簡易檢索 / 詳目顯示

研究生: 簡佑珊
Chien, Yu-Shan
論文名稱: 以溶劑裂解合成中孔洞氧化石墨烯及其摻雜之應用
Synthesis of Mesoporous Graphene Oxide by Solvent Pyrolysis and Its Application in Doping
指導教授: 劉沂欣
Liu, Yi-Hsin
口試委員: 呂家榮
Lu, Chia-Jung
林弘萍
Lin, Hong-Ping
劉沂欣
Liu, Yi-Hsin
口試日期: 2022/07/25
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 91
中文關鍵詞: 中孔洞沸石奈米粒子空間限制溶劑吸附碳自由基中孔洞碳材電化學感測光芬頓反應
英文關鍵詞: Mesoporous zeolite nanoparticles, space confinement, solvent adsorption, carbon radicals, mesoporous carbon materials, photo-Fenton reaction, electrochemical sensing
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201306
論文種類: 學術論文
相關次數: 點閱:115下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以溶劑熱裂解法生長氧化石墨烯於中孔洞沸石表面,並利用酸性官能基調控並催化氧化石墨烯之生成。使用高比表面積(800-900 m2/g)、同時具中孔(5-6 nm)及微孔(<1 nm)的沸石奈米粒子(MZNs)作為生長模板及催化劑,比較化學氣相沉積法在高溫(825°С)氬氣環境下乙烯及四氫呋喃裂解的效應。沸石表面之布洛酸性位點及微孔結構的空間限制效應可生成穩定的碳自由基,所合成出中孔洞氧化石墨烯奈米粒子(MGNs)不僅可作為光致類芬頓反應催化劑有效降解有機染料,並可塗布於網印碳電極(SPCE)上,利用碘摻雜及預還原的方式調控在電化學中的感測。溶劑熱裂解法具有經濟碳源優勢、可大量合成及多樣選擇性且避免錳汙染、板模移除等優勢,並符合綠色化學原則中衍生物減少、降解設計及低毒性的溶劑選擇,為孔洞碳材提供便利合成、有效降解及電化學檢測之應用。

    In this study, few-layer graphene oxides were grown on mesoporous zeolite surface by thermal solvent-cracking method, regulated and catalyzed by acid functional groups. Pyrolysis of ethylene and tetrahydrofuran via chemical vapor deposition (825°С) in argon atmosphere was conducted over mesoporous zeolite nanoparticles (MZNs) as hard templates and catalysts that have intrinsic high surface area (800-900 m2/g), mesoporous (5-6 nm) and microporous (<1 nm) .Space confinement effect of micropores and Brønsted-Lowry acid of Al sites in zeolites can generate stable carbon radicals in mesoporous graphene-oxide nanoparticles (MGNs) which can be applied to photo-Fenton catalysts for organic-dye degradation, electrochemistry sensing materials after iodine doping, as well as pre-reduced electrodes as active screen-printed carbon electrodes (SPCE). The thermal solvent-cracking method has several advantages of economical carbon sources, large-scale synthesis and solvent selectivity, not only avoiding manganese contamination and pore blocking without hard-template removal but also matching principles of green chemistry, including reduced derivatives, designed degradation, and low-toxic solvent usage. Radical-based MGNs in merit of graphene-oxide growths provide alternative synthesis of photocatalysis and electrical materials.

    第一章 緒論 1 1.1 奈米碳材上的自由基 1 1.1.1 合成中自由基生成的發展 1 1.1.2 二維碳材 2 1.1.3 孔洞碳材自由基 5 1.2 碳材性質及應用 8 1.2.1 自由基應用 8 1.2.2 染料吸附應用 9 1.2.3 電化學應用 10 1.3 研究動機 12 第二章 實驗方法 13 2.1 化學藥品 13 2.2 沸石晶種合成(beta zeolite seed, BZS) 14 2.3 中孔沸石奈米粒子之合成(MZNs) 15 2.4 中孔洞氧化石墨烯奈米粒子之合成(MGNs) 16 2.4.1 化學氣相沉積法(CVD) 16 2.4.2 溶劑吸附法 16 2.5 複合中孔碳材之合成 17 2.5.1 17族摻雜中孔碳材之合成(I-MGN。) 17 2.6 複合材料之網印碳電極製作 17 2.6.1 網印碳電極之前處理 18 2.6.2 浸塗佈法製作電極 18 2.7 孔洞之氣體吸附 18 2.8 孔洞之染料吸附 18 2.9 中孔碳材自由基之類芬頓反應 19 2.10 材料鑑定之儀器與方法 19 2.10.1 穿透式電子顯微鏡 (TEM) 19 2.10.2 高解像能電子顯微鏡 (HRTEM) 19 2.10.3 掃描式電子顯微鏡 (SEM) 20 2.10.4 化學氣相沉積法 (CVD) 20 2.10.5 循環伏安法 (CV) 20 2.10.6 電化學交流阻抗法 (EIS) 21 2.10.7 元素分析儀(EA) 21 2.10.8 電子順磁共振光譜儀(EPR) 21 2.10.9 拉曼光譜儀(Raman spectrometer) 22 2.10.10 X射線光電子能譜儀 (XPS) 22 2.10.11 衰減式全反射傅立葉轉換红外線光譜(ATR-FTIR) 23 2.10.12 氮氣吸附-脫附分析儀 (BET) 23 第三章 結果與討論 24 3.1 中孔洞氧化石墨烯合成及機制 24 3.1.1 氣相直接裂解法 24 3.1.2 溶劑間接裂解法 27 3.1.2.1 MZNs水氣吸附、溶劑吸水對材料合成之影響 28 3.1.3 中孔洞性質 30 3.1.4 氧化石墨烯表面性質 32 3.1.5 氧化石墨烯及自由基生長機制 43 3.1.6 天然物石墨烯化比較 55 3.2 摻雜對氧化石墨烯性質探討 58 3.2.1 鹵素表面摻雜 59 3.2.2 電性討論 65 3.3 自由基降解應用 67 3.3.1 染料吸附 67 3.3.2 染料降解 71 3.4 電化學應用 76 3.4.1 電極備製 76 3.4.2 電化學選擇性 78 3.4.3 電化學預還原 81 第四章 結論與未來展望 83 4.1 結論 83 4.2 未來展望 84 參考文獻 85

    1. Komeily-Nia, Z.; Chen, J.-Y.; Nasri-Nasrabadi, B.; Lei, W.-W.; Yuan, B.; Zhang, J.; Qu, L.-T.; Gupta, A.; Li, J.-L., The key structural features governing the free radicals and catalytic activity of graphite/graphene oxide. Physical Chemistry Chemical Physics 2020, 22 (5), 3112-3121.
    2. Gomberg, M., An instance of trivalent carbon: triphenylmethyl. Journal of the American Chemical Society 1900, 22 (11), 757-771.
    3. Giese, B.; Meister, J., Die Addition von Kohlenwasserstoffen an Olefine Eine neue synthetische Methode. Chemische Berichte 1977, 110 (7), 2588-2600.
    4. Nicolaou, K. C.; Ellery, S. P.; Chen, J. S., Samarium Diiodide Mediated Reactions in Total Synthesis. Angewandte Chemie International Edition 2009, 48 (39), 7140-7165.
    5. Kuivila, H. G., Organotin hydrides and organic free radicals. Accounts of Chemical Research 1968, 1 (10), 299-305.
    6. Anastas, P.; Eghbali, N., Green Chemistry: Principles and Practice. Chemical Society Reviews 2010, 39 (1), 301-312.
    7. Botte, G. G., Electrochemical Manufacturing in the Chemical Industry. Interface magazine 2014, 23 (3), 49-55.
    8. Galliher, M. S.; Roldan, B. J.; Stephenson, C. R. J., Evolution towards green radical generation in total synthesis. Chemical Society Reviews 2021, 50 (18), 10044-10057.
    9. Beckert, F.; Rostas, A. M.; Thomann, R.; Weber, S.; Schleicher, E.; Friedrich, C.; Mülhaupt, R., Self-Initiated Free Radical Grafting of Styrene Homo- and Copolymers onto Functionalized Graphene. Macromolecules 2013, 46 (14), 5488-5496.
    10. Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chemistry of Materials 2006, 18 (11), 2740-2749.
    11. Su, C.; Acik, M.; Takai, K.; Lu, J.; Hao, S.-j.; Zheng, Y.; Wu, P.; Bao, Q.; Enoki, T.; Chabal, Y. J.; Ping Loh, K., Probing the catalytic activity of porous graphene oxide and the origin of this behaviour. Nature Communications 2012, 3 (1), 1298.
    12. Ruan, X.; Sun, Y.; Du, W.; Tang, Y.; Liu, Q.; Zhang, Z.; Doherty, W.; Frost, R. L.; Qian, G.; Tsang, D. C. W., Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review. Bioresource Technology 2019, 281, 457-468.
    13. Wang, B.; Fielding, A. J.; Dryfe, R. A. W., Electron Paramagnetic Resonance as a Structural Tool to Study Graphene Oxide: Potential Dependence of the EPR Response. The Journal of Physical Chemistry C 2019, 123 (36), 22556-22563.
    14. Yang, L.; Zhang, R.; Liu, B.; Wang, J.; Wang, S.; Han, M.-Y.; Zhang, Z., π-Conjugated Carbon Radicals at Graphene Oxide to Initiate Ultrastrong Chemiluminescence. Angewandte Chemie International Edition 2014, 53 (38), 10109-10113.
    15. Ćirić, L.; Sienkiewicz, A.; Náfrádi, B.; Mionić, M.; Magrez, A.; Forró, L., Towards electron spin resonance of mechanically exfoliated graphene. physica status solidi (b) 2009, 246 (11-12), 2558-2561.
    16. Smerieri, M.; Celasco, E.; Carraro, G.; Lusuan, A.; Pal, J.; Bracco, G.; Rocca, M.; Savio, L.; Vattuone, L., Enhanced Chemical Reactivity of Pristine Graphene Interacting Strongly with a Substrate: Chemisorbed Carbon Monoxide on Graphene/Nickel(1 1 1). ChemCatChem 2015, 7 (15), 2328-2331.
    17. Dvoranová, D.; Barbieriková, Z.; Mazúr, M.; García-López, E. I.; Marcì, G.; Lušpai, K.; Brezová, V., EPR investigations of polymeric and H2O2-modified C3N4-based photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry 2019, 375, 100-113.
    18. Zhang, J.; Zhang, M.; Zhang, G.; Wang, X., Synthesis of Carbon Nitride Semiconductors in Sulfur Flux for Water Photoredox Catalysis. ACS Catalysis 2012, 2 (6), 940-948.
    19. Qin, Y.; Li, G.; Gao, Y.; Zhang, L.; Ok, Y. S.; An, T., Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. Water Research 2018, 137, 130-143.
    20. Huang, D.; Luo, H.; Zhang, C.; Zeng, G.; Lai, C.; Cheng, M.; Wang, R.; Deng, R.; Xue, W.; Gong, X.; Guo, X.; Li, T., Nonnegligible role of biomass types and its compositions on the formation of persistent free radicals in biochar: Insight into the influences on Fenton-like process. Chemical Engineering Journal 2019, 361, 353-363.
    21. Iijima, S., Helical microtubules of graphitic carbon. Nature 1991, 354 (6348), 56-58.
    22. Pham, C. V.; Krueger, M.; Eck, M.; Weber, S.; Erdem, E., Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment. Applied Physics Letters 2014, 104 (13), 132102.
    23. Wen, J.-R.; Mou, C.-Y., Morphology-controllable templated synthesis of three-dimensionally structured graphenic materials. Carbon 2017, 111, 476-485.
    24. Konggidinata, M. I.; Chao, B.; Lian, Q.; Subramaniam, R.; Zappi, M.; Gang, D. D., Equilibrium, kinetic and thermodynamic studies for adsorption of BTEX onto Ordered Mesoporous Carbon (OMC). Journal of Hazardous Materials 2017, 336, 249-259.
    25. Taylor, E. E.; Garman, K.; Stadie, N. P., Atomistic Structures of Zeolite-Templated Carbon. Chemistry of Materials 2020, 32 (7), 2742-2752.
    26. Lin, J.; Tian, W.; Guan, Z.; Zhang, H.; Duan, X.; Wang, H.; Sun, H.; Fang, Y.; Huang, Y.; Wang, S., Functional Carbon Nitride Materials in Photo-Fenton-Like Catalysis for Environmental Remediation. Advanced Functional Materials 2022, 32 (24), 2201743.
    27. 張云柔(2019)。中孔洞沸石奈米粒子之鋰修飾以及石墨化之合成、鑑定及
    應用(未出版碩士論文)。國立臺灣師範大學,臺北市.
    28. de Assis, L. K.; Damasceno, B. S.; Carvalho, M. N.; Oliveira, E. H. C.; Ghislandi, M. G., Adsorption capacity comparison between graphene oxide and graphene nanoplatelets for the removal of coloured textile dyes from wastewater. Environmental Technology 2020, 41 (18), 2360-2371.
    29. Ren, H.; Kulkarni, D. D.; Kodiyath, R.; Xu, W.; Choi, I.; Tsukruk, V. V., Competitive Adsorption of Dopamine and Rhodamine 6G on the Surface of Graphene Oxide. ACS Applied Materials & Interfaces 2014, 6 (4), 2459-2470.
    30. Zhu, J.; Wang, Y.; Liu, J.; Zhang, Y., Facile One-Pot Synthesis of Novel Spherical Zeolite–Reduced Graphene Oxide Composites for Cationic Dye Adsorption. Industrial & Engineering Chemistry Research 2014, 53 (35), 13711-13717.
    31. Huang, T.; Yan, M.; He, K.; Huang, Z.; Zeng, G.; Chen, A.; Peng, M.; Li, H.; Yuan, L.; Chen, G., Efficient removal of methylene blue from aqueous solutions using magnetic graphene oxide modified zeolite. Journal of Colloid and Interface Science 2019, 543, 43-51.
    32. Gao, F.; Cai, X.; Wang, X.; Gao, C.; Liu, S.; Gao, F.; Wang, Q., Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical 2013, 186, 380-387.
    33. Lakard, S.; Pavel, I.-A.; Lakard, B., Electrochemical Biosensing of Dopamine Neurotransmitter: A Review. Biosensors 2021, 11 (6), 179.
    34. Chang, H.-J.; Chen, T.-Y.; Zhao, Z.-P.; Dai, Z.-J.; Chen, Y.-L.; Mou, C.-Y.; Liu, Y.-H., Ordered Mesoporous Zeolite Thin Films with Perpendicular Reticular Nanochannels of Wafer Size Area. Chemistry of Materials 2018, 30 (22), 8303-8313.
    35. Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z., Chemical vapour deposition. Nature Reviews Methods Primers 2021, 1 (1), 5.
    36. 王心妤(2021)。石墨烯化中孔洞沸石粒子複合電漿材料於表面增強拉曼之
    應用(未出版碩士論文)。國立臺灣師範大學,臺北市.
    37. Zhang, K.; Lively, R. P.; Noel, J. D.; Dose, M. E.; McCool, B. A.; Chance, R. R.; Koros, W. J., Adsorption of Water and Ethanol in MFI-Type Zeolites. Langmuir 2012, 28 (23), 8664-8673.
    38. Yazdi, G. R.; Iakimov, T.; Yakimova, R., Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals 2016, 6 (5), 53.
    39. Hasan, M.; Meiou, W.; Yulian, L.; Ullah, S.; Ta, H. Q.; Zhao, L.; Mendes, R. G.; Malik, Z. P.; Ahmad, N. M.; Liu, Z.; Rümmeli, M. H., Direct chemical vapor deposition synthesis of large area single-layer brominated graphene. RSC Adv 2019, 9 (24), 13527-13532.
    40. Zhang, L.; Zhuang, H.; Jia, C.-L.; Jiang, X., Role of catalyst in controlling the growth and morphology of one-dimensional SiC nanostructures. CrystEngComm 2015, 17 (37), 7070-7078.
    41. Uslamin, E. A.; Saito, H.; Kosinov, N.; Pidko, E.; Sekine, Y.; Hensen, E. J. M., Aromatization of ethylene over zeolite-based catalysts. Catalysis Science & Technology 2020, 10 (9), 2774-2785.
    42. Lukyanov, D. B.; Gnep, N. S.; Guisnet, M. R., Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5. Industrial & Engineering Chemistry Research 1994, 33 (2), 223-234.
    43. Kosinov, N.; Hensen, E. J., Reactivity, Selectivity, and Stability of Zeolite‐Based Catalysts for Methane Dehydroaromatization. Advanced Materials 2020, 32 (44), 2002565.
    44. Yarulina, I.; Chowdhury, A. D.; Meirer, F.; Weckhuysen, B. M.; Gascon, J., Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis 2018, 1 (6), 398-411.
    45. Chen, K.; Horstmeier, S.; Nguyen, V. T.; Wang, B.; Crossley, S. P.; Pham, T.; Gan, Z.; Hung, I.; White, J. L., Structure and Catalytic Characterization of a Second Framework Al(IV) Site in Zeolite Catalysts Revealed by NMR at 35.2 T. Journal of the American Chemical Society 2020, 142 (16), 7514-7523.
    46. Chen, K.; Gan, Z.; Horstmeier, S.; White, J. L., Distribution of Aluminum Species in Zeolite Catalysts: 27Al NMR of Framework, Partially-Coordinated Framework, and Non-Framework Moieties. Journal of the American Chemical Society 2021, 143 (17), 6669-6680.
    47. Madeira, F. F.; Vezin, H.; Gnep, N. S.; Magnoux, P.; Maury, S.; Cadran, N., Radical Species Detection and Their Nature Evolution with Catalyst Deactivation in the Ethanol-to-Hydrocarbon Reaction over HZSM-5 Zeolite. ACS Catalysis 2011, 1 (4), 417-424.
    48. Moissette, A.; Hureau, M.; Vezin, H.; Lobo, R. F., Chapter 14 - Electron Transfers Under Confinement in Channel-Type Zeolites. In Chemistry of Silica and Zeolite-Based Materials, Douhal, A.; Anpo, M., Eds. Elsevier: 2019; Vol. 2, pp 249-271.
    49. García, H.; Roth, H. D., Generation and Reactions of Organic Radical Cations in Zeolites. Chemical Reviews 2002, 102 (11), 3947-4008.
    50. Augustyniak-Jabłokow, M. A.; Strzelczyk, R.; Fedaruk, R., Localization of conduction electrons in hydrothermally reduced graphene oxide: electron paramagnetic resonance studies. Carbon 2020, 168, 665-672.
    51. Gao, D.; Xu, Q.; Zhang, J.; Yang, Z.; Si, M.; Yan, Z.; Xue, D., Defect-related ferromagnetism in ultrathin metal-free g-C3N4 nanosheets. Nanoscale 2014, 6 (5), 2577-2581.
    52. Yang, G.; Wu, Y.; Ma, S.; Fu, Y.; Gao, D.; Zhang, Z.; Li, J., Defect-induced room temperature ferromagnetism in silicon carbide nanosheets. Superlattices and Microstructures 2018, 119, 19-24.
    53. Strzelczyk, R.; Augustyniak-Jabłokow, M. A.; Fedaruk, R.; Majchrzycki, Ł.; Zwolińska, J.; Kazakova, O., Edge ferromagnetism of graphene oxide. Journal of Magnetism and Magnetic Materials 2022, 544, 168686.
    54. Savchenko, D.; Vorliček, V.; Kalabukhova, E.; Sitnikov, A.; Vasin, A.; Kysil, D.; Sevostianov, S.; Tertykh, V.; Nazarov, A., Infrared, Raman and Magnetic Resonance Spectroscopic Study of SiO2:C Nanopowders. Nanoscale Research Letters 2017, 12 (1), 292.
    55. Rajput, N. S.; Al Zadjali, S.; Gutierrez, M.; Esawi, A. M. K.; Al Teneiji, M., Synthesis of holey graphene for advanced nanotechnological applications. RSC Advances 2021, 11 (44), 27381-27405.
    56. Huang, C.; Hu, C.-L.; Xu, X.; Yang, B.-P.; Mao, J.-G., Tl(VO)2O2(IO3)3: a new polar material with a strong SHG response. Dalton Transactions 2013, 42 (19), 7051-7058.
    57. Nandre, S.; Shitole, S.; Ahire, R., Thermal and optical studies of gel grown cobalt iodate crystal. Archives of Physics Research 2012, 3 (1), 70-77.
    58. de Levie, R., On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochimica Acta 1963, 8 (10), 751-780.
    59. Xiao, Y.; Azaiez, J.; Hill, J. M., Erroneous Application of Pseudo-Second-Order Adsorption Kinetics Model: Ignored Assumptions and Spurious Correlations. Industrial & Engineering Chemistry Research 2018, 57 (7), 2705-2709.
    60. Oliveira, W. L.; Ferreira, M. A.; Mourão, H. A. J. L.; Pires, M. J. M.; Ferreira, V.; Gorgulho, H. F.; Cipriano, D. F.; Freitas, J. C. C.; Mastelaro, V. R.; Nascimento, O. R.; Ferreira, D. E. C.; Ramos Fioravante, F.; Pereira, M. C.; de Mesquita, J. P., Heterogeneous Fenton-like surface properties of oxygenated graphitic carbon nitride. Journal of Colloid and Interface Science 2021, 587, 479-488.
    61. Liao, Q.; Wang, D.; Ke, C.; Zhang, Y.; Han, Q.; Zhang, Y.; Xi, K., Metal-free Fenton-like photocatalysts based on covalent organic frameworks. Applied Catalysis B: Environmental 2021, 298, 120548.
    62. 李宜蓁(2020)。中孔洞複合材料應用於電化學與拉曼感測器(未出版碩士
    論文)。國立臺灣師範大學,臺北市.

    下載圖示
    QR CODE