簡易檢索 / 詳目顯示

研究生: 魏佑鈞
WEI, Yu-Chun
論文名稱: 基於交叉耦合分數階自抗擾控制之X-Y-Y棒狀線性馬達定位平台
Cross-Coupled Fractional Order Active Disturbance Rejection Control for X-Y-Y Tubular Linear Motor-based Positioning Stage
指導教授: 陳瑄易
Chen, Syuan-Yi
口試委員: 李政道 魏榮宗 陳瑄易
口試日期: 2022/01/25
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 150
中文關鍵詞: 自抗擾控制分數階微積分交叉耦合控制器教與學演算法助教型教與學演算法
英文關鍵詞: ADRC, fractional order, cross-coupling control, teaching and learning optimization, teaching assistant-type teaching and learning optimization
DOI URL: http://doi.org/10.6345/NTNU202200425
論文種類: 學術論文
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了能夠使設備的追蹤效果以及動子間的同動性能提升,本論文設計出交叉耦合分數階自抗擾控制(CCFOADRC)策略,用於控制X-Y-Y棒狀線性馬達定位平台。首先介紹棒狀線性馬達平台之系統架構和運作原理,通過時域的系統鑑別推導出馬達數學模型中的系統參數。接著,設計出第一個控制器為自抗擾控制器(ADRC),在模擬確認能良好做出控制之後,為了更進一步改善棒狀線性馬達的定位誤差及同為Y軸的定位誤差相減產生的同動誤差,針對定位誤差的改善加入了分數階微積分做改善,設計出了分數階自抗擾控制器(FADRC),通過了分數階提供的額外自由度,成功的改善其控制響應,接著為了改善同動誤差,加入了交叉耦合控制,進一步提出了交叉耦合分數階自抗擾控制器(CFADRC)。交叉耦合分數階自抗擾控制器裡包含了許多控制項,複雜度也隨之升高,因此本論文提出了智慧型交叉耦合分數階自抗擾控制器(ICFADRC),藉由教與學最佳化方法(TLBO)針對重要參數做動態優化。在教與學最佳化方法的過程中,進一步引進灰狼演算法的概念設計出助教型教與學演算法(TA-TLBO)。最後,由實作結果可以得知本論文提出的控制策略能有效地控制X-Y-Y棒狀線性馬達定位平台。

    In order to improve performance of tracking and co-movement between movers, this thesis designed a cross-coupled fractional-order active disturbance rejection control (CCFOADRC) strategy to control the X-Y-Y tubular linear motor positioning positioning stage. First, the structures and dynamics of the X-Y-Y tubular linear motor positioning stage are described. Then, the active disturbance rejection control (ADRC) controller will be introduced. After the simulation using MATLAB confirms that it has well performance control, this study is willing to further reduce the positioning error of the tubular linear motor and the synchronized error caused by the subtraction of the positioning error of the other Y axis. To improve the positioning performance, fractional calculus was added to the controller, and the fractional active disturbance rejection controller (FADRC) was designed. Through the additional degrees of freedom provided by the fractional order, it successfully reduced its control response. Then, in order to reduce the synchronized error, cross-coupling control was added, and a cross-coupling fractional-order active disturbance rejection controller (CFADRC) was designed. Due to the cross-coupled fractional-order ADRC contains many control items, the complexity also increases. Therefore, this thesis proposes an intelligent cross-coupled fractional ADRC (ICFADRC), which is optimized by teaching and learning optimization (TLBO) method for dynamic optimization of important parameters. In the process of teaching and learning optimization method, the concept of gray wolf algorithm was further introduced to design the teaching assistant-type teaching and learning algorithm (TA-TLBO). Finally, the results show that the proposed control strategy can control the X-Y-Y tubular linear motor positioning stage effectively.

    目 錄 謝詞 i 中文摘要 ii 英文摘要 iii 目 錄 v 表目錄 viii 圖目錄 x 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 5 1.4 研究方法 5 1.5 研究架構 7 第2章 X-Y-Y棒狀線性馬達實驗平台介紹 8 2.1 棒狀線性馬達的結構與運作原理 8 2.2 實驗平台設計 10 2.3 棒狀線性馬達模型分析 18 第3章 自抗擾控制於棒狀線性馬達控制平台 21 3.1 簡介 21 3.2 非線性自抗擾控制器設計 22 3.2.1擴張狀態觀測器 22 3.2.2二階跟蹤微分器 26 3.2.3非線性誤差反饋律 33 第4章 基於分數階自抗擾控制於棒狀線性馬達系統 36 4.1 分數階微積分 36 4.2 分數階離散近似計算 38 4.3 分數階自抗擾控制設計 40 4.4 交叉耦合控制系統 41 4.5 交叉耦合分數階自抗擾控制設計 43 第5章 最佳化分數階自抗擾控制設計 45 5.1 簡介 45 5.2 傳統式教與學演算法 45 5.3 助教型教與學演算法 49 5.4 演算法模擬比較 52 第6章 模擬結果與討論 56 6.1 X-Y-Y棒狀線性馬達定位控制模擬 56 6.2 PID模擬結果 58 6.3 ADRC模擬結果 61 6.4 FADRC模擬結果 66 6.5 CFADRC模擬結果 70 6.6 ICFADRC模擬結果 75 6.7 結果討論 89 第7章 實驗結果與討論 96 7.1 實驗設置 96 7.2 實作於X-Y-Y棒狀線性馬達控制 97 7.3 PID實作結果 97 7.4 ADRC實作結果 103 7.5 FADRC實作結果 109 7.6 CFADRC實作結果 116 7.7 ICFADRC實作結果 122 7.8 同動能力比較 131 7.9 結果討論 136 第8章 結論及未來展望 145 8.1 結論 145 8.2 未來展望 146 參考文獻 147

    參考文獻
    [1] 黃敬鈞,“棒狀線性馬達之設計與製作”,碩士論文,國立聯合大學機械工程學系,碩士論文,2016年
    [2] 楊振煒,“基於改良式蜂群演算法之最佳化雙自由度PID控制於棒狀線性馬達系統控制之應用”,碩士論文,國立台北科技大學自動化科技系,2018年
    [3] Y. Ping, J. Qi, and C. Wu "Quadrotor Transporting Cable Suspended Load using ADRC." 2019 Chinese Control Conference (CCC). IEEE, pp. 8003-8013, July 2019
    [4] S. Zhonghua "Design and Simulation of Naval Gun Servo Controller based on ADRC." 2019 11th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, pp. 345-349, Apr. 2019
    [5] J. Qu, Y. Xia, Y. Shi, J. Cao, H. Wang and Y. Meng "Modified ADRC for Inertial Stabilized Platform with Corrected Disturbance Compensation and Improved Speed Observer." IEEE Access, vol. 8, pp. 157703-157716, Aug. 2020
    [6] J. Liu, M. Sun, Z. Chen and Q. Sun "High AOA decoupling control for aircraft based on ADRC." Journal of Systems Engineering and Electronics, vol. 31, no. 2, pp. 393-402, Apr. 2020
    [7] J. Wang and Q. Xu "Precision Tracking Control of Piezoelectric-Driven Motion System Based on Enhanced ADRC." 39th Chinese Control Conference (CCC) IEEE, pp. 2626-2630, July 2020
    [8] W. Chen, J. Yang, L. Guo and S. Li. "Disturbance-observer-based control and related methods—An overview."IEEE Transactions on Industrial Electronics63, vol. 63, no. 2, pp. 1083-1095, Feb. 2016
    [9] J. Han "From PID to Active Disturbance Rejection Control." IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, Mar. 2009
    [10] X. W. Wang, Z. Wang, J. T. Sun and H. M. Zhang "The correlation template matching algorithm based TD filter and ESO filter." 2005 International Conference on Machine Learning and Cybernetics, Vol. 9, pp. 5361-5365, Aug. 2005
    [11] 鄧偉華,“分數階微分方程的理論分析與數值計算”,博士論文,上海大學,2007年
    [12] M. Xiao, B. Tao, W. X. Zheng and G. Jiang "Fractional-Order PID Controller Synthesis for Bifurcation of Fractional-Order Small-World Networks." IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 7, pp. 4334-4346, July 2021
    [13] 楊孟晨,“基於最佳化分數階模糊PID控制之X-Y音圈馬達定位平台”,國立臺灣師範大學,碩士論文,2019年
    [14] J. Z. Shi "A Fractional Order General Type-2 Fuzzy PID Controller Design Algorithm." IEEE Access, vol. 8, pp. 52151-52172, Mar. 2020
    [15] S. Han "Modified Grey-Wolf Algorithm Optimized Fractional-Order Sliding Mode Control for Unknown Manipulators with a Fractional-Order Disturbance Observer." IEEE Access, vol. 8, pp. 18337-18349, Jan. 2020
    [16] C. Zhu, Q. Tu, C. Jiang, M. Pan and H. Huang "A Cross Coupling Control Strategy for Dual-Motor Speed Synchronous System Based on Second Order Global Fast Terminal Sliding Mode Control." IEEE Access, vol. 8, pp. 217967-217976, Dec.2020
    [17] Z. Kuang, H. Gao and M. Tomizuka "Precise Linear-Motor Synchronization Control via Cross-Coupled Second-Order Discrete-Time Fractional-Order Sliding Mode." IEEE/ASME Transactions on Mechatronics, vol. 26, no. 1, pp. 358-368, Feb. 2021
    [18] 沈宗岳,“智慧型分數階動態面同動控制之三軸龍門式定位平台”,國立臺灣師範大學,碩士論文,2020年
    [19] H. Dou, H. Lu, S. Wang, Q. Liu, D. Wang and L. Meng "Research on Synchronous Control of Gantry-type Dual-driving Feed System based on Fuzzy Single Neuron PID Cross-coupled Controller." 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), vol. 5, pp. 1107-1112, Apr. 2021
    [20] R. V. Rao, V. J. Savsani and D. P. Vakharia "Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems." Computer-Aided Design, vol. 43, no. 3, pp. 303-315, July 2011
    [21] S. K. Pandey, C. Bera and S. S. Dwivedi "Design of robust PID controller for DC Motor using TLBO algorithm." 2020 IEEE International Conference on Advances and Developments in Electrical and Electronics Engineering (ICADEE), pp. 1-4, Dec. 2020
    [22] M. Alizadeh and R. Rodriguez, J. Bauman and A. Emadi "Optimal Design of Integrated Heat Pipe Air-Cooled System Using TLBO Algorithm for SiC MOSFET Converters." IEEE Open Journal of Power Electronics, vol. 1, pp. 103-112, Apr. 2020
    [23] D. B. P. Coelho and L. R. Rodrigues "A Chaotic Inertia Weight TLBO Applied to Troubleshooting Optimization Problems." 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1-8, July 2020
    [24] S. I. Taheri, M. B. C. Salles and N. Kagan "A new modified TLBO algorithm for placement of AVRs in distribution system." 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), pp. 1-6, Sep. 2019
    [25] A. S. K. Kannan, S. A. A. Balamurugan and S. Sasikala "A Novel Software Package Selection Method Using Teaching–Learning Based Optimization and Multiple Criteria Decision Making." IEEE Transactions on Engineering Management, vol. 68, no. 4, pp. 941-954, Aug. 2021
    [26] FileZilla FTP 伺服器,https://filezilla-project.org/
    [27] https://www.epcio.com.tw/product/IMP-2.aspx
    [28] http://www.hiwinmikro.tw/hiwintree/Product_SubType.aspx?type=D1
    [29] http://www.hiwinmikro.tw/hiwintree/Product_SubType.aspx?type=LMT2
    [30] http://www.hiwinsh.com/upload/1514336494_.pdf
    [31] https://www.hiwinmikro.tw/zh/product/linear-motor/shaft-motors
    [32] 林志鴻,永磁線型同步馬達之驅動與智慧型控制,博士論文,私立中原大學, 2001。
    [33] http://www.elmomc.com/
    [34] W. Q. Xun, Z. K. Yu and D. X. Dong "An exoskeleton joint output force control technology based on improved ADRC." 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE), pp. 146-150, Dec. 2017
    [35] S. Mirjalili, S. M. Mirjalili and A. Lewis “Grey Wolf Optimizer.” Advances in Engineering Software, vol. 69, pp. 46-61, Mar. 2014.
    [36] 孫彪,“離散系統控制最速綜合函數”,控制與決策,473-477頁,2010年
    [37] S. Chen, H. Lin, M. Yang and Z. Shen "Fractional-Order Fuzzy PID Contouring Control for a VCMs-Based X-Y Motion Stage." 2020 6th International Conference on Control, Automation and Robotics (ICCAR), pp. 236-241, Apr. 2020
    [38] 楊振煒,“基於改良式蜂群演算法之最佳化雙自由度PID控制器於棒狀線性馬達運動控制之應用”,碩士論文,國立臺灣師範大學,2018年
    [39] 韩京清及黄远灿, "二阶跟踪-微分器的频率特性." 数学的实践与认识,71-74頁,2003年

    無法下載圖示 電子全文延後公開
    2027/02/21
    QR CODE