簡易檢索 / 詳目顯示

研究生: 蔡侑東
論文名稱: 氧化鎢-氧化鎳固態互補式電致色變元件之製作與特性分析
Fabrication and analysis of solid-state tungsten trioxide-nickle oxide complementary electrochromic devices
指導教授: 程金保
Cheng, Chin-Pao
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 81
中文關鍵詞: 電致色變元件濺鍍法氧化鎳薄膜氧化鎢薄膜有機固態電解質
英文關鍵詞: electrochromic devices, sputtering, nickel oxide thin film, tungsten oxide thin film, solid-state organic electrolyte
論文種類: 學術論文
相關次數: 點閱:150下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電致色變技術運用層面廣泛,除建築節能用玻璃外,更延伸發展出車用玻璃、航太玻璃及各類數位顯示器的使用,具有高度之穿透率使用者控制性、記憶效應、反應速度快、能源節約及穿透率變化之有效光譜範圍廣(可見光區-近紅外光區)等應用上的優點。
    本研究以濺鍍法(Sputtering)在ITO玻璃基板上沉積氧化鎢及氧化鎳薄膜,以過氯酸鋰(LiClO4)粉末加上碳酸丙烯(propylene carbonate)溶劑,以及聚甲基丙烯酸甲酯(Polymethyl Methacrylate)粉末調製成固態電解質封裝成互補式元件,並比較其與非互補式元件之差異;另外為提升元件之性能,在固態電解質中摻雜檸檬酸,比較使用兩種電解質之元件在穿透率、反射率、吸收率、循環伏安特性以及響應時間等性能上之差異。
    實驗結果顯示元件在通以不同之工作電壓後,即有不同之著色狀態,光學性質也隨之變化。電解質在工作電壓±3.5 V時開始產生燒灼狀,顏色變化不再明顯,甚至失去元件變色的能力。互補式元件雖然變色時外觀與非互補式元件差異不大,但在穿透率的表現上卻明顯優於非互補式元件(驅動電壓3V時,在550nm之著去色差ΔT各為43.05%及70.1%)。元件在紫外光-可見光波段主要是以吸收的形式減少室外太陽光源直射室內;在近紅外光部分則是主要以反射的方式阻隔近紅外線攜帶的熱源進入室內。此外,在電解質中掺雜檸檬酸可提供更多參與反應之電荷,除了可增加電荷密度以及電荷在薄膜中之擴散率,提升反應速率外,還能增加氧化鎢薄膜對於各波段之吸收常數,增加對光和熱的阻隔作用。

    目 錄 中文摘要…………………...……………………………….………………….I 英文摘要…………………...…………………………………………….…….II 致謝…………………...………………………………………………...…….IV 目錄…………………...………………………………………………...……..V 表目錄…………………...…………………………………………………...VII 圖目錄…………………...………………………………………………….VIII 第一章 前言…………………………………………….……………………..1 1-1 序論………………………………………………….……………...…..1 1-2 研究動機與目的………………………………………………………..8 第二章 文獻回顧…………………………………………….……………....10 2-1 電致色變元件之材料…..………………………….…………….……10 2-2 互補式電致色變元件…………………………….……………...……12 2-3 固態電解質簡介……………………………….……………………...18 2-4互補式電致色變元件在可見光-近紅外光波段之發展.......................22 第三章 實驗方法與步驟……………………………….……………………28 3-1 實驗材料…..…………………………………………………………..29 3-2 基材前處理……..……………………...……………………………...29 3-3 氧化鎳之製備…………………………………………………………29 3-4 氧化鎢之製備…………………………………………………………34 3-5電解質之調製………………………….………………………………37 3-6 元件之封裝……………………………………………………………39 3-7 紫外光–可見光–紅外光光譜分析....................................................39 3-8 循環伏安分析…………………………………………………………42 3-9 着/去響應時間分析..............................................................................42 第四章 結果與討論…………………...……………………….…………….44 4-1 AFM觀測薄膜表面及膜厚…………………...……………………….44 4-2互補式元件與非互補式元件之特性比較...……….……….………….46 4-2-1元件外觀變化……………………...…..……….………………….46 4-2-2穿透率變化分析………….…………...…………………..……….50 4-3使用不同電解質之特性比較…………………...……..……………….55 4-3-1 元件外觀變化………….………..……………...……..………….55 4-3-2 穿透率變化分析…………..……...…………………..…….…….58 4-3-3 反射率及吸收率變化分析.............................................................64 4-3-4 循環伏安分析.................................................................................67 4-3-5 響應時間分析…………………………………………………….69 第五章 結論與展望…………………...………………………….………….74 參考文獻……………………………………………………………………...76 表目錄 表 1-1 三種變色機制之比較…………..……………………………………..4 表 2-1 常見過渡金屬(氫)氧化物的變色方式及性質……....……..……....11 表 2-2 電解質之分類………………………………………………………..17 表 2-3 用於電致色變元件之有機固態電解質…….......…………………...20 表 2-4 用於電致色變元件之無機固態電解質…...…………..………..…...21 表 2-5電致色變元件在可見光-近紅外光之穿透率…...…………...………26 表 2-6電致色變玻璃之性能標準………..….……...…………………….…27 表 3-1 氧化鎳薄膜製程參數…………...…………………………………...33 表 3-2 三氧化鎢薄膜製程參數………….………………………………….36 表 3-3 電解質調製參數(一號試劑)..............................................................38 表 3-4 電解質調製參數(二號試劑)..............................................................38 表 3-5太陽輻射總能量比例...........................................................................41 表 4-1互補式元件與非互補式元件之ΔT及ΔOD...………………………..54 表 4-2 兩種元件在不同電壓下之ΔT及ΔOD………..…………………….62 表 4-3 三種元件之穿透率差異…………………………..……………..…….63 表 4-4 元件之響應時間..……………………………………………..……..73 圖目錄 圖 1-1 用於一般建築物之變色窗………...…...…...……………...…………3 圖 1-2 電致色變技術用於汽車工業(a)前置後照鏡;(b)兩側後照鏡….…6 圖 1-3 BAYER公司設計之簡易電致色變圖像顯示器…..………………….6 圖 1-4設計有人像之電致色變圖像顯示器………………………………….7 圖 2-1 非互補式電致色變結構示意圖……...………...……………………15 圖 2-2 互補式電致色變元件結構示意圖……...…………………………...15 圖 2-3 電致色變元件去色態示意圖……...………………………………...16 圖 2-4 電致色變元件著色態示意圖……...………………………………...16 圖 2-5 電磁波光譜示意圖…………...……………………………………...25 圖 3-1 研究流程圖……………………...…………………………………...28 圖 3-2 Surftech STS400磁控濺鍍機台……………………………………...31 圖 3-3 Surftech STS400磁控濺鍍系統配置圖……...……….……………...31 圖 3-4 磁控濺鍍之電源供應器及脈衝產生器…………………...………...32 圖 3-5 Psur-100HB磁控濺鍍機……………………….……………………..35 圖 3-6 塗佈電解質使用之旋轉塗佈機……...……….……………………..40 圖 3-7 電致色變元件結構示意圖…...……………………………………...40 圖 3-8 Perkin-Elmer Lambda_900分光光譜儀……….……………………..41 圖 3-9 EG&G 263A恆電位儀……………...……………………………..…43 圖 4-1 (a) 氧化鎢薄膜;(b) 氧化鎳薄膜之表面形貌…...………………….45 圖 4-2單獨使用氧化鎳元件在(a)初鍍;(b)1.5 V;(c)2 V;(d)2.5 V; (e)3V;之著色態外觀 ……......…………………….………………...47 圖 4-3 單獨使用氧化鎢元件在(a)初鍍;(b)1.5 V;(c)2 V;(d)2.5 V; (e)3 V;之著色態外觀…………….…………...…………….………48 圖 4-4 使用氧化鎢-氧化鎳互補式元件在(a)初鍍;(b)1.5 V;(c)2 V; (d)2.5 V;(e)3 V之著色態外觀……………………………...…..……49 圖 4-5 三種試片在不同驅動電壓下之紫外光-可見光-近紅外光穿透 光譜(a)初鍍;(b) 1.5 V;(c) 2 V;(d) 2.5 V;(e) 3 V…………….….….53 圖 4-6互補式與非互補式元件之ΔOD(C type-互補式;N-C type- 非互補式)……………………..………………………………………54 圖 4-7 使用一號電解質試片在(a1)初鍍;(a2) 1.5 V;(a3) 2 V; (a4) 2.5 V;(a5) 3 V;(a6) 3.5 V,使用二號電解質試片 在(b1)初鍍;(b2) 1.5 V;(b3) 2 V;(b4) 2.5 V;(b5) 3 V; (b6) 3.5 V之著色態外觀………......…….…………………….....…57 圖 4-8 使用不同電解質封裝元件在不同驅動電壓下之紫外光- 可見光-近紅外光穿透光譜(a)初鍍;(b) 1.5 V;(c) 2 V; (d) 2.5 V;(e) 3 V………..………………..………….……………….61 圖 4-9 兩種元件之ΔOD……...…..………..………………………………..62 圖 4-10 使用不同電解質封裝元件在不同驅動電壓下之紫外光- 可見光-近紅外光反射光譜(a)使用一號電解質;(b) 使用 二號電解質………..……………………………………………….65 圖 4-11 使用不同電解質封裝元件在不同驅動電壓下之紫外光- 可見光-近紅外光吸收光譜(a)使用一號電解質;(b) 使用 二號電解質………….…………..…………………………………66 圖 4-12 使用不同電解質元件之循環伏安圖 (a)一號電解質;(b)二號 電解質………..……………………………………….……………68 圖 4-13 使用一號電解質元件之響應時間…………...……..…………...…71 圖 4-14 使用二號電解質元件之響應時間………...…….…………………72 圖 4-15 兩種元件著/去色響應時間曲線圖…...…………….……………..73

    參考文獻
    1. 涂逢祥,節能窗技術,中國建築工藝出版社,(2003) 頁1-2.
    2. http://www.glasswebsite.com/divisions/flatglass/profiles/pilkington.asp
    3. http://www.glassonweb.com/glassmanual/topics/index/electrochromic.htm
    4. E.S. Lee, D.L. DiBartolomeo, S.E. Selkowitz, Daylighting control performance of a thin-film ceramic electrochromic window: Field study results, Energy and Buildings, Volume 38, Issue 1, (2006), pp. 30-44
    5. E.S. Lee, D.L. DiBartolomeo, Application issues for large-area electrochromic windows in commercial buildings, Solar energy materials and solar cells, (2002), pp. 16.
    6. 何國川,電化學與無窗時代,化工,第37卷第3期,頁32-42.
    7. http://www7.big.or.jp/~cgi19786/ngf/nglass/ng13.html
    8. http://www.yet2.com/app/insight/techofweek/27692?sid=200
    9. M. Moller, S. Asaftei, D. Corr, M. Ryan, L. Walder, Switchable Electrochromic Images Based on a Combined Top-Down Bottom-Up Approach, Advanced Materials, 16(17) (2004), pp. 1558-1562.
    10. Y. Wang, X. Cheng, Z. Lin, C. Zhang, F. Zhang, Optimization of PECVD silicon oxynitride films for anti-reflection coating, Vacuum, 72 (2004), pp. 345~349.
    11. G.G. Belmonte, V.S. Vikhrenko, J.G. Cañadas, J. Bisquert, Interpretation of variations of jump diffusion coefficient of lithium intercalated into amorphous WO3 electrochromic films, Solid State Ionics, Volume 170, Issues 1-2 (2004), pp. 123-127.
    12. K.H. Heckner, A. Kraft, Similarities between electrochromic windows and thin film batteries, Solid State Ionics, Volume 152-153 (2002), pp. 899-905.
    13. M. Vasilopoulou, I. Raptis, P. Argitis, I. Aspiotis, D. Davazoglou, Polymeric electrolytes for WO3-based all solid-state electrochromic displays, Microelectronic Engineering, 83 (2006), pp. 1414–1417.
    14. E. Washizu, A. Yamamoto, Y. Abe, M. Kawamura, K. Sasaki, Optical and
    electrochromic properties of RF reactively sputtered WO3 films, Solid
    State Ionics, 165 (2003), pp. 175– 180.
    15. E. Washizu, A. Yamamoto, Y. Abe, M. Kawamura, K. Sasaki, Optical and electrochromic properties of RF reactively sputtered WO3 films, Solid State Ionics, 165 (2003), pp. 175– 180.
    16. S. Yueyan, Z. Zhiyang, Y. Xiaoji, Electrochromic properties of NiOxHy thin films, Solar Energy Materials & Solar Cells, 71 (2002), pp. 51–59.
    17. 謝育忠,電漿濺鍍電致色變氧化鎳薄膜特性研究與節能評估,中原大學化學工程系碩士論文,民國九十一年。
    18. C.G. Granqnist, A. Hjelm, Recent advances in electrochromics for smart windows applications, Solar Energy, 63 (2002), pp. 199-216.
    19. 林巧芬,以紫晶搭配普魯士藍電致色變元件之研究,國立台灣大學化學工程研究所碩士學位論文,民國九十二年。
    20. http://home.howstuffworks.com/smart-window4.htm
    21. C. Bechinger, M.S. Burdis, J.G. Zhang, Comparison between electrochromic and photochromic coloration efficiency of tungsten oxide thin films, Solid State Communications, Volume 101, Issue 10, (1997), pp. 753-756.
    22. J.G. Zhang, D.K. Benson, C.E. Tracy, S.K. Deb, A.W. Czanderna, Accelerated durability testing of electrochromic windows, Electrochimica Acta, Volume 44, Issue 18, (1999), pp. 3195-3202.
    23. A. W. Czanderna, D. K. Benson, G. J. Jorgensen, J. -G. Zhang, C. E. Tracy and S. K. Deb, Durability issues and service lifetime prediction of electrochromic windows for buildings applications, Solar Energy Materials and Solar Cells, Volume 56, Issues 3-4, (1999), pp. 419-436.
    24. Donnadieu, Material science and engineering, B3 (1989), pp. 185-195.
    25. T. Yoshino, N. Baba, H. Masuda, K. Arai, The Electrochemical Society Softbound Proceedings Series, Pennington, M. K. Carpenter and D. A. Corrigan, Editors, NJ, PV 90-2 (1990), pp. 89-98.
    26. R. Lechner, L.K. Thomas, All solid state electrochromic devices on glass and polymeric foils, Solar Energy Materials and Solar Cells, 54 (1998), pp. 139-146.
    27. P.M.S. Monk, R.J. Mortimer and D.R. Rosseinsky, Electrochromism :
    Fundaments and Applications, VCH, Weinheim, (1995), pp. 45-46.
    28. 李淑端,有機固態電解質電致色變元件之製作,逢甲大學材料與製造工
    程研究所碩士論文,民國九十二年。
    29. 張嘉峰,薄膜鋰離子電池固態電解質的製程研究,國立清華大學碩士論文,民國九十四年。
    30. 楊慧敏,氧化鎢與氧化釩單層膜與多層膜之製備與特性分析及其電致色變性質,國立東華大學材料科學與工程研究所碩士論文,民國九十一年。
    31. http://www.topbulb.com/find/images/spectrum.gif
    32. 涂馮祥,建築節能,中國建築工業出版社,(2002),頁80.
    33. G. Macrelli, E. Poli, H. Demiryont, R. Gotzelmann, Optical measurements and modeling of an all solid state inorganic thin film electrochromic system, Journal of non-crystalline solids, 218 (1997), pp. 296-301.
    34. A. Pennisia, F. Simoneb, G. Barlettac, G. Di Marcod, M. Lanzad,
    Preliminary test of a large electrochromic window, Electrochimica Acta,
    44 (1999), pp. 3237-3243.
    36. C. Marcel, J.M. Tarascon, An all-plastic WO-H2O/polyaniline electrochromic device, Solid State Ionics, 143 (2001), pp. 89–101.
    37. K.H. Heckner, A. Kraft, Similarities between electrochromic windows and thin film batteries, Solid State Ionics, Volume 152-153 (2002), pp. 899-905.
    38. A. Kraft, M.Rottmann, K.H. Heckner, Large-area electrochromic glazing
    with ion-conducting PVB interlayer and two complementary
    electrodeposited electrochromic layers, Solar Energy Materials & Solar
    Cells, 90 (2006), pp. 469–476.
    39. A. Daneo, G. Macrelli, P. Polato, E. Poli, Photometric characterization of
    an all solid state inorganic electrochromic large area device, Solar Energy
    Materials & Solar Cells, 56 (1999), pp. 237-248.
    40. A. L. Larsson, G. A. Niklasson, Optical properties of electrochromic
    all-solid-state devices, Solar Energy Materials & Solar Cells, 84 (2004),
    pp. 351–360.
    41. A.A. Kahlout, A. Pawlicka, M. Aegerter, Brown coloring electrochromic
    devices based on NiO–TiO2 layers, Solar Energy Materials & Solar Cells,
    90 (2006), pp. 3583–3601.
    42. S.A. Agnihotry, Nidhi, Pradeep, S.S. Sekhon, Li+ conducting gel electrolyte
    for electrochromic windows, Solid State Ionics, 136–137 (2000),
    pp. 573-576.
    43. R. Sivakumar , C.S. Gopinath, M. Jayachandran, C. Sanjeeviraja, An
    electrochromic device (ECD) cell characterization on electron beam
    evaporated MoO3 films by intercalating/deintercalating the H+ ions,
    Current Applied Physics, 7 (2007), pp. 76–86.
    44. 鄭耀宗,變色窗技術發展與節能效益,化工技術,第八卷,第六期,民
    國八十九年。
    45. 許智淵,奈米二氧化矽粒子/環氧化合物之反應及其應用研究,私立中
    原大學化學工程學系碩士學位論文,民國九十三年。
    46. P.W. Atkins, Physical Chemistry, 5th edn., Oxford University Press,
    Oxford, (1994), pp.545.
    47. L. Gupta, A. Mansingh, P.K. Srivastava, Band gap narrowing and the band
    structure of tin-doped indium oxide films, Thin solid films, vol. 176,
    (1989), pp. 33-44.
    48. H. Suiyang, C. Fengbo, Z. Jicai, S. Radhakrishna, "Proceedings of the
    International Seminar, Solid State Ionic Devices, (1988), pp.521.
    49. C.G. Granqvist, Handbook of inorganic electrochromic materials,
    Elsevier, Amsterdam, The Netherlands, (1995).
    50. P.V. Ashrit, K. Benaissa, G. Bader, F.E. Girouard, V.V. Truong, Lithiation
    studies on some transition metal oxides for an all-solid thin film
    electrochromic system, Solid state ionics, 59 (1993), pp. 47-57.
    51. A. Azens, E. Avenda˜no, J. Backholm, L. Berggren, G. Gustavsson, R.
    Karmhag, G.A. Niklasson, A. Roos, C.G. Granqvist, Flexible foils with
    electrochromic coatings:science, technology and applications, Materials
    Science and Engineering, B 119 (2005), pp. 214–223.
    52. G.A. Niklasson, L. Berggren, A.L. Larsson, Solar energy matters, Solar
    Energy Materials & Solar Cells, 84 (2004), pp. 315-328.
    53. P. Baudry, A. Marquet, Applications of solid state electrolyte generators
    for electric utilities, Electrochimica Acta, Volume 37, Issue 9, (1992), pp.
    1627-1629.
    54. R. S. Crandall, P. J. Wojtowicz, B. W. Faughnan, Theory and measurement
    of the change in chemical potential of hydrogen in amorphous HxWO3 as
    a function of the stoichiometric parameter x, Solid State
    Communications, Volume 18, Issues 11-12, (1976), pp. 1409-1411.
    55. F. Decker, S. Passerini, R. Pileggi, B. Scrosati, The electrochromic process
    in non-stoichiometric nickel oxide thin film electrodes, Electrochimica
    Acta, Volume 37, Issue 6, (1992), pp. 1033-1038.

    QR CODE