簡易檢索 / 詳目顯示

研究生: 吳玫瑤
Mei-yao Wu
論文名稱: 教學對高中生學習函數概念的影響
指導教授: 曹博盛
Tsao, Po-Son
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 176
中文關鍵詞: 數學教育概念發展函數
論文種類: 學術論文
相關次數: 點閱:290下載:97
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要的目的在於探討經由高一上學期,教學對學生函數概念的影響,並找出學生建立函數概念的模式。
    研究採調查與面談兩種方法互相配合進行,依據Anna Sfard的概念成長理論,將函數概念分成內化、壓縮、物化三個層次,設計測驗卷。藉由三次紙筆測驗的結果,調查學生的函數概念層次的變化情形,輔以面談的方式深入瞭解學生填寫測驗卷時的想法以及其迷思概念。另外再找一名個案進行長達一學期的訪談,期能藉由教學後的即刻訪談,找出影響學生函數概念的變因,以便探討教學對學生函數概念的影響。本研究以台北地區北區某所公立高中一個班級的高一學生共42名為研究樣本。
    本研究的主要結果有:
    壹、教學對學生建立函數概念所提供的幫助:
    一、直接由函數的定義傳達函數概念。
    二、藉由函數圖形的正例與非例,提供學生修正基模的機會。
    三、課本提供不同的函數表徵,幫助學生瞭解函數的定義。
    四、提供許多不同的函數讓學生逐漸抽象出函數的概念。
    貳、經由高一上學期的教學,學生函數概念的層次改變的情形
    一、大部分的學生通過內化的階層的要求。
    二、自內化到壓縮的幫助最大。
    三、只有極少部分的學生達到物化。
    最後根據本研究的結果加以討論,並提出若干建議,希望能對教師或教科書的編排提供參考資料。

    第壹章論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1 第一節 問題背景與重要性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 1 第二節 教材分析與理論基礎‧‧‧‧‧‧‧‧‧‧‧4 第三節 研究目的‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23 第四節 名詞界定‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23 第貳章 理論基礎與文獻探討‧‧‧‧‧‧‧‧‧‧‧25 第一節 概念的探究‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧25 第二節 由學習理論看概念的成長‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 36 第三節 函數概念的發展‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44 第四節 函數概念的分類與層次‧‧‧‧‧‧‧‧‧‧49 第參章 研究方法 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧58 第一節 研究設計‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59 第二節 研究對象‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59 第三節 研究限制‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59 第四節 研究工具‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59 第五節 實施步驟‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧66 第肆章 分析與討論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70 第一節 分析教學如何建立函數概念‧‧‧‧‧‧‧‧70 第二節 學生的實際獲得‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧76 第三節 老師的教學如何影響個案學生的學習結果‧‧‧‧104 第四節 函數概念形成探究‧‧‧‧‧‧‧‧‧‧‧‧‧‧124 第五節 影響函數概念成長的因素探討‧‧‧‧‧‧‧‧‧137 第伍章 結論與建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧141 第一節 結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧141 第二節 建議‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧144 附 表 目 次 表1-1 函數概念在高中數學教材的比例‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 2 表1-2 Anna Sfard的概念發展理論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 4 表2-1 Sfard對程序與物件的解釋‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 52 表2-2 函數概念的的標籤與Anna Sfard的理論對照表 ‧‧‧‧‧ 55 表 3-1 測驗卷題目與測驗目標的對應表‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 61 表3-2 測驗卷題目與層次對照表‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧62 表4-1 教學對提昇層次的協助簡‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧70 表4-2 三次施測通過個別層次比較表‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧80 表4-3 三次施測的層次安置比較表 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧82 表4-4 第一次測試到第二次測試的層次改變表 ‧‧‧‧‧‧‧84 表4-5 第二次測試到第三次測試的層次改變表 ‧‧‧‧‧‧‧85 附 圖 目 次 圖1-1 合成函數的概念發展的序‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 7 圖1-2 國中的函數概念展‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 8 圖1-3 國中數學課程函數教材的流圖 ‧‧‧‧‧‧‧‧‧‧‧‧ 9 圖1-4 南一版高中數學課本有關函數內容的編排 ‧‧‧‧‧‧‧‧12 圖1-5 高中的函數概念圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧13 圖1-6 高一上 南一版數學課程函數教材的流程圖‧‧‧‧‧‧‧‧14 圖2-1 顏色概念形成的例子‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧27 圖2-2 概念的階層與抽象‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 28 圖2-3 概念與屬性的關係‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 33 圖2-4 布魯納的概念發展‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 36 圖2-5 卜思博士的教學設計理念圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧40 圖2-6 函數概念的歷史演變‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧44 圖2-7 Sfard的概念的成長‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧56 圖3-1 研究流程圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧69 圖4-1 函數圖形的非例‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧72 圖4-2 函數圖形的正例‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧72 圖4-3 階梯圖形 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧72 圖4-4 個案學生所建立的函數概念圖一 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧77 圖4-5 個案學生小艾所建立的函數概念圖二‧‧‧‧‧‧‧‧‧‧‧ 78 圖4-6 三次施測通過個別層次比較圖 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 81 圖4-7 三次施測的層次安置比較圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 82 圖4-8 從第一次施測的層次安置圖到第二次施測的層次改變對應圖 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ 85 圖4-9 為第一次施測的層次安置圖,相對的第二次施測的層次對應圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧86 圖4-10 教學時所舉非函數圖形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧109 圖4-11 教學時所舉函數圖形 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧110 圖4-12 個案學生小艾函數基模的改變‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧115 圖4-13 小艾的基模改變圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧126 圖4-14 小凱的基模改變圖‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧127 圖4-15 判斷函數圖形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧129 圖4-16 判斷函數圖形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧129 圖4-17 判斷函數圖形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧129 圖4-18 判斷函數圖形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧129 圖4-19 判斷函數圖形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧129 圖4-20 判斷函數圖形‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧129 圖4-21 小婷透過不同的刺激逐漸修正函數的概念心像 ‧‧‧‧‧130 附 錄 目 次 附錄一 預試測驗卷一 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧155 附錄二 預試測驗卷二 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧157 附錄三 正式研究的測驗卷 ‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧160 附錄四 第一次施測結果‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧162 附錄五 第二次施測結果‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧164 附錄六 第三次施測結果‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧166 附錄七 依照表3-1,學生施測結果安置層次表 ‧‧‧‧‧‧‧‧168 附錄八 高一數學第一冊1-3函數的基本概念教案‧‧‧‧‧‧‧169 附錄九 小凱的部分訪談轉錄資料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧171 附錄十 小婷的部分訪談轉錄資料‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧172

    參考文獻
    中文部分:
    國立編譯館主編(民86)。國民中學數學第一冊。台北市:國立編譯館。
    國立編譯館主編(民87a)。國民中學數學第二冊。台北市:國立編譯館。
    國立編譯館主編(民88)。國民中學數學第三冊。台北市:國立編譯館。
    國立編譯館主編(民87b)。國民中學數學第三冊教師手冊。台北市:國立編譯館。
    江南青(民 73)。比例概念診斷與補救。國立台灣師範大學數學研究所碩士論文
    何寶珠(1989)。心理學與哲學在科學教育上的應用-概念圖與v圖的理論、製作與應用。科學教育月刊,第120期
    余民寧 (民86)。有意義的學習—概念構圖之研究。台北:商鼎文化出版社。
    杜聲鋒 (1988)。皮亞傑及其思想。台北:遠流出版社。
    林十六、高仕漢與李小平 (1996)。數學教育改革的現狀與發展。大陸:華中理工大學出版社。
    林福來、李恭晴、徐正梅、陳冒海與陳順宇(編)(民89a)。高級中學數學第一冊。台南市:南一書局。
    林福來、李恭晴、徐正梅、陳冒海與陳順宇(編)(民89b)。高級中學數學第一冊教師手冊。台南市:南一書局。
    周武男(民81)。國中生實測概念之發展。行政院國家科學委員會科學教育發展處 印行。
    施良方(1996)。學習理論。高雄:麗文文化公司。
    施盈蘭(民 84)。五專生的三角函數學習現象。國立台灣師範大學數學研究所碩士論文。
    高敬文與黃金鐘(民81)。我國國小學童測量概念發展之研究。行政院國家科學委員會科學教育發展處 印行。
    連秀巒(民 75)。國中生平移概念發展的研究。國立台灣師範大學數學研究所碩士論文。
    項武義(1998)。從算數到代數。台北:九章出版社。
    葉明達(民 89)。高中生函數迷思概念及函數表徵轉換能力之初探。國立高雄師範大學科學教育所博士班。
    楊弢亮(1982)。中學數學教學法通論。台北:九章出版社。
    楊維哲、蔡聰明與吳隆盛(民88)。高級中學第一冊數學輔助教材。台北:三民書局。
    詹志禹(民85)。認識與知識:建構論VS. 接受觀。教育研究雙月刊,第49期。
    蔡志仁(民 89)。動態連結多重表徵視窗環境下橢圓學習之研究。國立台灣師範大學數學研究所碩士論文。
    鄭湧涇(民89)。選自八十九年度「自然科學概念學習研究工作坊」的會議手冊。行政院國家科學委員會科學教育發展處。
    鄭毓信(1998)。數學教育哲學。台北:九章出版社
    劉宏文(民85)。建構主義的認識論觀點及其在科學教育上的意義。科學教育月刊,第193期。
    克魯切茨基。中小學生數學能力心理學(九章編輯部譯)。台北:九章出版社。
    Hart, K. M. (Hart翻譯為哈特博士)。如何將研究文獻用於實際的教室。(國立台灣師範大學科學教育研究所演講,楊瑞智 整理)。科教月刊,124期,PP. 3-17
    Booth, L. R. (卜思,民76)。診斷教學的理念。科學教育月刊100期。
    Kline, M. (民72)。數學史-數學思想的發展(林炎全、洪萬生與楊康景松)。台北:九章出版社。原書名:Mathematical thought from ancient to modern time。
    Patton, M. Q. (1999). 質的評鑑與研究 (吳芝儀、李奉儒譯)。台北:桂冠出版社。
    Skemp, R. R. (1995a). 小學數學教育-智性學習(許國輝譯)。香港:公開進修學院出版社。(原文出版於1989)。
    Skemp, R. R. (1995b). 數學學習心理學 (陳澤民譯)。台北:九章出版社。(原文出版於1987)
    Vygosky , L. S. (1998). 思維與語言 (李維譯)。台北:桂冠出版社。
    英文部分:
    Brian, R. (1998). Computer-Intensive Algebra and Students` Conceptual Knowledge of Functions. Journal for Research in Mathematics Education, 29( 1), 21-40.
    Collette, C. (1967). Language and Mathematics. In Nesher, P. & Lilpatrick, J. (Eds), Mathematics and cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education. N.Y, Cambridge University Press.
    Cooney, T. J. & Wilson, M. R. (1993). Teachers` Thinking about Functions: Historical and Research Perspectives. In Romberg, T. A. & Fennema, E. & Carpenter, T. P. (Eds), Integrating Research on the Graphical Representation of Functions,131-158. London, LEA.
    Dossey,J.A. (1992). Assessing Mathematics: Enhancing Understanding. In Izaak Wirszup & Robert Streit (Eds), Development in school Mathematics Education around the world(Ⅲ). NCTM, 208-219.
    Drefus, T (1990). Advanced mathematical thinking. In Nesher, P. & Lilpatrick, J. (Eds), Mathematics and cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education. N.Y, Cambridge University Press.
    Dugdale, S. (1993). Functions and Graphs- Perspectives on Student Thinking. In Romberg, T. A. & Fennema, E. & Carpenter, T. P. (Eds), Integrating Research on the Graphical Representation of Functions, 101-130. London, LEA.
    Duit, R., Treagust, D. F. & Mansfield, H. (1996). Investigating Student Understanging as a Prerequisite to Improving Teaching and Learning in Science and Mathematics. In Treagust, D. F. , Duit, R. & Mansfield, H., Improving Teaching and Learning in Science and Mathematics, 17-31. New York and London, Teachers College Columbia University Press.
    Ernest, P. (1999). Forms of knowledge in mathematics and Mathematics Education: Philosophical and Rhetorical Perspectives. Educational Studies in mathematics, 38, 67-83.
    Glasersfeld, E. V. (1987). Learning as a Constructive Activity. In Janvier, C. (ed), Problems of Representation in the Teaching and Learning of Mathematics, 3-18. USA, LEA.
    Hart. K . (1981). The research of CSMS. In Murray, J. (Ed. ), Children`s Understanding of Mathematics:11~16, 1-8. London, Alden Press.
    Herscovics, N. (1979). A learning model for some algebraic concepts. In Fuson, K. & Geeslin, W. (Eds) , Explorations in the modeling of the learning of mathematics. Columbus, OH: ERIC/SEMAC.
    Hershkowitz, R. (1990). Psychological Aspects of Learning Geometry. In Nesher, P. & Lilpatrick, J. (Eds), Mathematics and cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education, 70-95. N.Y, Cambridge University Press.
    Hitt, F. (1993). Internal and exterval representations related to the function concept. In Joanne, R. B. &Barbara , J. P. (Eds), Proceedings of the Fifteenth Annual Meeting of North American Chapter of The International Group for the Psychology of Mathematics Education. USA, SanJose State University.
    Janvier, C. (1987a). Representation and Understanding: The Notion of Function as an Example. In Janvier, C. (ed), Problems of Representation in the Teaching and Learning of Mathematics, 67-71. USA, LEA.
    Janvier, C. (1987b). Representation and Understanding: The Circle as an Example. In Janvier, C. (ed), Problems of Representation in the Teaching and Learning of Mathematics, 67-71. USA, LEA.
    Kaput, J. J. (1987a). Representation Systems and Mathematics. In Janvier, C. (ed), Problems of Representation in the Teaching and Learning of Mathematics, 67-71. USA, LEA.
    Kaput, J. J. (1987b). Towards a Theory of Symbol Use in mathematics. In Janvier, C. (ed), Problems of Representation in the Teaching and Learning of Mathematics, 67-71. USA, LEA.
    Kenneth, B. H. (1967). A model for teaching Mathematical concepts. Mathematics Teacher, 60, 573-577.
    Kieran, C. (1990). Cognitive processes involved in learning school algebra. In Nesher, P. & Lilpatrick, J. (Eds), Mathematics and cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education, 96-112. N.Y, Cambridge University Press.
    Kieran, C. (1993). Functions, Graphing, and Technology: Integrating Research on learning and Instruction. In Romberg, T. A. & Fennema, E. & Carpenter, T. P. (Eds), Integrating Research on the Graphical Representation of Functions,101-130. London, LEA.
    Kieran, T. E. (1990). Understanding for teaching for understanding , The Alberta Journal of Educational Research, 36( 3 ), 191-201
    Laborde,C. (1990). Language and Mathematics. In Nesher, P. & Lilpatrick, J. (Eds), Mathematics and cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education, 53-69. N.Y, Cambridge University Press.
    Lange, J.D. & Institute, F. (1992). Higher Order (Un-)Teaching. In Wirszup, I. & Streit, R. ,Development in school Mathematics Education around the world(Ⅲ). 49-72, NCTM.
    Markovits, V. & Eylon, B. & Bruckheimer, M. (1986). Function Today and Yesterday. For the learning of mathematics , 6(2), Canada.
    Markovits, Z. (1988). Difficulties Students Have with the Function Concept. Arthur, F. Coxford 1988 yearbook Editor, The ideas of algebra, K-12, University of Michigan.
    Mason, J. H. (1987). What do Symbols Represent? . In Janvier, C. (ed), Problems of Representation in the Teaching and Learning of Mathematics, 73-82. London, LEA.
    Mason, J. H. (1998). Enable teachers to be real teachers: Necessary levels of Awareness and structure of attention. Journal of Mathematics Teacher Education, 13, p243~267.
    Murrary, J. (1981). The research of CSMS. In Hart, K. M. & Kerslake, D. ,Brown, M. L. , Ruddock, G. , Kuchemann, D. E. & McCartney, M. (eds), Children`s understanding of Mathematics. PP. 1-8.
    NCTM (2000). Principles and Standards for School Mathematics: Discussion Draft, Standards 2000.
    Norman, F. A. (1986). Students` Unitizing of Variable Complexes in Algebraic and Graphical contexts. In Lappan , G. & Even ( Eds ), Proceedings of the English Annual Meeting of Fme-Na, 102-107. East Lansing: Michigan State University.
    Norman, F. A. (1993). Integrating Research on Teachers` Knowledge of Functions and Their Graphs. In Romberg, T. A. & Fennema, E. & Carpenter, T. P. (Eds), Integrating Research on the Graphical Representation of Functions, 41-68. London, LEA.
    Novak, J. D. & Gowin, D. B. (1984). Learning how to learning. Cambridge, Cambridge University Press.
    Pirie, S. E.& Kieren, T. (1989). A Recursive Theory of Mathematical Understanding. For the learning of mathematic 9( 3 ) , 7-11.
    Pirie , S. E. & Kieren, T. (1991). The Characteristics of the Growth of Mathematical Understanding. Paper presented at the meeting of Aera, Chicago, IL.
    Pirie , S. E. & Kieren, T. (1994). Beyond Metaphor: Formalising in Mathematical Understanding within Constructivist Environments. For the learning of mathematics, 14(1).
    Schoenfeld , A. H. , Moschkovich, J. & Arcavi, A. (1993). Aspects of Understanding: On Multiple Perspectives and Representations of Linear Relations and Connections. In Romberg, T. A. , Fennema, E. & Carpenter, T. P. (Eds), Integrating Research on the Graphical Representation of Functions, 69-100. London, LEA.
    Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same Coin. Educational Studies in Mathematics, 22, 1-36.
    Tall, D. (1989). Concept Images, Generic Organizers, Computers, and Curriculum Change. For the Learning of Mathematics, 9(3), 37-42.
    Tall, D. (1991). The Psychology of Advanced Mathematical Thinking. Advanced Mathematical Thinking, 3-21.
    Vergnaud, G. (1990). Epistmology and Psychology of Mathematics Education. In Nesher, P. & Lilpatrick, J. (Eds), Mathematics and cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education. N.Y, Cambridge University Press.
    Vinner, S. (1983). Concept definition, concept image and the notion of function. International Journal of Mathematics in Science and Technology, 14(3), 293-305.
    White, R. & Gunstone, R. (1992a). The Nature of understanding. Probing Understanding, 1-14. Great Britain , Burgess Science Press.
    White, R. & Gunstone, R. (1992b). Prediction-Observation- Explanation. Probing Understanding, 44-64. Great Britain , Burgess Science Press.
    Yerushalmy, M. & Schwartz, J. L. (1993). Seizing the Opportunity to Make Algebra Mathematically and Pedagogically Interesting. In Romberg, T. A. & Fennema, E. & Carpenter, T. P. (Eds), Integrating Research on the Graphical Representation of Functions, 41-68. London, LEA.
    Ziff, P. (1973). Something about conceptual schemes. In Pearce, G. & Maynard, P. (Eds), Conceptual change, 31-42. Boston, D. Reidel, Publishing Company.

    QR CODE