簡易檢索 / 詳目顯示

研究生: 許少凡
Hsu, Shao-Fan
論文名稱: 研究新穎化合物上調第三型小腦萎縮症SH-SY5Y细胞自噬降解突變ATXN3蛋白的治療作用
Investigating the therapeutic effects of novel compounds up-regulating autophagy in SCA3 SH-SY5Y cell model
指導教授: 李桂楨
Lee-Chen, Guey-Jen
口試委員: 陳瓊美
Chen, Chiung-Mei
張國軒
Chang, Kuo-Hsuan
李桂楨
Lee-Chen, Guey-Jen
口試日期: 2023/01/31
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 60
中文關鍵詞: 第三型脊髓性小腦共濟失調症聚麩醯胺ATXN3自噬作用
英文關鍵詞: Spinocerebellar ataxia type 3 (SCA3), Polyglutamine, ATXN3, Autophagy
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202300269
論文種類: 學術論文
相關次數: 點閱:98下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚麩醯胺(polyQ)介導的脊髓性小腦共濟失調(SCA)是由編碼polyQ束的CAG三核苷酸重複序列異常擴增引起的異質性退化性疾病。錯誤折疊和聚集的polyQ蛋白是polyQ疾病的一個共同特徵,會導致神經元功能障礙和退化。在SCA中,第三型脊髓性小腦共濟失調症(SCA3)是全球最常見的形式。SCA3的特點是染色體14q32.1上ATXN3基因的CAG重複擴增,在正常個體中重複次數為10至44次,在大多數臨床診斷患者中則重複61至87次。由於擴增的polyQ蛋白的積累可能是致病性的初始事件,因此通過自噬清除聚集蛋白,被認為可以抑制廣泛的下游有害作用,以促進神經細胞存活。因此,本研究旨在尋找可以通過激活自噬作用來清除聚集的ATXN3/Q75的潛在化合物。共測試了10種化合物,包括5種吲哚衍生物和5種香豆素衍生物。其中,吲哚衍生物NC009-1、-2、-6和香豆素衍生物LM-031在Thioflavin T結合和點印跡分析中,會抑制大腸桿菌衍生的ATXN3/Q75蛋白聚集。使用誘導DsRed-LC3表達的HEK-293螢光報告細胞,發現NC009-2、-3和LM-031的處理顯著誘導了DsRed-LC3向自噬體的募集。在ATXN3/Q75-GFP SH-SY5Y細胞中,與未處理的細胞相比,NC009-1、-2、-6和LM-031顯示出良好的聚集抑制潛力,及改善神經突生長,而NC009-1、3、6和LM-031降低ATXN3/Q75蛋白表達後上升的活性氧化物。NC009-1、-2、-6和LM-031通過增加細胞中磷脂醯乙醇胺(PE)偶聯的LC3-II/細胞質LC3-I的比率來啟動自噬。該研究結果可能提供polyQ介導的疾病治療策略的參考。

    關鍵詞:第三型脊髓性小腦共濟失調症、聚麩醯胺、ATXN3、自噬作用

    Polyglutamine (polyQ)-mediated spinocerebellar ataxias (SCA) are heterogeneous degenerative diseases caused by abnormal expansion of CAG trinucleotide repeats encoding polyQ tracts. The misfolded and aggregated polyQ proteins, a common feature of polyQ disease, lead to neuronal dysfunction and degeneration. Among SCA, spinocerebellar ataxia type 3 (SCA3) is the most common form worldwide. It is characterized by CAG repeat expansion of the ATXN3 gene on chromosome 14q32.1, which is repeated 10 to 44 times in normal individuals and 61 to 87 times in most clinically diagnosed patients. As accumulation of expanded polyQ proteins may be an initial event for pathogenicity, clearance of aggregated proteins by autophagy is thought to suppress a wide range of downstream deleterious effects to promote neuronal survival. Therefore, this study aimed to search for potential compounds that could clear aggregated ATXN3/Q75 by activating autophagy. A total of 10 compounds were tested, including 5 indole derivatives and 5 coumarin derivatives. Among them, indole derivatives NC009-1, -2, -6, and coumarin derivative LM-031 interfered with E. coli-derived ATXN3/Q75 protein aggregation in Thioflavin T binding and dot blot assays. Using 293-based fluorescent reporter cells with induced DsRed-LC3 expression, treatment of NC009-2, -3 and LM-031 significantly induced the recruitment of DsRed-LC3 to autophagic vacuoles. In ATXN3/Q75-GFP SH-SY5Y cells, NC009-1, -2, -6 and LM-031 displayed good aggregation-inhibitory and neurite growth promoting potentials compared with untreated cells, while NC009-1, -3, 6 and LM-031 reduced reactive oxygen species production in response to ATXN3/Q75-GFP expression. NC009-1, -2, -6 and LM-031 activated autophagy by increased phosphatidylethanolamine (PE)-conjugated LC3-II/cytosolic LC3-I ratio in these cells. The study results may provide a reference for the treatment strategy of polyQ-mediated diseases.

    Keywords: Spinocerebellar ataxia type 3 (SCA3), Polyglutamine, ATXN3, Autophagy

    壹、緒論 1 一、脊髓小腦共濟失調症 1 二、第三型小腦共濟失調症 1 三、自噬作用 2 四、自噬作用與第三型小腦共濟失調症的關聯 6 五、潛力小分子化合物 7 貳、研究目的 9 參、研究材料與方法 10 一、藥品及試劑 10 二、西方墨點法/免疫細胞染色法一級抗體 12 三、口服生物利用度和BBB滲透預測 12 四、Trx-His-ATXN3/Q14、Q75蛋白質與Thioflavin T結合測定 12 五、點印跡測定 13 六、細胞培養與繼代 14 七、化合物細胞毒性分析 14 八、自噬作用活化分析 15 九、ATXN3/Q75-GFP SH-SY5Y細胞蛋白質聚集分析 15 十、ATXN3/Q75-GFP SH-SY5Y細胞活性氧化物分析 16 十一、神經突生長分析 16 十二、西方墨點分析 17 十三、ATXN3/Q75-GFP SH-SY5Y細胞免疫細胞化學染色 18 十四、統計分析 18 肆、實驗結果 19 一、化合物口服生物利用度和BBB滲透預測 19 二、化合物干擾ATXN3/Q75蛋白質聚集體形成之分析 19 三、細胞毒性分析 20 四、自噬作用活化分析 20 五、蛋白質聚集體、活性氧化物、神經突生長分析 21 六、神經細胞自噬活化 23 伍、討論 25 一、化合物干擾ATXN3/Q75蛋白質聚集體形成 25 二、細胞毒性分析 26 三、自噬作用活化分析 26 四、蛋白質聚集體、活性氧化物、神經突生長分析 27 五、神經細胞自噬活化 29 六、化合物治療效果 29 七、總結與未來發展 30 陸、參考文獻 31 柒、附錄圖表 45

    Araujo, J., Breuer, P., Dieringer, S., Krauss, S., Dorn, S., Zimmermann, K., Pfeifer, A., Klockgether, T., Wuellner, U., & Evert, B. O. (2011). FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3. Human Molecular Genetics, 20(15), 2928-2941. https://doi.org/10.1093/hmg/ddr197
    Ashkenazi, A., Bento, C. F., Ricketts, T., Vicinanza, M., Siddiqi, F., Pavel, M., Squitieri, F., Hardenberg, M. C., Imarisio, S., Menzies, F. M., & Rubinsztein, D. C. (2017). Polyglutamine tracts regulate beclin 1-dependent autophagy. Nature, 545(7652), 108-111. https://doi.org/10.1038/nature22078
    Bettencourt, C., Santos, C., Montiel, R., Costa Mdo, C., Cruz-Morales, P., Santos, L. R., Simões, N., Kay, T., Vasconcelos, J., Maciel, P., & Lima, M. (2010). Increased transcript diversity: novel splicing variants of Machado-Joseph disease gene (ATXN3). Neurogenetics, 11(2), 193-202. https://doi.org/10.1007/s10048-009-0216-y
    Bichelmeier, U., Schmidt, T., Hübener, J., Boy, J., Rüttiger, L., Häbig, K., Poths, S., Bonin, M., Knipper, M., Schmidt, W. J., Wilbertz, J., Wolburg, H., Laccone, F., & Riess, O. (2007). Nuclear localization of ataxin-3 is required for the manifestation of symptoms in SCA3: in vivo evidence Journal of Neuroscience, 27(28), 7418-7428. https://doi.org/10.1523/jneurosci.4540-06.2007
    Bové, J., Martínez-Vicente, M., & Vila, M. (2011). Fighting neurodegeneration with rapamycin: mechanistic insights. Nature Reviews Neuroscience, 12(8), 437-452. https://doi.org/10.1038/nrn3068
    Bubols, G. B., Vianna Dda, R., Medina-Remon, A., von Poser, G., Lamuela-Raventos, R. M., Eifler-Lima, V. L., & Garcia, S. C. (2013). The antioxidant activity of coumarins and flavonoids. Mini-Reviews in Medicinal Chemistry, 13(3), 318-334. https://doi.org/10.2174/138955713804999775
    Bujak, A. L., Crane, J. D., Lally, J. S., Ford, R. J., Kang, S. J., Rebalka, I. A., Green, A. E., Kemp, B. E., Hawke, T. J., Schertzer, J. D., & Steinberg, G. R. (2015). AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metabolism, 21(6), 883-890. https://doi.org/10.1016/j.cmet.2015.05.016
    Bunting, E. L., Hamilton, J., & Tabrizi, S. J. (2022). Polyglutamine diseases. Current Opinion in Neurobiology, 72, 39-47. https://doi.org/10.1016/j.conb.2021.07.001
    Cao, W., Li, J., Yang, K., & Cao, D. (2021). An overview of autophagy: Mechanism, regulation and research progress. Bulletin du Cancer, 108(3), 304-322. https://doi.org/10.1016/j.bulcan.2020.11.004
    Chai, Y., Koppenhafer, S. L., Bonini, N. M., & Paulson, H. L. (1999). Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. Journal of Neuroscience, 19(23), 10338-10347. https://doi.org/10.1523/jneurosci.19-23-10338.1999
    Chai, Y., Koppenhafer, S. L., Shoesmith, S. J., Perez, M. K., & Paulson, H. L. (1999). Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppression of polyglutamine aggregation in vitro. Human Molecular Genetics, 8(4), 673-682. https://doi.org/10.1093/hmg/8.4.673
    Chang, K. H., Chen, W. L., Lee, L. C., Lin, C. H., Kung, P. J., Lin, T. H., Wu, Y. C., Wu, Y. R., Chen, Y. C., Lee-Chen, G. J., & Chen, C. M. (2013). Aqueous extract of Paeonia lactiflora and paeoniflorin as aggregation reducers targeting chaperones in cell models of spinocerebellar ataxia 3. Evidence-Based Complementary and Alternative Medicine, 2013, 471659. https://doi.org/10.1155/2013/471659
    Chang, K. H., Chen, W. L., Wu, Y. R., Lin, T. H., Wu, Y. C., Chao, C. Y., Lin, J. Y., Lee, L. C., Chen, Y. C., Lee-Chen, G. J., & Chen, C. M. (2014). Aqueous extract of Gardenia jasminoides targeting oxidative stress to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. Neuropharmacology, 81, 166-175. https://doi.org/10.1016/j.neuropharm.2014.01.032
    Chen, C. M., Weng, Y. T., Chen, W. L., Lin, T. H., Chao, C. Y., Lin, C. H., Chen, I. C., Lee, L. C., Lin, H. Y., Wu, Y. R., Chen, Y. C., Chang, K. H., Tang, H. Y., Cheng, M. L., Lee-Chen, G. J., Lin, J. Y. Aqueous extract of Glycyrrhiza inflata inhibits aggregation through upregulating PPARGC1A and NFE2L2-ARE pathways in cell models of spinocerebellar ataxia 3. (2014). Free Radical Biology & Medicine, 71, 339-350. https://doi.org/10.1016/j.freeradbiomed.2014.03.023
    Chen, C. M., Chen, W. L., Hung, C. T., Lin, T. H., Chao, C. Y., Lin, C. H., Wu, Y. R., Chang, K. H., Yao, C. F., Lee-Chen, G. J., Su, M. T., & Hsieh-Li, H. M. (2018). The indole compound NC009-1 inhibits aggregation and promotes neurite outgrowth through enhancement of HSPB1 in SCA17 cells and ameliorates the behavioral deficits in SCA17 mice. Neurotoxicology, 67, 259-269. https://doi.org/10.1016/j.neuro.2018.06.009
    Chen, C. M., Chen, W. L., Yang, S. T., Lin, T. H., Yang, S. M., Lin, W., Chao, C. Y., Wu, Y. R., Chang, K. H., & Lee-Chen, G. J. (2020). New synthetic 3-benzoyl-5-hydroxy-2H-chromen-2-one (LM-031) inhibits polyglutamine aggregation and promotes neurite outgrowth through enhancement of CREB, NRF2, and reduction of AMPKα in SCA17 cell models. Oxidative Medicine and Cellular Longevity, 2020, 3129497. https://doi.org/10.1155/2020/3129497
    Chen, I. C., Chang, C. N., Chen, W. L., Lin, T. H., Chao, C. Y., Lin, C. H., Lin, H. Y., Cheng, M. L., Chiang, M. C., Lin, J. Y., Wu, Y. R., Lee-Chen, G. J., & Chen, C. M. (2019). Targeting ubiquitin proteasome pathway with traditional Chinese medicine for treatment of spinocerebellar ataxia type 3. American Journal of Chinese Medicine, 47(01), 63-95. https://doi.org/10.1142/s0192415x19500046
    Chiu, Y. J., Lin, C. H., Lin, C. Y., Yang, P. N., Lo, Y. S., Chen, Y. C., Chen, C. M., Wu, Y. R., Yao, C. F., Chang, K. H., & Lee-Chen, G. J. (2023). Investigating therapeutic effects of indole derivatives targeting inflammation and oxidative stress in neurotoxin-induced cell and mouse models of Parkinson's disease. International Journal of Molecular Sciences, 24(3), 2642. https://www.mdpi.com/1422-0067/24/3/2642
    Chiu, Y. J., Lin, S. A., Chen, W. L., Lin, T. H., Lin, C. H., Yao, C. F., Lin, W., Wu, Y. R., Chang, K. H., Lee-Chen, G. J., & Chen, C. M. (2020). Pathomechanism characterization and potential therapeutics identification for SCA3 targeting neuroinflammation. Aging (Albany NY), 12(23), 23619-23646. https://doi.org/10.18632/aging.103700
    Choi, A. M., Ryter, S. W., & Levine, B. (2013). Autophagy in human health and disease. The New England Journal of Medicine, 368(7), 651-662. https://doi.org/10.1056/NEJMra1205406
    Chou, A. H., Yeh, T. H., Kuo, Y. L., Kao, Y. C., Jou, M. J., Hsu, C. Y., Tsai, S. R., Kakizuka, A., & Wang, H. L. (2006). Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiology of Disease, 21(2), 333-345. https://doi.org/10.1016/j.nbd.2005.07.011
    Cortes, C. J., & La Spada, A. R. (2015). Autophagy in polyglutamine disease: Imposing order on disorder or contributing to the chaos? Molecular and Cellular Neuroscience, 66(Pt A), 53-61. https://doi.org/10.1016/j.mcn.2015.03.010
    Dürr, A., Stevanin, G., Cancel, G., Duyckaerts, C., Abbas, N., Didierjean, O., Chneiweiss, H., Benomar, A., Lyon-Caen, O., Julien, J., Serdaru, M., Penet, C., Agid, Y., & Brice, A. (1996). Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Annals of Neurology, 39(4), 490-499. https://doi.org/10.1002/ana.410390411
    Dadashpour, S., & Emami, S. (2018). Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. European Journal of Medicinal Chemistry, 150, 9-29. https://doi.org/10.1016/j.ejmech.2018.02.065
    de Candia, M., Zaetta, G., Denora, N., Tricarico, D., Majellaro, M., Cellamare, S., & Altomare, C. D. (2017). New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity. European Journal of Medicinal Chemistry, 125, 288-298. https://doi.org/10.1016/j.ejmech.2016.09.037
    Di Rienzo, M., Piacentini, M., & Fimia, G. M. (2019). A TRIM32-AMBRA1-ULK1 complex initiates the autophagy response in atrophic muscle cells. Autophagy, 15(9), 1674-1676. https://doi.org/10.1080/15548627.2019.1635385
    Evers, M. M., Toonen, L. J., & van Roon-Mom, W. M. (2014). Ataxin-3 protein and RNA toxicity in spinocerebellar ataxia type 3: current insights and emerging therapeutic strategies. Molecular Neurobiology, 49(3), 1513-1531. https://doi.org/10.1007/s12035-013-8596-2
    Fan, X., Xie, M., Zhao, F., Li, J., Fan, C., Zheng, H., Wei, Z., Ci, X., & Zhang, S. (2021). Daphnetin triggers ROS-induced cell death and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway in ovarian cancer. Phytomedicine, 82, 153465. https://doi.org/https://doi.org/10.1016/j.phymed.2021.153465
    Frid, P., Anisimov, S. V., & Popovic, N. (2007). Congo red and protein aggregation in neurodegenerative diseases. Brain Research Reviews, 53(1), 135-160. https://doi.org/https://doi.org/10.1016/j.brainresrev.2006.08.001
    Fritzen, A. M., Madsen, A. B., Kleinert, M., Treebak, J. T., Lundsgaard, A. M., Jensen, T. E., Richter, E. A., Wojtaszewski, J., Kiens, B., & Frøsig, C. (2016). Regulation of autophagy in human skeletal muscle: Effects of exercise, exercise training and insulin stimulation. Journal of Physiology, 594(3), 745-761. https://doi.org/10.1113/JP271405
    Gao, D., Xu, Z. e., Kuang, X., Qiao, P., Liu, S., Zhang, L., He, P., Jadwiga, W. S., Wang, Y., & Min, W. (2014). Molecular characterization and expression analysis of the autophagic gene Beclin 1 from the purse red common carp (Cyprinus carpio) exposed to cadmium. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 160, 15-22. https://doi.org/https://doi.org/10.1016/j.cbpc.2013.11.004
    Garg, S. S., Gupta, J., Sharma, S., & Sahu, D. (2020). An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. European Journal of Pharmaceutical Sciences, 152, 105424. https://doi.org/10.1016/j.ejps.2020.105424
    Gatica, D., Lahiri, V., & Klionsky, D. J. (2018). Cargo recognition and degradation by selective autophagy. Nature Cell Biology, 20(3), 233-242. https://doi.org/10.1038/s41556-018-0037-z
    Goti, D., Katzen, S. M., Mez, J., Kurtis, N., Kiluk, J., Ben-Haïem, L., Jenkins, N. A., Copeland, N. G., Kakizuka, A., & Sharp, A. H. (2004). A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. Journal of Neuroscience, 24(45), 10266-10279. https://doi.org/https://doi.org/10.1523/JNEUROSCI.2734-04.2004
    Goto, J., Watanabe, M., Ichikawa, Y., Yee, S. B., Ihara, N., Endo, K., Igarashi, S., Takiyama, Y., Gaspar, C., Maciel, P., Tsuji, S., Rouleau, G. A., & Kanazawa, I. (1997). Machado-Joseph disease gene products carrying different carboxyl termini. Neuroscience Research, 28(4), 373-377. https://doi.org/10.1016/s0168-0102(97)00056-4
    Gould, V. F. C., Goti, D., Pearce, D., Gonzalez, G. A., Gao, H., de Leon, M. B., Jenkins, N. A., Copeland, N. G., Ross, C. A., & Brown, D. R. (2007). A mutant ataxin-3 fragment results from processing at a site N-terminal to amino acid 190 in brain of Machado–Joseph disease-like transgenic mice. Neurobiology of Disease, 27(3), 362-369. https://doi.org/https://doi.org/10.1016/j.nbd.2007.06.005
    Haacke, A., Broadley, S. A., Boteva, R., Tzvetkov, N., Hartl, F. U., & Breuer, P. (2006). Proteolytic cleavage of polyglutamine-expanded ataxin-3 is critical for aggregation and sequestration of non-expanded ataxin-3. Human Molecular Genetics, 15(4), 555-568. https://doi.org/10.1093/hmg/ddi472
    Harding, A. E. (1983). Classification of the hereditary ataxias and paraplegias. The Lancet, 321(8334), 1151-1155. https://doi.org/https://doi.org/10.1016/S0140-6736(83)92879-9
    Harmuth, T., Prell-Schicker, C., Weber, J. J., Gellerich, F., Funke, C., Drießen, S., Magg, J. C. D., Krebiehl, G., Wolburg, H., Hayer, S. N., Hauser, S., Krüger, R., Schöls, L., Riess, O., & Hübener-Schmid, J. (2018). Mitochondrial morphology, function and homeostasis are impaired by expression of an N-terminal calpain cleavage fragment of ataxin-3. Frontiers in Molecular Neuroscience, 11, 368. https://doi.org/10.3389/fnmol.2018.00368
    Harris, G. M., Dodelzon, K., Gong, L., Gonzalez-Alegre, P., & Paulson, H. L. (2010). Splice isoforms of the polyglutamine disease protein ataxin-3 exhibit similar enzymatic yet different aggregation properties. PLoS One, 5(10), e13695. https://doi.org/10.1371/journal.pone.0013695
    Havel, L. S., Li, S., & Li, X.-J. (2009). Nuclear accumulation of polyglutamine disease proteins and neuropathology. Molecular Brain, 2(1), 21. https://doi.org/10.1186/1756-6606-2-21
    Hitchcock, S. A., & Pennington, L. D. (2006). Structure - brain exposure relationships. Journal of Medicinal Chemistry, 49(26), 7559-7583. https://doi.org/10.1021/jm060642i
    Hosseinpour-Moghaddam, K., Caraglia, M., & Sahebkar, A. (2018). Autophagy induction by trehalose: Molecular mechanisms and therapeutic impacts. Journal of Cellular Physiology, 233(9), 6524-6543. https://doi.org/10.1002/jcp.26583
    Hsu, J. Y., Jhang, Y. L., Cheng, P. H., Chang, Y. F., Mao, S. H., Yang, H. I., Lin, C. W., Chen, C. M., & Yang, S. H. (2017). The truncated C-terminal fragment of mutant ATXN3 disrupts mitochondria dynamics in spinocerebellar ataxia type 3 models. Frontiers in Molecular Neuroscience, 10, 196. https://doi.org/10.3389/fnmol.2017.00196
    Huang, C. C., Chang, K. H., Chiu, Y. J., Chen, Y. R., Lung, T. H., Hsieh-Li, H. M., Su, M. T., Sun, Y. C., Chen, C. M., Lin, W., & Lee-Chen, G. J. (2021). Multi-target effects of novel synthetic coumarin derivatives protecting Aβ-GFP SH-SY5Y cells against Aβ toxicity. Cells, 10(11), 3095. https://doi.org/10.3390/cells10113095
    Ichikawa, Y., Goto, J., Hattori, M., Toyoda, A., Ishii, K., Jeong, S. Y., Hashida, H., Masuda, N., Ogata, K., Kasai, F., Hirai, M., Maciel, P., Rouleau, G. A., Sakaki, Y., & Kanazawa, I. (2001). The genomic structure and expression of MJD, the Machado-Joseph disease gene. Journal of Human Genetics, 46(7), 413-422. https://doi.org/10.1007/s100380170060
    Ikeda, H., Yamaguchi, M., Sugai, S., Aze, Y., Narumiya, S., & Kakizuka, A. (1996). Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nature genetics, 13(2), 196-202. https://doi.org/10.1038/ng0696-196
    Itakura, E., Kishi, C., Inoue, K., & Mizushima, N. (2008). Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Molecular Biology of the Cell, 19(12), 5360-5372. https://doi.org/10.1091/mbc.e08-01-0080
    Jana, N. R., & Nukina, N. (2004). Misfolding promotes the ubiquitination of polyglutamine-expanded ataxin-3, the defective gene product in SCA3/MJD. Neurotoxicity Research, 6(7), 523-533. https://doi.org/10.1007/BF03033448
    Kang, R., Zeh, H. J., Lotze, M. T., & Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death & Differentiation, 18(4), 571-580. https://doi.org/10.1038/cdd.2010.191
    Kaushik, S., & Cuervo, A. M. (2018). The coming of age of chaperone-mediated autophagy. Nature Reviews Molecular Cell Biology, 19(6), 365-381. https://doi.org/10.1038/s41580-018-0001-6
    Kim, B.-W., Jin, Y., Kim, J., Kim, J. H., Jung, J., Kang, S., Kim, I. Y., Kim, J., Cheong, H., & Song, H. K. (2018). The C-terminal region of ATG101 bridges ULK1 and PtdIns3K complex in autophagy initiation. Autophagy, 14(12), 2104-2116. https://doi.org/10.1080/15548627.2018.1504716
    Kitada, M., & Koya, D. (2021). Autophagy in metabolic disease and ageing. Nature Reviews Endocrinology, 17(11), 647-661. https://doi.org/10.1038/s41574-021-00551-9
    Klockgether, T., Mariotti, C., & Paulson, H. L. (2019). Spinocerebellar ataxia. Nature Reviews Disease Primers, 5(1), 24. https://doi.org/10.1038/s41572-019-0074-3
    Klockgether, T., Skalej, M., Wedekind, D., Luft, A. R., Welte, D., Schulz, J. B., Abele, M., Bürk, K., Laccone, F., Brice, A., & Dichgans, J. (1998). Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain, 121(9), 1687-1693. https://doi.org/10.1093/brain/121.9.1687
    Koide, R., Kobayashi, S., Shimohata, T., Ikeuchi, T., Maruyama, M., Saito, M., Yamada, M., Takahashi, H., Tsuji, S. (1999). A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Human Molecular Genetics, 8(11), 2047-2053. https://doi.org/10.1093/hmg/8.11.2047
    La Spada, A. R., & Taylor, J. P. (2010). Repeat expansion disease: progress and puzzles in disease pathogenesis. Nature Reviews Genetics, 11(4), 247-258. https://doi.org/10.1038/nrg2748
    Lee, J. H., Lin, S. Y., Liu, J. W., Lin, S. Z., Harn, H. J., & Chiou, T. W. (2021). n-Butylidenephthalide modulates autophagy to ameliorate neuropathological progress of spinocerebellar ataxia type 3 through mTOR pathway. International Journal of Molecular Sciences, 22(12), 6339. https://doi.org/10.3390/ijms22126339
    Lee, S. Y., Chiu, Y. J., Yang, S. M., Chen, C. M., Huang, C. C., Lee-Chen, G. J., Lin, W., & Chang, K. H. (2018). Novel synthetic chalcone-coumarin hybrid for Aβ aggregation reduction, antioxidation, and neuroprotection. CNS Neuroscience & Therapeutics, 24(12), 1286-1298. https://doi.org/10.1111/cns.13058
    Levine, B., & Kroemer, G. (2019). Biological functions of autophagy genes: A disease perspective. Cell, 176(1-2), 11-42. https://doi.org/10.1016/j.cell.2018.09.048
    Li, L., Tan, J., Miao, Y., Lei, P., & Zhang, Q. (2015). ROS and autophagy: Interactions and molecular regulatory mechanisms. Cellular and Molecular Neurobiology, 35(5), 615-621. https://doi.org/10.1007/s10571-015-0166-x
    Lin, C. H., Hsieh, Y. S., Wu, Y. R., Hsu, C. J., Chen, H. C., Huang, W. H., Chang, K. H., Hsieh-Li, H. M., Su, M. T., Sun, Y. C., Lee, G. C., & Lee-Chen, G. J. (2016). Identifying GSK-3β kinase inhibitors of Alzheimer's disease: Virtual screening, enzyme, and cell assays. European Journal of Pharmaceutical Sciences, 89, 11-19. https://doi.org/10.1016/j.ejps.2016.04.012
    Lin, C. H., Wu, Y. R., Kung, P. J., Chen, W. L., Lee, L. C., Lin, T. H., Chao, C. Y., Chen, C. M., Chang, K. H., Janreddy, D., Lee-Chen, G. J., & Yao, C. F. (2014). The potential of indole and a synthetic derivative for polyQ aggregation reduction by enhancement of the chaperone and autophagy systems. ACS Chemical Neuroscience, 5(10), 1063-1074. https://doi.org/10.1021/cn500075u
    Lin, C. H., Wu, Y. R., Yang, J. M., Chen, W. L., Chao, C. Y., Chen, I. C., Lin, T. H., Wu, Y. C., Hsu, K. C., Chen, C. M., Lee, G. C., Hsieh-Li, H. M., Lee, C. M., & Lee-Chen, G. J. (2016). Novel lactulose and melibiose targeting autophagy to reduce polyQ aggregation in cell models of spinocerebellar ataxia 3. CNS & Neurological Disorders - Drug Targets, 15(3), 351-359. https://doi.org/10.2174/1871527314666150821101522
    Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3-26. https://doi.org/10.1016/s0169-409x(00)00129-0
    Liu, H., Wang, L., Lv, M., Pei, R., Li, P., Pei, Z., Wang, Y., Su, W., & Xie, X. Q. (2014). AlzPlatform: an Alzheimer's disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. Journal of Chemical Information and Modeling, 54(4), 1050-1060. https://doi.org/10.1021/ci500004h
    Losier, T. T., Akuma, M., McKee-Muir, O. C., LeBlond, N. D., Suk, Y., Alsaadi, R. M., Guo, Z., Reshke, R., Sad, S., Campbell-Valois, F.-X., Gibbings, D. J., Fullerton, M. D., & Russell, R. C. (2019). AMPK promotes xenophagy through priming of autophagic kinases upon detection of bacterial outer membrane vesicles. Cell Reports, 26(8), 2150-2165.e2155. https://doi.org/https://doi.org/10.1016/j.celrep.2019.01.062
    Luo, F., Sandhu, A. F., Rungratanawanich, W., Williams, G. E., Akbar, M., Zhou, S., Song, B. J., & Wang, X. (2020). Melatonin and autophagy in aging-related neurodegenerative diseases. International Journal of Molecular Sciences, 21(19). https://doi.org/10.3390/ijms21197174
    Luo, M. L., Huang, W., Zhu, H. P., Peng, C., Zhao, Q., & Han, B. (2022). Advances in indole-containing alkaloids as potential anticancer agents by regulating autophagy. Biomedicine & Pharmacotherapy, 149, 112827. https://doi.org/https://doi.org/10.1016/j.biopha.2022.112827
    Maeda, S., Yamamoto, H., Kinch, L. N., Garza, C. M., Takahashi, S., Otomo, C., Grishin, N. V., Forli, S., Mizushima, N., & Otomo, T. (2020). Structure, lipid scrambling activity and role in autophagosome formation of ATG9A. Nature Structural & Molecular Biology, 27(12), 1194-1201. https://doi.org/10.1038/s41594-020-00520-2
    Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trottier, Y., Lehrach, H., & Davies, S. W. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell, 87(3), 493-506. https://doi.org/https://doi.org/10.1016/S0092-8674(00)81369-0
    Matoba, K., Kotani, T., Tsutsumi, A., Tsuji, T., Mori, T., Noshiro, D., Sugita, Y., Nomura, N., Iwata, S., Ohsumi, Y., Fujimoto, T., Nakatogawa, H., Kikkawa, M., & Noda, N. N. (2020). Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nature Structural & Molecular Biology, 27(12), 1185-1193. https://doi.org/10.1038/s41594-020-00518-w
    Matos, C. A., de Almeida, L. P., & Nobrega, C. (2019). Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy. Journal of Neurochemistry, 148(1), 8-28. https://doi.org/10.1111/jnc.14541
    Matthew-Onabanjo, A. N., Janusis, J., Mercado-Matos, J., Carlisle, A. E., Kim, D., Levine, F., Cruz-Gordillo, P., Richards, R., Lee, M. J., & Shaw, L. M. (2020). Beclin 1 promotes endosome recruitment of hepatocyte growth factor tyrosine kinase substrate to suppress tumor proliferation. Cancer Research, 80(2), 249-262. https://doi.org/10.1158/0008-5472.Can-19-1555
    McLoughlin, H. S., Moore, L. R., & Paulson, H. L. (2020). Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiology of Disease, 134, 104635. https://doi.org/https://doi.org/10.1016/j.nbd.2019.104635
    Menzies, F. M., Fleming, A., Caricasole, A., Bento, C. F., Andrews, S. P., Ashkenazi, A., Füllgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., Licitra, F., Lopez Ramirez, A., Pavel, M., Puri, C., Renna, M., Ricketts, T., Schlotawa, L., Vicinanza, M., Won, H., Zhu, Y., Skidmore, J., & Rubinsztein, D. C. (2017). Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron, 93(5), 1015-1034. https://doi.org/10.1016/j.neuron.2017.01.022
    Mercer, C. A., Kaliappan, A., & Dennis, P. B. (2009). A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy, 5(5), 649-662. https://doi.org/10.4161/auto.5.5.8249
    Mizushima, N., & Levine, B. (2020). Autophagy in human diseases. The New England Journal of Medicine, 383(16), 1564-1576. https://doi.org/10.1056/NEJMra2022774
    Morselli, E., Shen, S., Ruckenstuhl, C., Bauer, M. A., Mariño, G., Galluzzi, L., Criollo, A., Michaud, M., Maiuri, M. C., Chano, T., Madeo, F., & Kroemer, G. (2011). p53 inhibits autophagy by interacting with the human ortholog of yeast Atg17, RB1CC1/FIP200. Cell Cycle, 10(16), 2763-2769. https://doi.org/10.4161/cc.10.16.16868
    Moseley, M. L., Benzow, K. A., Schut, L. J., Bird, T. D., Gomez, C. M., Barkhaus, P. E., Blindauer, K. A., Labuda, M., Pandolfo, M., Koob, M. D., & Ranum, L. P. (1998). Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology, 51(6), 1666-1671. https://doi.org/10.1212/wnl.51.6.1666
    Nascimento-Ferreira, I., Nóbrega, C., Vasconcelos-Ferreira, A., Onofre, I., Albuquerque, D., Aveleira, C., Hirai, H., Déglon, N., & Pereira de Almeida, L. (2013). Beclin 1 mitigates motor and neuropathological deficits in genetic mouse models of Machado-Joseph disease. Brain, 136(Pt 7), 2173-2188. https://doi.org/10.1093/brain/awt144
    Nascimento-Ferreira, I., Santos-Ferreira, T., Sousa-Ferreira, L., Auregan, G., Onofre, I., Alves, S., Dufour, N., Colomer Gould, V. F., Koeppen, A., Déglon, N., & Pereira de Almeida, L. (2011). Overexpression of the autophagic beclin-1 protein clears mutant ataxin-3 and alleviates Machado-Joseph disease. Brain, 134(Pt 5), 1400-1415. https://doi.org/10.1093/brain/awr047
    Nazio, F., Strappazzon, F., Antonioli, M., Bielli, P., Cianfanelli, V., Bordi, M., Gretzmeier, C., Dengjel, J., Piacentini, M., Fimia, G. M., & Cecconi, F. (2013). mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nature Cell Biology, 15(4), 406-416. https://doi.org/10.1038/ncb2708
    Osawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y., & Noda, N. N. (2019). Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nature Structural & Molecular Biology, 26(4), 281-288. https://doi.org/10.1038/s41594-019-0203-4
    Park, S., Zuber, C., & Roth, J. (2020). Selective autophagy of cytosolic protein aggregates involves ribosome-free rough endoplasmic reticulum. Histochemistry and Cell Biology, 153(2), 89-99. https://doi.org/10.1007/s00418-019-01829-w
    Paulson, H. L., Perez, M. K., Trottier, Y., Trojanowski, J. Q., Subramony, S. H., Das, S. S., Vig, P., Mandel, J. L., Fischbeck, K. H., & Pittman, R. N. (1997). Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron, 19(2), 333-344. https://doi.org/10.1016/s0896-6273(00)80943-5
    Paulson, H. L., Shakkottai, V. G., Clark, H. B., & Orr, H. T. (2017). Polyglutamine spinocerebellar ataxias - from genes to potential treatments. Nature Reviews Neuroscience, 18(10), 613-626. https://doi.org/10.1038/nrn.2017.92
    Pohl, C., & Dikic, I. (2019). Cellular quality control by the ubiquitin-proteasome system and autophagy. Science, 366(6467), 818-822. https://doi.org/10.1126/science.aax3769
    Purgatorio, R., de Candia, M., Catto, M., Carrieri, A., Pisani, L., De Palma, A., Toma, M., Ivanova, O. A., Voskressensky, L. G., & Altomare, C. D. (2019). Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease. European Journal of Medicinal Chemistry, 177, 414-424. https://doi.org/https://doi.org/10.1016/j.ejmech.2019.05.062
    Qian, G., Liu, D., Hu, J., Gan, F., Hou, L., Chen, X., & Huang, K. (2017). Ochratoxin A-induced autophagy in vitro and in vivo promotes porcine circovirus type 2 replication. Cell Death & Disease, 8(6), e2909. https://doi.org/10.1038/cddis.2017.303
    Raimondi, M., Cesselli, D., Di Loreto, C., La Marra, F., Schneider, C., & Demarchi, F. (2019). USP1 (ubiquitin specific peptidase 1) targets ULK1 and regulates its cellular compartmentalization and autophagy. Autophagy, 15(4), 613-630. https://doi.org/10.1080/15548627.2018.1535291
    Sarkar, S., Ravikumar, B., Floto, R. A., Rubinsztein, D. C. (2009). Rapamycin and mTOR-independent autophagy inducers ameliorate toxicity of polyglutamine-expanded huntingtin and related proteinopathies. Cell Death & Differentiation, 16(1), 46-56. https://doi.org/10.1038/cdd.2008.110
    Santana, M. M., Paixão, S., Cunha-Santos, J., Silva, T. P., Trevino-Garcia, A., Gaspar, L. S., Nóbrega, C., Nobre, R. J., Cavadas, C., Greif, H., & Pereira de Almeida, L. (2020). Trehalose alleviates the phenotype of Machado–Joseph disease mouse models. Journal of Translational Medicine, 18(1), 161. https://doi.org/10.1186/s12967-020-02302-2
    Schöls, L., Amoiridis, G., Langkafel, M., Büttner, T., Przuntek, H., Riess, O., Vieira-Saecker, A. M., & Epplen, J. T. (1995). Machado-Joseph disease mutations as the genetic basis of most spinocerebellar ataxias in Germany. Journal of Neurology, Neurosurgery and Psychiatry, 59(4), 449-450. https://doi.org/10.1136/jnnp.59.4.449
    Schuck, S. (2020). Microautophagy - distinct molecular mechanisms handle cargoes of many sizes. Journal of Cell Science, 133(17). https://doi.org/10.1242/jcs.246322
    Seidel, K., den Dunnen, W. F., Schultz, C., Paulson, H., Frank, S., de Vos, R. A., Brunt, E. R., Deller, T., Kampinga, H. H., & Rüb, U. (2010). Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol, 120(4), 449-460. https://doi.org/10.1007/s00401-010-0717-7
    Seidel, K., Siswanto, S., Fredrich, M., Bouzrou, M., den Dunnen, W. F. A., Özerden, I., Korf, H. W., Melegh, B., de Vries, J. J., Brunt, E. R., Auburger, G., & Rüb, U. (2017). On the distribution of intranuclear and cytoplasmic aggregates in the brainstem of patients with spinocerebellar ataxia type 2 and 3. Brain Pathol, 27(3), 345-355. https://doi.org/10.1111/bpa.12412
    Silveira, I., Miranda, C., Guimarães, L., Moreira, M. C., Alonso, I., Mendonça, P., Ferro, A., Pinto-Basto, J., Coelho, J., Ferreirinha, F., Poirier, J., Parreira, E., Vale, J., Januário, C., Barbot, C., Tuna, A., Barros, J., Koide, R., Tsuji, S., Holmes, S. E., Margolis, R. L., Jardim, L., Pandolfo, M., Coutinho, P., & Sequeiros, J. (2002). Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG)n allele at the SCA17 locus. Archives of neurology, 59(4), 623-629. https://doi.org/10.1001/archneur.59.4.623
    Singh, T. P., & Singh, O. M. (2018). Recent progress in biological activities of indole and indole alkaloids. Mini-Reviews in Medicinal Chemistry, 18(1), 9-25. https://doi.org/10.2174/1389557517666170807123201
    Soong, B. W., Lu, Y. C., Choo, K. B., & Lee, H. Y. (2001). Frequency analysis of autosomal dominant cerebellar ataxias in Taiwanese patients and clinical and molecular characterization of spinocerebellar ataxia type 6. Archives of neurology, 58(7), 1105-1109. https://doi.org/10.1001/archneur.58.7.1105
    Sravanthi, T. V., & Manju, S. L. (2016). Indoles - A promising scaffold for drug development. European Journal of Pharmaceutical Sciences, 91, 1-10. https://doi.org/10.1016/j.ejps.2016.05.025
    Sudarsky, L., & Coutinho, P. (1995). Machado-Joseph disease. Clinical neuroscience (New York, N.Y.), 3(1), 17-22.
    Sullivan, R., Yau, W. Y., O’Connor, E., & Houlden, H. (2019). Spinocerebellar ataxia: an update. Journal of Neurology, 266(2), 533-544. https://doi.org/10.1007/s00415-018-9076-4
    Suzuki, S. W., Yamamoto, H., Oikawa, Y., Kondo-Kakuta, C., Kimura, Y., Hirano, H., & Ohsumi, Y. (2015). Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proceedings of the National Academy of Sciences, 112(11), 3350-3355. https://doi.org/doi:10.1073/pnas.1421092112
    Tanida, I., Ueno, T., & Kominami, E. (2004). LC3 conjugation system in mammalian autophagy. The International Journal of Biochemistry & Cell Biology, 36(12), 2503-2518. https://doi.org/10.1016/j.biocel.2004.05.009
    Tsai, H. F., Liu, C. S., Leu, T. M., Wen, F. C., Lin, S. J., Liu, C. C., Yang, D. K., Li, C., & Hsieh, M. (2004). Analysis of trinucleotide repeats in different SCA loci in spinocerebellar ataxia patients and in normal population of Taiwan. Acta Neurologica Scandinavica, 109(5), 355-360. https://doi.org/10.1046/j.1600-0404.2003.00229.x
    Uchihara, T., Fujigasaki, H., Koyano, S., Nakamura, A., Yagishita, S., & Iwabuchi, K. (2001). Non-expanded polyglutamine proteins in intranuclear inclusions of hereditary ataxias--triple-labeling immunofluorescence study. Acta Neuropathologica, 102(2), 149-152. https://doi.org/10.1007/s004010100364
    Van Handel, E. (1968). Trehalase and maltase in the serum of vertebrates. Comparative Biochemistry and Physiology, 26(2), 561-566. https://doi.org/https://doi.org/10.1016/0010-406X(68)90649-x
    Vasconcelos-Ferreira, A., Carmo-Silva, S., Codesso, J. M., Silva, P., Martinez, A. R. M., Franca, M. C., Jr., Nobrega, C., & Pereira de Almeida, L. (2022a). The autophagy-enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado-Joseph disease. Neuropathology and Applied Neurobiology, 48(1), e12763. https://doi.org/10.1111/nan.12763
    Vasconcelos-Ferreira, A., Martins, I. M., Lobo, D., Pereira, D., Lopes, M. M., Faro, R., Lopes, S. M., Verbeek, D., Schmidt, T., Nóbrega, C., & Pereira de Almeida, L. (2022b). ULK overexpression mitigates motor deficits and neuropathology in mouse models of Machado-Joseph disease. Molecular Therapy, 30(1), 370-387. https://doi.org/10.1016/j.ymthe.2021.07.012
    Wang, Q., Guo, Y., Jiang, S., Dong, M., Kuerban, K., Li, J., Feng, M., Chen, Y., & Ye, L. (2018). A hybrid of coumarin and phenylsulfonylfuroxan induces caspase-dependent apoptosis and cytoprotective autophagy in lung adenocarcinoma cells. Phytomedicine, 39, 160-167. https://doi.org/https://doi.org/10.1016/j.phymed.2017.12.029
    Watanabe, H., Tanaka, F., Matsumoto, M., Doyu, M., Ando, T., Mitsuma, T., & Sobue, G. (1998). Frequency analysis of autosomal dominant cerebellar ataxias in Japanese patients and clinical characterization of spinocerebellar ataxia type 6. Clinical Genetics, 53(1), 13-19. https://doi.org/10.1034/j.1399-0004.1998.531530104.x
    Wellington, C. L., & Hayden, M. R. (1997). Of molecular interactions, mice and mechanisms: new insights into Huntington's disease. Current opinion in neurology, 10(4), 291-298. https://doi.org/10.1097/00019052-199708000-00003
    Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience, 13(7), 805-811. https://doi.org/10.1038/nn.2575
    Wu, Y.-L., Chang, J.-C., Lin, W.-Y., Li, C.-C., Hsieh, M., Chen, H.-W., Wang, T.-S., Wu, W.-T., Liu, C.-S., & Liu, K.-L. (2018). Caffeic acid and resveratrol ameliorate cellular damage in cell and Drosophila models of spinocerebellar ataxia type 3 through upregulation of Nrf2 pathway. Free Radical Biology and Medicine, 115, 309-317. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2017.12.011
    Wu, Y. L., Chang, J. C., Sun, H. L., Cheng, W. L., Yen, Y. P., Lin, Y. S., Chao, Y. C., Liu, K. H., Huang, C. S., Liu, K. L., & Liu, C. S. (2022). Coenzyme Q10 supplementation increases removal of the ATXN3 polyglutamine repeat, reducing cerebellar degeneration and improving motor dysfunction in murine spinocerebellar ataxia type 3. Nutrients, 14(17). https://doi.org/10.3390/nu14173593
    York, J. L., Maddox, L. C., Zimniak, P., McHugh, T. E., & Grant, D. F. (1998). Reduction of MTT by glutathione S-transferase. Biotechniques, 25(4), 622-624, 626-628. https://doi.org/10.2144/98254st03
    Yu, Y. C., Kuo, C. L., Cheng, W. L., Liu, C. S., & Hsieh, M. (2009). Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. Journal of Neuroscience Research, 87(8), 1884-1891. https://doi.org/10.1002/jnr.22011

    下載圖示
    QR CODE