L-F. 1991. Metabolic derepression of -amylase gene expression in suspension-cultured cells of rice. J. Biol. Chem. 266: 21131-21137.
Zhong R, Kays SJ, Schroeder BP and Ye Z-H. 2002. Mutation of a Chitinase-Like Gene Causes Ectopic Deposition of Lignin, Aberrant Cell Shapes, and Overproduction of Ethylene. Plant Cell. 14: 165-179.
Zhu Q and Lamb CJ. 1991. Isolation and characterization of a rice gene encoding a basic chitinase. Mol. Gen. Genet. 226: 289-296.