簡易檢索 / 詳目顯示

研究生: 陳家瑜
Chen, Chia-Yu
論文名稱: 服飾搭配社群圖像訊息呈現對資訊串聯影響之研究
The effects of different collocated images of virtual fashion communities on information cascades
指導教授: 楊美雪
Yang, Mei-Hsueh
學位類別: 碩士
Master
系所名稱: 圖文傳播學系
Department of Graphic Arts and Communications
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 72
中文關鍵詞: 服飾搭配社群圖像訊息資訊串聯
英文關鍵詞: virtual fashion communities, collocated images, information cascades
DOI URL: http://doi.org/10.6345/NTNU201901053
論文種類: 學術論文
相關次數: 點閱:231下載:34
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著虛擬社群的主題日新月異,以服飾搭配為主題的興起,藉由虛擬社群的機制,時尚潮流消費者能夠抓住當下流行趨勢,掌握最新的服飾搭配技巧,並分享自己的服裝風格。服飾搭配社群的內容主要是視覺上的,其中以圖像為主的訊息更容易受到關注。本研究旨在探討服飾搭配社群中的圖像呈現對資訊串聯之影響,以準實驗法進行,為2(人像:有人像、無人像)× 3(搭配:無搭配、搭配絲巾、搭配絲巾與帽子)雙因子組間設計,共六組實驗組合,依變項為資訊串聯,共90位研究對象。研究結果顯示,人像對資訊串聯具顯著影響;搭配對資訊串聯無顯著影響;人像、搭配兩個變項的交互作用對對資訊串聯並無顯著影響。

    With the rise of virtual communities, consumers can readily catch current trends, the latest coordination of outfits, and also share their own dressing styles. The content within these virtual fashion communities is mainly visual. Compared with other virtual communities, the image information presented, especially for collocated images, mainly focuses on the matching of outfits. With user-generated content, these images can induce popular trends of outfit accessorizing. Furthermore, frequent participation and message spreading influences the recipients of other messages. Through the influence of these messages, consumers often form their own behaviors or attitudes, which strongly influence the purchasing behavior of other customers. This study adopts the quasi-experimental method, which is a 2 (Portrait: with model, without model) x2 (Outfit: without matching, with scarf, with scarf and hat) experimental design, with a total of six experimental groups, according to the variable information cascades. The results of the study showed that: 1) portrait has significant effect on information cascades; 2) outfit has no significant effect on information cascades; and 3) portrait and outfit have no interactive effect on information cascades.

    中文摘要 I Abstract II 目次 III 圖次 V 表次 VI 第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 6 第三節 名詞釋義 7 第四節 研究範圍與限制 8 第五節 研究流程 9 第貳章 文獻探討 10 第一節 服飾搭配社群的內涵與影響 11 第二節 服飾搭配社群的圖像訊息呈現 16 第三節 資訊串聯的內涵與應用 21 第四節 文獻探討小結 27 第參章 研究設計 28 第一節 研究架構 28 第二節 研究方法 29 第三節 研究對象 31 第四節 研究工具 32 第五節 研究實施 38 第六節 資料分析 40 第肆章 研究結果與討論 41 第一節 信度分析及敘述性統計 41 第二節 不同人像的呈現對資訊串聯影響 44 第三節 搭配配件的多寡對資訊串聯影響 46 第四節 不同人像訊息呈現與搭配配件多寡組合對資訊串聯交互影響 48 第伍章 研究結論與建議 51 第一節 研究結論 51 第二節 研究建議 53 參考文獻 55 一、中文文獻 55 二、英文文獻 56 附錄一 預試問卷 66 附錄二 預試實驗情境 67 附錄三 正式實驗問卷 69 附錄四 正式實驗情境 70

    一、中文文獻
    Chen C.(2011)。如何抓住「潮人商機」,時尚購物社交化【網站文字資料】。取自https://www.inside.com.tw/2011/08/10/social-fashion
    吳明隆、涂金堂(2012)。SPSS與統計應用分析。臺北市:五南。
    周芳宜(2009)。以產品類型看市場行家的線上資訊搜尋動機與行為(未出版之碩士論文)。國立交通大學,新竹市。
    東方線上(2015)。2016年度趨勢「O形消費」研究發表【網站文字資料】。取自http://www.bnext.com.tw/article/38253/BN-2015-12-18-094414-178
    林士淵(2015)。淺談台灣近兩年服飾搭配社群網站【網站文字資料】。取自https://www.inside.com.tw/2013/10/20/taiwan-style-sites
    林郁翔、江浩平(2014)。為什麼人們要社群購物?整合動機、沈浸與顧客價值理論之實證研究。資訊電子學刊,6(2),53-63。
    張少樑、陳益壯、江啟正(2010)。台灣散戶投資者資訊串流行為之分析。朝陽商管評論,9(2),89-107。
    曾素秋、陳益壯、陳慶堂(2014)。美妝流行資訊網站訊息串聯的廣告效果。「第十五屆管理學域國際學術研討會發表之論文」,台中市。
    資策會(2015)。2015下半年討論區於購物影響力分析【網站文字資料】。取自https://mic.iii.org.tw/IndustryObservations_PressRelease02.aspx?sqno=411
    韓豐年、朱育陞、林玫君、吳紫寧、陳宗彥、蔡孟勳、劉逸葳(2010)。服飾類網路商品影像傳播策略影響消費者行為之研究。圖文傳播藝術學報,98-101。
    羅以琳(2012)。整合社交購物體驗,Fab.com再出發【網站文字資料】。取自https://www.bnext.com.tw/article/23255/BN-ARTICLE-23255
    蘇柏全、池文海、符定國(2015)。社群網站口碑參與行為:發佈資訊、取得資訊、以及轉載資訊。行銷評論,12(1),49-97。

    二、英文文獻
    Abedniya, A. & Mahmouei, S. S. (2010). The impact of social networking websites to facilitate the effectiveness of viral marketing. International Journal of Advanced Computer Science and Applications, 1(6), 139-146.
    Abidin, C. (2016). Visibility labour: engaging with Influencers’ fashion brands and #OOTD advertorial campaigns on Instagram. Media International Australia, 161(1), 1-15.
    Arora, S., Madvariya, A., Alok, D., & Borar, S. (2017). Deciphering fashion sensibility using community detection. Proceedings of the KDDW on ML meets fashion, 1-6.
    Bakhshi, S., Shamma, D. A., & Gilbert, E. (2014). Faces engage us: photos with faces attract more likes and comments on Instagram. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 965-974.
    Barry, B. & Phillips, B. J. (2015). The fashion engagement grid: understanding men's responses to fashion advertising. International Journal of Advertising, 35(3), 438-464.
    Berger, C. M., Eiss, A. (2002). Principles of urban wayfinding system. Institute of Transportation Engineers, 72(4), 30-34.
    Bikhchandani, S., Hirshleifer, D., & Welch, I. (1992). A theory of fads, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5), 992-1026.
    Bikhchandani, S., Hirshleifer, D., & Welch, I. (2008). The new palgrave dictionary of economics. UK: Palgrave Macmillan.
    Cheng, J., Adamic, L. A., Dow, A. P., Kleinberg, J., & Leskovec, J. (2014). Can cascades be predicted? Proceedings of the 23rd international conference on World Wide Web, 925-936.
    Chittenden, T. (2010). Digital dressing up: modelling female teen identity in the discursive spaces of the fashion blogosphere. Journal of Youth Studies, 13(4), 505-520.
    Cho, S. & Workman, J. E. (2015). College students’ frequency of use of information sources by fashion leadership and style of information processing. Fashion and Textiles, 2(1), 25.
    Choi, A. & Au, R. (2016). The value of photography: a new genre on social media. Proceedings of the 3rd European Conference on Social Media, 457-464.
    Choi, T. M. & Shen, B. (2016). Luxury fashion retail management. Germany: Springer.
    Cronbach, L. J. (1951). Coefficient alpha and the international structure of tests. Psychometrika, 16(3), 297-334.
    Dholakia, U. M. (2011). How businesses fare with daily deals: a multi-site analysis of groupon, livingsocial, opentable, travelzoo, and buywithme promotions. SSRN Electronic Journal, 1-35.
    Duan, W., Gu, B., & Whinston, A. B. (2009). Informational cascades and software adoption on the internet: an empirical investigation. MIS Quarterly, 33(1), 23-48.
    Duffy, B. E. & Hund, E. (2015). “Having it all” on social media: entrepreneurial femininity and self-branding among fashion bloggers. Social Media + Society, 1(11), 1-10.
    Easley, D. & Kleinberg, J. (2010). Networks, crowds, and markets: reasoning about a highly connected world. UK: Cambridge University Press.
    Eisenman, M. (2013). Understanding aesthetic innovation in the context of technological evolution. Academy of Management Review, 38(3), 332-351.
    Ekman, P. & Friesen, W. V. (1969). The repertoire or nonverbal behavior: categories, origins, usage and coding. Semiotica, 1, 49-98.
    Elsharkawy, S., Hassan, G., Nabhan, T., & Roushdy, M. (2016). Towards feature selection for cascade growth prediction on twitter. Proceedings of the 10th International Conference on Informatics and Systems, 166-172.
    Ericsson International. (2015). TV and media 2016 [Report]. Retrieved from https://www.ericsson.com/res/docs/2016/consumerlab/tv-and-media-2016.pdf
    Fleming, M. L. & Levie, W. H. (1993). Instructional message design: principles from the behavioral and cognitive sciences. New Jersey, NJ: Educational Technology Pubns.
    Gay, L. R., Mills, G. E., & Airasian, P. W. (2012). Educational research: competencies for analysis and applications plus MyEducationLab with Pearson eText (10th Ed). England: Pearson.
    Goldsmith, R. E. & Clark, R. A. (2008). An analysis of factors affecting fashion opinion leadership and fashion opinion seeking. Journal of Fashion Marketing and Management: An International Journal, 12(3), 308-322.
    Ha, Y., Kwon, S., Cha, M., & Joo, J. (2017). Fashion conversation data on Instagram. Proceedings of the 11th International AAAI Conference on Web and Soacial Media, 418-427.
    Hajli, N. (2015). Social commerce constructs and consumer's intention to buy. International Journal of Information Management, 35(2), 183-191.
    Halvorsen, K., Hoffmann, J., Coste-Manière, I., & Stankeviciute, R. (2013). Can fashion blogs function as a marketing tool to influence consumer behavior? evidence from Norway. Journal of Global Fashion Marketing, 4(3), 211-224.
    Holman, R. H. (1981). Apparel as communication. Association for Consumer Research, 7-15.
    Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J. M., Mattern, F., Mitchell, J. C., Naor, M., Nierstrasz, O., Rangan, C. P., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M. Y., & Weikum, G. (2013). Apparel classification with style. Computer Vision – ACCV 2012 (Lecture Notes in Computer Science), 7727, 321-335.
    Jagadeesh, V., Piramuthu, R., Bhardwaj, A., Di, W., & Sundaresan, N. (2014). Large scale visual recommendations from street fashion images. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 1925-1934.
    Joo, J., Li, W., Steen, F. F., & Zhu, S. C. (2014). Visual persuasion: inferring communicative intents of images. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, 216-223.
    Kim, A. J. & Ko, E. (2010). Impacts of luxury fashion brand’s social media marketing on customer relationship and purchase intention. Journal of Global Fashion Marketing, 1(3), 164-171
    Kim, J. & Forsythe, S. (2008). Adoption of virtual try-on technology for online apparel shopping. Journal of Interactive Marketing, 22(2), 45-59.
    Kim, J., Fioreb, A. M., & Lee, H. Y. (2007). Influences of online store perception, shopping enjoyment, and shopping involvement on consumer patronage behavior towards an online retailer. Journal of Retailing and Consumer Services, 14, 95-107.
    Koa, E., Chun, E., Song, S., & Kim, K. H. (2013). Which content types increase participation in fashion social platforms? Journal of Global Scholars of Marketing Science, 23(3), 297-313.
    Kulmala, M., Mesiranta, N., & Pekka, T. (2012). Organic and amplified eWOM in consumer fashion blogs. Journal of Fashion Marketing and Management, 17(1), 20-37.
    Lee, S. H. & Workman, J. E. (2013). Gossip, self-monitoring, and fashion consumer groups. Clothing and Textiles Research Journal, 31(2), 67-80.
    Leskovec, J. (2011). Social media analytics: tracking, modeling and predicting the flow of information through networks. Proceedings of the 20th International Conference on World Wide Web, 277-278.
    Lewinski, P., Fransen, M. L., & Tan, E. S. H. (2014). Predicting advertising effectiveness by facial expressions in response to amusing persuasive stimuli. Journal of Neuroscience Psychology and Economics, 7(1), 1-14.
    Li, X. & Wu, L. (2014). Herding and social media word-of-mouth: evidence from groupon. Proceedings of the 46th Hawaii International Conference on System Sciences, 1-35.
    Li, Y., Cao, L., Zhu, J., & Luo, J. (2017). Mining fashion outfit composition using an end-to-end deep learning approach on set data. IEEE Transactions on Multimedia, 19(8), 1946-1955.
    Liang, C. T. & Chou, Y. C. (2014). The Influence of virtual experience and purchase situation on consumer behavior in online shopping: a product category issue. Research of Information and Communication, 5(1), 89-102.
    Lin, Y., Xu, H., Zhou, Y., & Lee, W. C. (2015). Styles in the fashion social network: an analysis on Lookbook.nu. Social Computing, Behavioral-Cultural Modeling, and Prediction, 9021, 356-361.
    McCormick, H, & Livett, C. (2012). Analysing the influence of the presentation of fashion garments on young consumers’ online behaviour. Journal of Fashion Marketing and Management, 16(1), 21-41.
    Mohr, I. (2013). The impact of social media on the fashion industry. Journal of Applied Business and Economics, 15(2), 17-22.
    Myers, S., Zhu, C., & Leskovec, J. (2012). Information diffusion and external influence in networks. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 33-41.
    Naderi, I. (2011). Beyond the fad: a critical review of consumer fashion involvement. International Journal of Consumer Studies, 37(1), 84-104.
    Nunnally, J. C. (1978). Psychometric Theory. New York, NY: McGraw-Hill Companies.
    Oberhammer, C. and Stiehler, A. (2001). Does cascade behavior in information cascades reflect Bayesian updating? SFB 373 Discussion Papers, 32, 1-19.
    O'Cass, A. (2004). Fashion clothing consumption: Antecedents and consequences of fashion clothing involvement. European Journal of Marketing, 38(7), 869-882.
    Palmgren, A. C. (2010). Posing my identity. Today's outfit, identity and gender in Swedish blogs. Observatorio (OBS*) Journal, 4(2), 19-34.
    Park, C. W. & Lessig, V. P. (1981). Familiarity and its impact on consumer decision biases and heuristics. Journal of Consumer Research, 8(2), 223-230.
    Pihl, C. (2014). Brands, community and style–exploring linking value in fashion blogging. Journal of Fashion Marketing and Management, 18(1), 3-19.
    Rahman, S. U., Saleem, S., Akhtar, S., Ali, T., & Khan, M. A. (2014).Consumers’ adoption of apparel fashion: the role of innovativeness, involvement, and social values. International Journal of Marketing Studies, 6(3), 49-64.
    Ranfagni, S. & Faraoni, M. (2017). Be social and be tuned evaluate your brands in online communities. Proceedings of Global Fashion Management Conference, 216-224.
    Rattanaritnont, G., Toyoda, M., & Kitsuregawa, M. (2012). Analyzing patterns of information cascades based on users’ influence and posting behaviors. Proceedings of the 2nd Temporal Web Analytics Workshop, 1-8.
    Rheingold, H. (1993). The virtual community: homesteading on the electronic frontier. UK: MIT Press.
    Richins, R. M. & Dawson, S. (1992). A consumer values orientation for materialism and its measurement. Journal of Consumer Research, 19(3), 303-316
    Rocamora, A. (2011). Personal fashion blogs: screens and mirrors in digital self-portraits. Fashion Theory, 15(4), 407-424.
    Rodriguez, M. G., Leskovec, J., & Schölkopf, B. (2013). Structure and dynamics of information pathways in online media. Proceedings of the sixth ACM International Conference on Web Search and Data Mining, 23-32.
    Roesch, M. L., Tinati, R., Kleek, M. V., & Shadbolt, N. (2015). From coincidence to purposeful flow? properties of transcendental information cascades. Proceedings of International Conference on Advances in Social Networks Analysis and Mining, 633-638.
    Safitri, Y. (2017). Personal branding through fashion blogging. Humaniora, 8(1), 69-78.
    Seiler, M. J. (2012). Forward and falsely induced reverse information cascades. Journal of Behavioral Finance, 13(3), 226-240.
    Shin, E. & Baytar, F. (2014). Apparel fit and size concerns and intentions to use virtual try-on: impacts of body satisfaction and images of models’ bodies. Clothing and Textiles Research Journal, 32(1), 20-33.
    Smith, S. P., Johnston, R. B., & Howard, S. (2005). Vicarious experience in retail e-commerce: an inductive taxonomy of product evaluation support features. Information Systems and e-Business Management, 3(1), 21-46.
    Song, K., Hwang, S., Kim, Y., & Kwak, Y. (2013). The effects of social network properties on the acceleration of fashion information on the web. Multimedia Tools and Applications, 64(2), 455-474.
    Sun, H. (2013). A Longitudinal study of herd behavior in the adoption and continued use of Technology. MIS Quarterly, 37(4), 1013-1041.
    Sushil, B., David, H., & Ivo, W. (1992). A Theory of fades, fashion, custom, and cultural change as informational cascades. Journal of Political Economy, 100(5), 992-1026.
    Thomas, J. B., Peters, C. O., & Tolson, H. (2007). An exploratory investigation of the virtual community MySpace.com. Journal of Fashion Marketing and Management, 11(4), 587-603.
    Tsimonis, G. & Dimitriadis, S. (2014). Brand strategies in social media. Marketing Intelligence & Planning, 32(3), 328-344.
    Wiedmann, K. P., Hennigs, N., & Langner, S. (2010). Spreading the word of fashion: identifying social influencers in fashion marketing. Journal of Global Fashion Marketing, 1(3), 142-153.
    Wolny, J. & Mueller, C. (2013). Analysis of fashion consumers’ motives to engage in electronic word-of-mouth communication through social media platforms. Journal of Marketing Management, 29(5-6), 562-583.
    Yamaguchi, K., Berg, T. L., Ortiz, L. E. (2014). Chic or social: visual popularity analysis in online fashion networks. Proceedings of the 22nd ACM international conference on Multimedia, 773-776.
    Yamaguchi, K., Kiapour, M. H., Ortiz, L. E., & Berg, T. L. (2012). Parsing clothing in fashion photographs. Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, 3570-3577.
    Yoo, E., Rand, W., Eftekhar, M., & Rabinovich, E. (2016). Evaluating information diffusion speed and its determinants in social media networks during humanitarian crises. Journal of Operations Management, 45, 123-133.
    Yoon, S. J. & Han, H. E. (2012). Experiential approach to the determinants of online word-of-mouth behavior. Journal of Global Scholars of Marketing Science, 22(3), 218-234.

    下載圖示
    QR CODE