簡易檢索 / 詳目顯示

研究生: 馬新凱
Ma, Shin-Kai
論文名稱: 蘇門答臘地形以及南海熱帶擾動對印度洋熱帶氣旋生成影響之個案模擬研究
A Numerical Study of the Influence of the Topography of Sumatra Island and Tropical Disturbance over South China Sea on the Formation of Tropical Cyclones in Indian Ocean
指導教授: 王重傑
Wang, Chung-Chieh
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 155
中文關鍵詞: 蘇門答臘背風渦旋熱帶氣旋生成
DOI URL: http://doi.org/10.6345/THE.NTNU.DES.007.2018.B07
論文種類: 學術論文
相關次數: 點閱:170下載:52
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蘇門答臘島為中心位置位於赤道,呈西北-東南走向的一個狹長島嶼,其山脈亦呈西北-東南走向,綿延1600公里,最高海拔達3800公尺。北半球冬季期間,亞洲冬季季風常可延伸至海洋大陸區域,當東北風受到蘇門答臘狹長且高聳的山脈地形阻擋,易在蘇門答臘西側兩端背風處形成背風渦漩(Lee Vortex)。由於蘇門答臘地形的獨特性,南北兩端之背風渦漩恰為氣旋式之環流,本研究將以蘇門答臘背風渦漩是否能發展為熱帶氣旋為重點,探討蘇門答臘地形對印度洋熱帶氣旋生成的影響。
    由於東北風較不易跨越赤道南下至蘇門答臘南端,故本研究選取YOTC (Year of Tropical Convection)期間(2008 - 2010),所有蘇門答臘北端西側之背風渦漩發展為熱帶氣旋之4個個案進行分析,並選擇2個強度較強的個案進行數值模擬。其中一個個案位於蘇門答臘南端西側亦有熱帶氣旋生成,本研究亦會探討蘇門答臘地形對其生成的影響。本研究使用的模式為雲解析風暴模式(CReSS),在完成控制組的模擬以及校驗後,並進行了無地形組的敏感度實驗。
    渦旋之渦度垂直剖面時序顯示,在渦漩仍處背風處時,控制組中渦漩低層的渦度較大,且低層的渦度收支診斷結果顯示,該期間控制組之渦漩有較大的輻合項,顯示蘇門答臘的地形效應確實使渦漩在背風區域時有較大的渦度,此原因為東北風受地形阻擋而形成角隅流(Corner Flow),使渦旋北端有較強的風速,以及更封閉的環流結構。
    由選取個案之綜觀分析來看,自南海向西移動的熱帶氣殘留系統、熱帶擾動或其他對流系統所提供的正渦度以及水氣的平流效應亦是相當重要的熱帶氣旋生成因素之一,當上述系統受東北風向西平流進入到北印度洋後,能夠提供背風渦漩正渦度以及水氣平流,使背風渦漩有更好的發展環境。從控制組以及無地形組的模擬結果來看,地形效應雖能增強背風處渦漩的中低層渦度,但並不是使選取之個案發展為熱帶氣旋的關鍵要素,其生成原因為東北風或是東風和赤道西風所提供的風切環境以及上述來自南海的正渦度以及水氣平流。
    另外從控制組和無地形組的比較顯示出當赤道西風到達蘇門答臘時,西風受蘇門答臘高聳的地形影響會偏折為西北風,若有低壓位於蘇門答臘南端的近海,此偏折之西北風能使低壓東側的環流更為閉合,控制組低壓之中低層有較強的平均渦度以及輻合項,使低壓有較好的結構以及能較快的發展為熱帶氣旋。

    致謝 I 摘要 II 目錄 IV 圖表目錄 VII 第一章 前言 1 1.1文獻回顧 1 1.2研究動機 4 第二章 資料來源與研究方法 6 2.1資料來源 6 2.2研究方法 7 2.3模式簡介 9 2.4模式設定 12 第三章 個案綜觀分析 13 3.1熱帶氣旋03A(2008) 13 3.2氣旋風暴NISHA(2008) 15 3.3熱帶氣旋07B(2008) 17 3.4氣旋風暴WARD(2009) 19 3.5熱帶氣旋CLEO(2009) 20 3.6小節 21 第四章 氣旋風暴NISHA模擬結果 22 4.1控制組之模擬結果 22 4.2無地形組之模擬結果 27 4.3渦度垂直結構、渦度收支比較 29 4.4福祿數分析 31 4.5渦度以及水氣平流 32 4.6小節 34 第五章 氣旋風暴WARD模擬結果 35 5.1控制組之模擬結果 35 5.2無地形組之模擬結果 39 5.3渦度垂直結構、渦度收支比較 41 5.4福祿數分析 43 5.5渦度以及水氣平流 44 5.6小節 47 第六章 氣旋風暴CLEO模擬結果 48 6.1控制組之模擬結果 48 6.2無地形組之模擬結果 51 6.3渦度垂直結構、渦度收支比較 52 6.4風場結構比較 53 6.5小節 54 第七章 總結 56 參考文獻 59 圖表 63

    Bessafi, M., and M. C. Wheeler, 2006: Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638–656.
    Bister, M., 2001: Effect of peripheral convection on tropical cyclone formation. J. Atmos. Sci., 58, 3463–3476.
    Chang, C.-P.,P. Harr, and H. J. Chen, 2005: Synoptic disturbances over the equatorial South China Sea and western maritime continent during boreal winter. Mon. Wea. Rev., 133, 489–503.
    Cotton, W. R., G. J. Tripoli, R. M. Rauber and E. A. Mulvihill, 1986: Numerical simulation of the effects of varying ice crystal nucleation rates and aggregation processes on orographic snowfall. J. Climate Appl. Meteor., 25, 1658–1680.
    Epifanio, C. C., and D. R. Durran, 2001: Three-dimensional effects in highdrag-state flows over long ridges. J. Atmos. Sci., 58, 1051–1065.
    Epifanio, C. C., 2003: Lee vortices, in Encyclopedia of the Atmospheric Sciences, edited by J. Holton, J. Pyle, and J. Curry, pp. 1150–1160, Elsevier, New York.
    Fine, C. M., R. H. Johnson, P. E. Ciesielski, and R. K. Taft, 2016: The role of topographically induced vortices in tropical cyclone formation over the Indian Ocean. Mon. Wea. Rev., 127:4827–4847.
    Gray, W M., 1968: Global view of the origin of tropical disturbances and storms.Mon. Wea. Rev., 96:669-700.
    Ikawa, M. and K. Saito, 1991: Description of a nonhydrostatic model developed at the Forecast Research Department of the MRI. Technical Report of the MRI, 28, 238pp.
    Kikuchi K., and Wang B., 2010: Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J Meteor Soc. Japan, 88: 475–496.
    Kuettner, J. P., 1967: The equatorial double vortex: Unique hydrodynamic role of Sumatra in atmospheric developments over the Indian Ocean. Bull. Amer. Meteor. Soc., 48, 637.
    Kuettner, J. P., 1989: Easterly flow over the cross equatorial island of Sumatra and its role in the formation of cyclone pairs over the Indian Ocean. Wetter Leben, 4, 47–55.
    Lander, M. A., and C. P. Guard, 2001: Western North Pacific, North Indian Ocean, and Southern Hemisphere tropical cyclones of 1997.
    Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
    Lin, Y.-L., and C.-S. Lee, 2011: An analysis of tropical cyclone formations in the South China Sea during the late season. Mon. Wea. Rev., 139, 2748–2760.
    Ritchie, E. A., and G. J. Holland, 1999: Large-scale patterns associated with tropical cyclogenesis in the western Pacific. Mon. Wea. Rev., 127, 2027–2043.
    Rotunno, R., and P. K. Smolarkiewicz, 1991: Further results on lee vortices in low-Froude-number flow. J.Atmos. Sci., 48, 2204–2211.
    RSMC La Reunion. Meteo-France., 2013: Cyclone Season 2001–2002.
    Simpson, J., E. Ritchie, G. J. Holland, J. Halverson, and S. Stewart, 1997: Mesoscale interactions in tropical cyclone genesis. Mon.Wea. Rev., 125, 2643–2661.
    Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 1154–1164.
    Subbaramayya, I., and Rao, S. R. M.: 1984, Frequency of Bay of Bengal cyclones in the postmonsoon season, Mon. Wea. Rev., 112, 1640–1642.
    Takahashi, H. G., Y. Fukutomi, and J. Matsumoto, 2011: The impact of long-lasting northerly surges of the East Asian winter monsoon on tropical cyclogenesisand its seasonal march. J. Meteor. Soc. Japan., 89A, 181–200, doi:10.2151/jmsj.2011-A12.
    Velden, C. S., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 1195–1210.
    Wang, B., and J.-Y. Moon, 2017: An Anomalous Genesis Potential Index for MJO Modulation of Tropical Cyclones. J. Climate, 17, 4021–4035,doi: 10.1175/JCLI-D-16-0749.1
    Wimmers, A. J., and C. S. Velden, 2011: Seamless Advective Blending of Total Precipitable Water Retrievals from Polar-Orbiting Satellites. J. Appl. Meteor. Climatol., 50, 1024-1036.
    Moncrie , M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC virtual global eld campaign. Bull. Amer. Meteor. Soc., 93 (8), 1171{1187.
    Murakami, M., 1990: Numerical modeling of dynamical and microphysical evolution of an isolated convective cloud— The 19 July 1981 CCOPE Cloud. J. Meteor. Soc. Japan, 68, 107–128.
    Murakami, M., T. L. Clark, and W. D. Hall, 1994: Numerical simulations of convective snow clouds over the Sea of Japan: Twodimensional simulation of mixed layer development and convective snow cloud formation. J. Meteor. Soc. Japan, 72, 43– 62.
    Zehr, R. M., 1992: Tropical cyclogenesis in the western North Pacific. NOAA Tech. Rep. NESDIS 61, 181 pp.
    -------------
    AsiaNews, 2008: Death toll hits 184 in Yemen flooding. [Available online at http://www.asianews.it/index.php?l=en&art=13597&size=A].
    Internet Archive, 2008: Deep depression over Bay of Bengal weakens. [Available online at http://www.hindu.com/thehindu/holnus/004200812071604.htm].
    Tamil Eelam News Services, 2008: Record Rain falls cripple Northern Sri Lanka. [Available online at http://www.tamileelamnews.com/news/publish/tns_10537.shtml].
    The New Indian Express, 2008: CM meets Collectors. [Available online at http://www.newindianexpress.com/states/tamil-nadu/2008/dec/07/cm-meets-collectors-8758.html].
    Reliefweb, 2008: Sri Lanka: Allow aid groups to help cyclone victims. [Available online at https://reliefweb.int/report/sri-lanka/sri-lanka-allow-aid-groups-help-cyclone-victims].

    下載圖示
    QR CODE