簡易檢索 / 詳目顯示

研究生: 周奕成
Chou, Yi-Cheng
論文名稱: 高靈敏度雙頻磁訊號感測系統之研製
The development of 2-channel magnetic signal with high sensitivity system
指導教授: 謝振傑
Chieh, Jen-Jie
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 28
中文關鍵詞: 雙頻雙通道雙通道 SQUID
論文種類: 學術論文
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超導量子干涉元件(Superconducting Quantum Interference Device,SQUID)在生物醫學方面為何能使用的如此頻繁,因為SQUID最低能感測到的磁場大小為5×10−18 T,對磁訊號的感測非常靈敏,故運用在量測微量磁訊號的系統也能夠有效地提升其靈敏度。
    但因為SQUID在製成上需要較高的技術層面,成本與售價自然需要較高的金額。本研究針對SQUID對磁訊號的靈敏度開發雙通道量測系統,運用鐵芯能夠傳導磁通的原理,讓磁訊號能經鐵芯傳導不同頻率的磁訊號給SQUID,達成雙頻率通道的感測系統,且不失SQUID對微量磁訊號的高靈敏度。
    本研究的雙頻通道系統也能應用在不同的感磁架構,本論文以振動樣品磁力儀的應用為例,已經能成功量出不同頻率下磁流體在飽和磁場下的飽和磁化量,達到提升效率的目的。

    第一章 緒論 1 第二章 研究理論 3 2.1 磁通量耦合-單一磁訊號 3 2.2 磁通量耦合-雙頻磁訊號 5 2.3 磁通量耦合-共振頻率 6 第三章 實驗架構的設計與製作 7 3.1 耦合線圈組的參數設計流程 8 3.2 input coil 設計 9 3.3 input coil 與C形鐵芯位 12 3.4 pick-up coil 設計 15 3.5共振頻率 18 3.6 pick-up coil 最佳化 20 3.7 雙通道實際耦合增益(Bi/Bp) 21 第四章 實驗結果 23 第五章 結論 26 參考文獻 27

    [1] Tadayuki Kondo and Hideo Itozaki "Normal conducting transfer coil for SQUID NDE" INSTITUTE OF PHYSICS PUBLISHING, Supercond. Sci. Technol. 17 (2004)
    [2] H.Nagaoka “The Inductance Coefficients of Solenoids“ JOURNAL OF THE COLLEGE OF SCIENCE,IMPERIAL UNIVERSIT, TOKO, JAPAN. VOL.XXVII., ARTICLE 6
    [3] S. Foner, “Versatile and Sensitive Vibrating-Sample Magnetometer”, Rev. Sci.lnstrum. vol. 30, no. 7, 1959, pp. 548-557.
    [4] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines, “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A 108, 957-963 (2004).
    [5] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA 101, 7857 (2004).
    [6] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA.nitrogencooled superconducting quantum interference device,” Appl. Phys. Lett.,vol. 90,182503(2007)
    [7] C. Johansson and M. Hanson, “Influence of Sample Geometry in a VibratingSample Magnetometer”, IEEE Transactions of Magnetics. vol. 30, no. 2, 1994, pp.1064-1066.
    [8] K. H. Shin, K. I. Park, Y. Kim, and G. Sa-Gong, “Vibrating sample magnetometer using a multilayer piezoelectric actuator”, phys. stat. sol. (b), vol. 241, no. 7, 2004,pp. 1633–1636.
    [9] V I Nizhankovskii and L B Lugansky, “Vibrating sample magnetometer with astep motor”, Meas. Sci. Technol. vol. 18 , 2007, pp. 1533–1537.
    [10] S. Foner, “ The vibrating sample magnetometer: Experiences of a volunteer (invited)”, J. Appl. Phys., vol. 79, no.8, 1996, pp. 4740-4745.
    [11] A. Zieba and S. Foner, “ Detection coil, sensitivity function, and sample geometryeffects for vibrating sample magnetometer”, Rev. Sci. Instrum. vol. 53, no. 9, 1982,
    [12] 1. J. Appl. Phys. 89, 1977 (2001), Observation of magnetic gradients in stainless steel with a high-Tcsuperconducting quantum interference device microscopeYoshimi Watanabe1, S. H. Kang1, J. W. Chan1, J. W. Morris Jr. 1, T. J. Shaw2 and John Clarke2

    無法下載圖示 本全文未授權公開
    QR CODE