研究生: |
盧佩伶 Lu, Pei-Ling |
---|---|
論文名稱: |
以動態網絡資料包絡分析法評估汽車產業經營績效 Evaluating the Management Performance of Automotive Industry Using the Dynamic Network DEA Model |
指導教授: |
呂有豐
Lue, Yeou-Feng |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 136 |
中文關鍵詞: | 資料包絡分析 、網絡資料包絡分析 、動態網絡資料包絡分析 、績效評估 |
英文關鍵詞: | DEA, Network DEA, Dynamic Network DEA, Performance Evaluation |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DIE.049.2018.E01 |
論文種類: | 學術論文 |
相關次數: | 點閱:196 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了正確衡量公司績效,績效評估需要包含不同特性的因子來提供決策者更完整的資訊。然而,傳統的績效評估往往侷限於固定的影響因子,或是只針對產業鏈上的單一組織做績效評估,單以資料包絡法導入投入、產出值評估績效,無法分析網路的績效。網路資料包絡分析法改進了傳統的資料分析法,考慮組織結構,探討系統內部結構與內部流程之間的互動及影響並評估績效,為可以分析無明確關聯因子間之效率的方法,近年來廣為學界採用。惟評估跨期之績效時,網路資料包絡分析法有其侷限,因此,導入一分析跨期效率變動之績效評估法,有其必要性。本研究美國汽車產業實證之,結果顯示在本研究範圍內之汽車公司的生產階段績效優於市場階段,另外利用BCG矩陣分析顯示專業公司與分層公司佔了大多數,表示在投入與產出資源配置仍有改善空間,整體上有必要檢討其公司管理方針與經營策略。未達效率之決策單位應檢討投入與產出資源配置,設法提升市場競爭力,擴展市場佔有率及提升其在產業競爭地位,努力改善整體經營績效為汽車產業作為經濟成長發展的動力。
Operating an efficient evaluation should include multidimensional affecting factors to provide integrated information to the executive personnel. However, the traditional evaluation method was limited by rigid affecting factors or targeting on a single object in industry chains. Network performance was not assessed while using solely data envelopment analysis input-output. Network DEA improves traditional data analysis method by analyzing the organizational structure, discussing and assessing the impact of the interaction between the internal structure and progress. It has been popularly used academically to assess the level of correlation between factors for performance verification. However, the performance assessment method must be introduced while analyzing the intertemporal efficiency changes in multi-periods. Data was collected from the automotive industry in the US. The evidence of this study supported that the performance is better at the production stage than in the marketing stage within study objects. BCG matrix analysis supports that professional and divisional companies are the majority. It indicates the needs for improvement of the resources allocation of the input-output, also the necessity to review the management approach and operation strategy. Reviewing the input-output resources allocation on the inefficient decision-making unit could enhance market competitiveness, increase marketing share and upgrade industrial value. Focusing on improving business performance to motivate the development of economic growth in the automotive industry.
Aboltins, K. & Rivza, B. (2014). The Car Aftersales Market Development Trends in the New Economy. Procedia Social and Behavioral Sciences. 110, 341-352.
Adler, N., Friedman, L. & Sinuany-Stern, Z. (2002). Review of ranking methods in the data envelopment analysis context. European journal of operational research, 140(2), 249-265.
Ahmed, A. A. & Ghais, M. A. (2009). Control and Performance in International Channels: Autos in an Emerging Market. Journal of Transnational Management, 14(3), 202-214.
Akther, S., Fukuyama, H. & Weber, W. L. (2013). Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking. Omega, 41, 88–96.
Andersen, P. & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management science, 39(10), 1261-1264.
Asmild, M., Paradi, J. C., Reese, D. N. & Tam, F. (2007). Measuring overall efficiency and effectiveness using DEA. European Journal of Operational Research, 178(1), 305-321.
Avkiran, N.K. (2009). Opening the black box of efficiency analysis: an illustration with UAE banks. Omega, 37(4), 930–941.
Avkiran, N.K. (2014). A Tutorial on Using Dynamic Network DEA to Benchmark Organizational Performance. Retrieved from University of Queensland, Business School for Financial Research Network (FIRN), website: http://https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2567557
Banker, R.D., Charnes, A., & Cooper, W.W., (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.
Banaeian, N., Zangeneh, M., & Omid, M. (2010). Energy use efficiency for walnut producers using data envelopment analysis (DEA). Australian Journal of Crop Science, 4(5), 359.
Baker, R. C., & Talluri, S. (1997). A closer look at the use of data envelopment analysis for technology selection. Computers & Industrial Engineering, 32(1), 101-108.
Barros, C. P., Managi, S., & Matousek, R. (2012). The technical efficiency of the Japanese Banks: Non-radial directional performance measurement with undesirable output. Omega, 40, 1–8.
Berger, A. N., & De. Young, R. (1997). Problem loans and cost efficiency in commercial Banks. Journal of Banking and Finance, 21, 849–870.
Borges, M. R., Nektarios, M., & Barros, C. (2008). P. (2008). Analyzing the Efficiency of the Greek Life Insurance Industry, European Research Studies, 11(3).
Bryan, D., Dinesh Fernando, G., & Tripathy, A. (2013). Bankruptcy risk, productivity and firm strategy. Review of Accounting and Finance, 12(4), 309-326.
Caves, D. W., Christensen, L. R., & Diewert, W. E. (1982). Multilateral Comparison of Output, Input and Productivity Using Superlative Index Numbers. The Economic Journal, 92(365), 73-86.
Charnes, A. C. T. C., Clark, C. T., Cooper, W. W., & Golany, B. (1984). A developmental study of data envelopment analysis in measuring the efficiency of maintenance units in the US air forces. Annals of Operations Research, 2(1), 95-112.
Charnes, W. Cooper & E. Rhodes. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2, 429-444.
Charnes, A., Cooper, W. W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 30, 91–107.
Charnes, A., Cooper, W. W., Seiford, L., & Stutz, J. (1982). A multiplicative model for efficiency analysis. Socio-Economic Planning Sciences, 16, 223–224.
Chen, C.A., Ho. S.Y., Chung. T.C., & Chou, Y.C. (2010). DEA performance evaluation based on BSC indicators incorporated. The case of Semiconductor component distributor in Taiwan UN General Assembly Journal, 7(1), 183-201.
Chen, C., Wu, H., & Lin, B. (2006). Evaluating the development of high-tech industries: Taiwan's science park. Technological Forecasting & Social Change, 73(4), 452.
Chen, T. Y., & Yeh, T. L. (1998). A Study of Efficiency Evaluation in Taiwan's Banks. International Journal of Service Industry Management, 9(5), 402-415.
Chen, Y., & Zhu, J. (2004). Measuring information technologies indirect impact on firm performance. Information Technology & Management Journal, 5(1–2), 9–22.
Chiang, C. Y. & Lin, B. (2009). An Integration of Balanced Scorecards and Data Envelopment Analysis for Firm’s Benchmarking Management. Total Quality Management and Business Excellence, 20(11), 1153-1172.
Chiu, Y. H, Chen, Y. C. & Tsao, C. L. (2005). The estimation of Taiwan biotechnology industry’s productivity and efficiency. THJLTP, 2(2), 93-120.
Choi, H., & Oh, I. (2010). Analysis of Product Efficiency of Hybrid Vehicles and Promotion Policies. Energy Policy, 38(5), 2262-2271.
Cielen, A., Peeters, L., & Vanhoof, K. (2004). Bankruptcy prediction using a data envelopment analysis. European Journal of Operational Research, 154(2), 526-532.
Cook, W. D., & Seiford, L. M. (2009). Data envelopment analysis (DEA)–Thirty years on. European journal of operational research, 192(1), 1-17.
Cooper, W.W., Seiford, L.M., & Tone, K. (2006). Introduction to data envelopment analysis and its uses: with DEA-solver software and references. New York: Springer
Cooper, W.W., Seiford, L.M., & Tone, K. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. New York: Springer.
Costa, R. (2012). Assessing Intellectual Capital efficiency and productivity: an application to the Italian yacht manufacturing sector. Expert Systems with Applications, 39(8), 7255-7261.
Cron WL, & Sobol MG. (1983). The relationship between computerization and performance: a strategy for maximizing the economic benefits of computerization. Information & Management, 6(3), 171–181.
Da Silva, A. F., Marins, F. S., Tamura, P. M. & Dias, E. X. (2017). Bi-Objective Multiple Criteria Data Envelopment Analysis combined with the Overall Equipment Effectiveness: An application in an automotive company. Journal of Cleaner Production, 157, 278-288.
Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method to the use of experts. Management Science, 9(3), 458-467.
Drake, L., Hall, M. & Simper, R. (2009). Bank modeling methodologies: A comparative non-parametric analysis of efficiency in the Japanese banking sector. Journal of International Financial Institutions & Money, 19, 1–15.
Drake, L., Hall, M. J. R., & Simper, R. (2006). The impact of macroeconomic and regulatory factors on bank efficiency: A non-parametric analysis of Hong Kong’s banking system. Journal of Banking and Finance, 30, 1443–1466.
Drucker, P. (1977). An Introductory View of Management. New York: Harper College Press.
Ebrahimnejad, A., Tavana, M., Lotfi, F. H., Shahverdi, R., & Yousefpour, M. (2014). A three-stage data envelopment analysis model with application to banking industry. Measurement, 49, 308-319.
Emrouznejad, A., & Thanassoulis, E. (2005). A mathematical model for dynamic efficiency using data envelopment analysis. Applied mathematics and computation, 160(2), 363-378.
Färe, R., & Grosskopf, S. (1996). Productivity and intermediate products: A frontier approach. Economics letters, 50(1), 65-70.
Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning. Sciences, 34 (1), 35–49.
Färe, R., Grosskopf, S., Lindgren, B., & Roos, P. (1992). Productivity Changes in Swedish Pharmacies 1980-1989: A Non-Parametric Malmquist Approach. The Journal of Productivity Analysis, 3(3), 85-101.
Farrell, M.J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society, (Series A, General) 120(3), 253-290.
Fethi, M., & Pasiouras, F. (2010). Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey. European Journal of Operational Research, 204, 189–198.
Fre, R., & Grosskopf, S. (2013). DEA, directional distance functions and posi-tive, affine data transformation. Omega, 41(1), 28-30.
Fujii, H., Managi, S., & Matousek, R. (2014). Indian bank efficiency and productivity changes with undesirable outputs: A disaggregated approach. Journal of Banking and Finance, 38, 41–50.
Fukuyama, H., & Matousek, R. (2011). Efficiency of Turkish banking: two-stage system variable returns to Scale Model. Journal of International Financial Markets, Institutions & Money, 21, 75–91.
Fukuyama, H., & Mirdehghan, S. M. (2012). Identifying the efficiency status in network DEA. European Journal of Operational Research, (1), 85.
Fukuyama, H., & Weber, W. L. (2008). Estimating in efficiency, technological change and shadow prices of problem loans for regional banks and Shinkin banks in Japan. The Open Management Journal, 1, 1–11.
Fukuyama, H., & Weber, W. L. (2010). A Slacks-based inefficiency measure for a two-stage system with bad outputs. Omega, 38, 398–409.
Fukuyama, H., & Weber, W. L.(2015). Measuring Japanese bank performance: A dynamic network DEA approach. Journal of Productivity Analysis, 44, 249-264.
Fukuyama, H., & Weber, W.L. (2017). Measuring bank performance with a dynamic network Luenberger indicator. Annals of Operations Research, 250(1), 85-104.
Grosskopf, S. & V. Valdmanis. (1978). Measuring Hospital Performance: A Nonparametric Approach. Journal of Health Economics, 6, 89-107.
Ha, M.P. (2005). Evaluating the Balanced Scorecard with Data Envelopment Analysis to Measure the Management Efficiency of Hotels in Taiwan and Vietnam. Thesis. International Masters of Business Administration (IMBA) Program, National Cheng Kung University, Taiwan.
Halkos, G. E., Matousek, R., & Tzeremes, N. G. (2016). Pre-evaluating technical efficiency gains from possible mergers and acquisitions: Evidence from Japanese regional banks. Review of Quantitative Finance and Accounting, 46, 47–77.
Halkos, G. E., Tzeremes, N. G., & Kourtzidis, S. A. (2014). A unified classification of two-stage DEA models. Surveys in operations research and management science, 19(1), 1-16.
Ho, Chien-Ta Bruce & Zhu, Dauw-Song. (2004). Performance Measurement of Taiwan’s Commercial Banks. International Journal of Productivity & Performance Management, 53(5), 425-434.
Ho, J. S. Y., Fie, D. Y. G., Ching, P. W. & Ooi, K. B. (2009). Relationship between the Full-Range Leadership and Insurance Salesperson’s Job Satisfaction. International Journal of Business and Management Science, 2, 43-60.
Holod, D., & Lewis, H. F. (2011). Resolving the deposit dilemma: A new DEA bank efficiency model. Journal of Banking & Finance, 35(11), 2801-2810.
Huang, C. Y., & Kao, Y. S. (2015). UTAUT2 based predictions of factors influencing the technology acceptance of phablets by DNP. Mathematical Problems in Engineering, 2015.
Jones, J. & Hunter, D. (1995). Consensus methods for medical and health services research. BMJ: British Medical Journal, 311(7001), 376.
Johnes, J. (2006). Measuring teaching efficiency in higher education: an application of data envelopment analysis to economics graduates from UK universities 1993. European Journal of Operational Research, 174, 443-456.
Kane, J.S. (1996). The conceptualization and representation of total performance effectiveness. Human Resource Management Review, 6, 123-145.
Kao, C., S. N. Huang & Toshiyuki, Sueyoshi. (2003). Performance Evaluation of Management-DEA, Taiwan: Hua-Tai Publisher.
Kao, C. (2009). Efficiency decomposition in network data envelopment analysis:a relational model, European journal of operational research, 192(3), 949-962.
Kao, C. (2014). Network data envelopment data envelopment analysis:A review. European journal of operational research, 239(1), 1-16.
Kao, C., & Hwang, S.N. (2008). Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. European journal of operational research, 185(1), 418–429.
Kao, C., & Hwang, S. N. (2011). Decomposition of technical and scale efficiencies in two-stage production systems. European Journal of Operational Research, 211(3), 515-519.
Kao, H. Y., Wu, D. J., & Huang, C. H. (2017). Evaluation of cloud service industry with dynamic and network DEA models. Applied Mathematics and Computation, 315, 188-202.
Khushalani, J., & Ozcan, Y. A. (2017). Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA). Socio-Economic Planning Sciences, 60, 15-23.
Kingyens, A. T., Paradi, J. C., & Tam, F. (2016). Bankruptcy prediction of companies in the retail-apparel industry using data envelopment analysis. In Advances in Efficiency and Productivity, Switzerland: Springer, cham.
Kotabe, M., Martin, X., & Domoto, H. (2003). Gaining from Vertical Partner-ships: Knowledge Transfer, Relationship Duration and Supplier Performance Improvement in the U.S. and Japanese Automotive Industries. Strategic Management Journal, 24(4), 293-361.
Kumar Mandal, S., & Madheswaran, S. (2010). Environmental efficiency of the Indian cement industry: An interstate analysis. Energy Policy, 38(2),1108-1118.
Kumar, S., & Gulati, R. (2008). An examination of technical, pure technical, and scale efficiencies in Indian public sector banks using data envelopment analysis. Eurasian Journal of Business and Economics, 1(2), 33-69.
Lansink, AO. (2013 June). Dynamic Efficiency and Productivity Analysis. Productivity and Its Impacts on Global Trade. Symposium: Productivity and Its Impacts on Global Trade, 2013, Seville, Spain.
Leachman, C., Pegels, C. C., & Shin, S. K. (2005). Manufacturing Performance: Evaluation and Determinants. International Journal of Operations and Production Management, 25(9), 851-874.
Lewis L, & Sexton TR. (2004). Network DEA: efficiency analysis of organizations with complex internal structure. Computers & Operations Research, 31(9), 1365–1410.
Li Y, Chen Y, Liang L, & Xie J. (2012). Dea models for extended two-stage network structures. Omega, 40(5), 611-618.
Liang, S.K., J.L. Jiang & C.T. Lai. (2008), Effects of Integrative Strategies on the Production Efficiency of Biotech Firms: A Data Envelopment Analysis, International Journal of Management, 25(1), 140-8.
Liu, C.C. (2008). Evaluating the Operational Efficiency of Major Ports in the Asia-Pacific Region using Data Envelopment Analysis. Applied Economics, 40, 1737-1743.
Liu H.H. (2017). Using DEA and Malmquist Productivity Index to Analyze the Operational Efficiency of Taiwan Biotechnological Industry. Journal of Asian Economic and Financial Review, 7(8), 809-822.
Liu, J. S., Lu, L. Y., Lu, W. M. & Lin, B. J. (2013). A survey of DEA applications. Omega, 41(5), 893-902.
Lo, S.F., & Lu, W.M. (2009). An integrated performance evaluation of financial holding companies in Taiwan. European Journal of Operational Research, 198 (1), 341–350.
Lozano, S., Gutiérrez, E., & Moreno, P. (2013). Network DEA approach to air-ports performance assessment considering undesirable outputs. Applied Mathematical Modelling, 37(4), 1665-1676.
Mahajan, J. (1991). A Data Envelopment Analytic Model for Assessing the Relative Efficiency of the Selling Function. European Journal of Operational Research, 53(2) 189-205.
Mass NJ. (2005). Mass, N. J. (2005). The relative value of growth. Harvard business review, 83(4), 102-112.
Matthews, K. (2013). Risk management and managerial efficiency in Chinese banks: A network DEA framework. Omega, 41(2), 207-215.
Mercan, M., Reisman, A., Yolalan, R., & Emel, A. B. (2003). The effect of scale and mode of ownership on the financial performance of the Turkish banking sector: results of a DEA-based analysis. Socio-Economic Planning Sciences, 37(3), 185-202.
Michalska, J. (2005). Quality costs’ analysis in the selected production process in material engineering. Materials and Technologies, 3, 137-140.
Mirdehghan, S. M., & Fukuyama, H. (2016). Pareto–Koopmans efficiency and network DEA. Omega, 61, 78-88.
Mouzas, S. (2006). Efficiency Versus Effectiveness in Business Networks. Journal of Business Research, 59 (10-11), 1124-1132.
Murry Jr, J. W., & Hammons, J. O. (1995). Delphi: A versatile methodology for conducting qualitative research. The Review of Higher Education, 18(4), 423-436.
Nemoto, J., & Goto, M. (2003). Measurement of dynamic efficiency in production: an application of data envelopment analysis to Japanese electric utilities. Journal of Productivity Analysis, 19(2-3), 191-210.
Odekerken-Schroder, G., Ouwersloot, H., Lemmink, J., & Semeijn, J. (2003). Consumers’ Trade-off between Relationship, Service Package and Price: An Empirical Study in the Car Industry. European Journal of Marketing, 37(1-2), 219-224.
Paradi, J. C., Rouatt, S., & Zhu, H. (2011). Two-stage evaluation of bank branch efficiency using data envelopment analysis. Omega, 39(1), 99-109.
Park, K., & Weber, W. (2006). A Note on efficiency and productivity growth in the Korean Banking Industry. Journal of Banking and Finance, 30, 2371–2386.
Pastor, J., Ruiz, J., & Sirvent, I. (1999). An enhanced DEA Russell graph effi-ciency measure. European Journal of Operational Research, (3), 596.
Piran, F. S., Lacerda, D. P., Camargo, L. R., Viero, C. F., Dresch, A., & Cau-chick-Miguel, P. A. (2016). Product modularization and effects on effi-ciency: An analysis of a bus manufacturer using data envelopment anal-ysis (DEA). International Journal of Production Economics, 182, 1-13.
Rousseau, J. J., & Semple, J. H. (1995). Two-person ratio efficiency games. Management Science, 41(3), 435-441.
Sabbagha, O., Rahman, M. A., Ismail, W. R., & Hussain, W. W. (2016). Impact of Quality Management Systems and After-sales Key Performance Indicators on Automotive Industry: A Literature Review. Procedia Social and Behavioral Sciences, 224, 68-75.
Sangkyu, R., & Jungnam, A. (2007). Evaluating the efficiency of a two-stage production process using data envelopment analysis. International Transactions in Operational Research, 14(5), 395-410.
Seiford, L. M., & Zhu, J. (1999). Profitability and Marketability of the Top 55 U.S Commercial Banks. Management Science, 45(9), 1270-1288.
Shyu, J., & Chiang, T. (2012). Measuring the true managerial efficiency of bank branches in Taiwan: A three-stage DEA analysis. Expert Systems with Applications, 39(13), 11494-11502.
Sinuany-Stern, Z., & Friedman, L. (1998). DEA and the discriminant analysis of ratios for ranking units. European Journal of Operational Research, 111(3), 470-478.
Spronk, Jaap. & Vermeulen, Erik M. (2003). Comparative performance evaluation under uncertainty. European Journal of Operational Research, 150(3), 482-495.
Sung, W. C. (2001). Application of Delphi method, a qualitative and quantitative analysis, to the healthcare management. Journal of Healthcare Management, 2(2), 11-19.
Talluri, S., Vickery, S. K., & Droge, C. L. (2003). Transmuting Performance on Manufacturing Dimensions into Business Performance: An Exploratory Analysis of Efficiency using DEA. International Journal of Production Research, 41(10), 2107-2123.
Tone, K. & M. Tsutsui. (2009). Network DEA: A slacks-based measure approach. European Journal of Operational Research, 197, 243-252.
Tone, K., & Tsutsui, M. (2010). Dynamic DEA: A slacks-based measure approach. Omega, 38(3-4), 145-156.
Tone, K., & Tsutsui, M. (2014). Dynamic DEA with network structure: A slacks-based measure approach. Omega, 42(1), 124-131.
Toloo, M., & Ertay, T. (2014). The most cost efficient automotive vendor with price uncertainty: A new DEA approach. Measurement, 52, 135-144.
Torgersen, A. M., Førsund, F. R., & Kittelsen, S. A. (1996). Slack-adjusted efficiency measures and ranking of efficient units. Journal of Productivity Analysis, 7(4), 379-398.
Tsai, H. C., Chen, C. M. & Tzeng, G. H. (2006). The comparative productivity efficiency for global telecoms. International Journal of Production Economics, 103, 509-526.
Tzeng, G.-H., & Huang, J.-J. (2013). Fuzzy multiple objective decision making. Florida, USA: CRC Press.
Vekstein, D. (1998). Managing Knowledge and Corporate Performance: An Empirical Analysis of the World Automobile Industry. Omega, 26(5), 551-568.
Wang, P.H. & Liu, H.F. (2008). DEA Malmquist Productivity Measure: Taiwanese Semiconductor Companies. International Journal of Production Economics, 112(1), 367-379.
Wanke, P., & Barros, C. (2014). Two-stage DEA: An application to major Brazilian banks. Expert Systems with Applications, 41(5), 2337-2344.
Wu, J., Zhu, Q., Ji, X., Chu, J., & Liang, L. (2016). Two-stage network processes with shared resources and resources recovered from undesirable outputs. European Journal of Operational Research, (1), 182.
Yang, C., & Liu, H. M. (2012). Managerial efficiency in Taiwan bank branches: A network DEA. Economic Modelling, 29(2), 450-461.
Yang, K.H. (2016). Applying Dynamic Two-stage DEA Model to Evaluate the Operational Efficiency of Biotechnology Industry in Taiwan, Thesis, Fo Guang University, Yilan.
Yang, X., & Dimitrov, S. (2017). Data envelopment analysis may obfuscate corporate financial data: using support vector machine and data envelopment analysis to predict corporate failure for nonmanufacturing firms. Information Systems and Operational Research, 55(4), 295-311.
Yu, M.M. (2010). Assessment of airport performance using the SBM-NDEA model. Omega, 38(6), 440–452.
Zhu, J. (2003). Imprecise data envelopment analysis (IDEA): A review and improvement with an application. European Journal of Operational Research, (3), 513.