簡易檢索 / 詳目顯示

研究生: 佘晉宇
Chin-Yu She
論文名稱: 新一類的罰非線性互補問題函數
A new class of penalized NCP-functions
指導教授: 陳界山
Chen, Jein-Shan
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 18
中文關鍵詞: 非線性互補問題函數懲罰的有界的水準集誤差界
英文關鍵詞: NCP-function, penalized, bounded level sets, error bounds
論文種類: 學術論文
相關次數: 點閱:233下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇文章中,我們考慮一類罰非線性互補問題函數,它涵蓋了許多已經很有名的非線性互補問題函數。由這類非線性互補問題函數所得到的價值函數會有有界的水準集而且在一些條件下會有誤差界。

    In this paper, we consider a class of penalized NCP-functions, which includes several existing well-known NCP-functions as special cases. The merit function induced
    by the class of NCP-functions is shown to have bounded level sets and provide error bounds under mild conditions.

    目 次 1 Introduction……………………………………………1 2 Preliminary…………………………………………… 3 3 Properties of the New NCP-Function………… 4 4 Conclusions………………………………………… 16 5 References…………………………………………… 17

    [1] J.-S. Chen, H.-T. Gao and S. PAN, A R-linearly convergent derivative-free al-
    gorithm for the NCPs based on the generalized Fischer-Burmeister merit function,
    submit,2008.
    [2] R.W. Cottle, J.-S. Pang and R.-E. Stone, The Linear Complementarity Prob-
    lem, Academic Press, New York, 1992.
    [3] P. T. Harker and J.-S. Pang, Finite Dimensional Variational Inequality and
    Nonlinear Complementarity Problem: A Survey of Theory, Algorithms and Applica-
    tions, Mathematical Programming, vol. 48, pp. 161-220, 1990.
    [4] J.-S. Chen, The Semismooth-related Properties of a Merit Function and a Descent
    Method for the Nonlinear Complementarity Problem, Journal of Global Optimization,
    vol. 36, pp. 565-580, 2006.
    [5] J.-S. Chen and S. Pan, A Family of NCP-functions and a Descent Method for the
    Nonlinear Complementarity Problem, Computational Optimization and Applications,
    vol. 40, pp. 389-404, 2008.
    [6] Z.H. Huang, The global linear and lacal quadratic convergence of a non-interior
    continuation algorithm for the LCP. IMA J. Numer. Anal., vol. 25, pp. 670-684,
    2005.
    [7] Z.H. Huang and W.Z. Gu, A smoothing-type algorithm for solving linear comple-
    mentarity problems with strong convergence properties, Appl. Math. Optim., vol. 57,
    pp.17-29, 2008.
    [8] Z.H. Huang , L. Qi, and D. Sun, Sub-quadratic convergence of a smoothing
    Newton algorithm for the P0-and monotone LCP. Math. Program., vol. 99, pp.423-
    441, 2004.
    [9] H.Y. Jiang, M. Fukushima, L. Qi etal., A trust region method for solving gen-
    eralized complementarity problems. SIAM. J. Optim., vol. 8, pp.140-157, 1998.
    [10] C. Kanzow, N. Yamashita, and M. Fukushima, New NCP-functions and their
    properties. J. Optim. Theory Appl., vol. 94, pp.115-135, 1997.
    [11] J.S. Pang, Complementarity problems. In: Horst, R., Pardalos, P. (eds) Handbook
    of Global Optimization. Kluwer Academic Publishers. Boston. Massachusetts. pp.
    271-338, 1994.
    [12] N. Yamashita and M. Fukushima, On stationary points of the implict La-
    grangian for nonlinear complementarity problems. J. Optim. Theory Appl., vol. 84,
    pp.653-663, 1995.
    [13] N. Yamashita and M. Fukushima, Modi ed Newton methods for solving a semis-
    mooth reformulation of monotone complementarity problems. Math. Program., vol.76,
    pp.469-491, 1997.
    [14] S.-L. Hu, Z.-H. Huang and J.-S Chen, Properties of a family of generalized
    NCP-functions and a derevative free algotithm for complementarity problems. Journal
    of Computational and Applied Mathematics, vol. 230, pp. 69-82, 2009.
    [15] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and
    Complementarity Problems. Springer Verlag, New York, 2003.
    [16] O. L. Mangasarian, Equivalence of the Complementarity Problem to a System
    of Nonlinear Equations, SIAM Journal on Applied Mathematics, vol. 31, pp. 89-92,
    1976.
    [17] J.-S. Pang, Newton's Method for B-di erentiable Equations, Mathematics of Op-
    erations Research, vol. 15, pp. 311-341, 1990.
    [18] S. Dafermos, An Iterative Scheme for Variational Inequalities, Mathematical Pro-
    gramming, vol. 26, pp.40-47, 1983.
    [19] F. Facchinei and J. Soares, A New Merit Function for Nonlinear Complemen-
    tarity Problems and a Related Algorithm, SIAM Journal on Optimization, vol. 7, pp.
    225-247, 1997.
    [20] A. Fischer, A Special Newton-type Optimization Methods, Optimization, vol. 24,
    pp. 269-284, 1992.
    [21] C. Geiger and C. Kanzow, On the Resolution of Monotone Complementarity
    Problems, Computational Optimization and Applications, vol. 5, pp. 155-173, 1996.
    [22] H. Jiang, Unconstrained Minimization Approaches to Nonlinear Complementarity
    Problems, Journal of Global Optimization, vol. 9, pp. 169-181, 1996.
    [23] C. Kanzow, Nonlinear Complementarity as Unconstrained Optimization, Journal
    of Optimization Theory and Applications, vol. 88, pp. 139-155, 1996.
    [24] J.-S. Pang and D. Chan, Iterative Methods for Variational and Complemantarity
    Problems, Mathematical Programming, vol. 27, pp. 284-313, 1982.
    [25] B. Chen, X. Chen, and C. Kanzow, A Penalized Fischer-Burmeister NCP-
    function: Theoretical Investigation and Numerical Results, Applied Mathematics Re-
    port 97/28, School of Mathematics, the University of New South Wales, Sydney 2052,
    Australia, September 1997.

    下載圖示
    QR CODE