研究生: |
陳彥良 Yen-Liang Chen |
---|---|
論文名稱: |
整合田口法與粒子群演算法應用於鐵酸鉍摻雜鈮MFIS電容器之最佳化 Optimization of Nb-doped BiFeO3 film in MFIS capacitors using improved PSO integrating Taguchi method |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 陳珍源 Chen, Jen-Yang |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 鐵酸鉍 、MFIS電容器 、粒子群演算法 、田口方法 |
英文關鍵詞: | BiFeO3, MFIS capacitors, particle swarm optimization, Taguchi method |
論文種類: | 學術論文 |
相關次數: | 點閱:410 下載:17 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是探討使用整合田口法的改良型粒子群演算法在鐵酸鉍摻雜鈮MFIS電容器最佳化上的應用。本論文可分為兩部分:(一)粒子群演算法整合田口方法(二)鐵酸鉍摻雜鈮MFIS電容器之最佳化。
粒子群演算法是近年來應用在諸多領域的最佳化技術。全域最佳型(gbest)和區域最佳型(lbest)是粒子群演算法的其中兩種變型,其分別擁有收斂性與探索性的優點。整合田口方法可結合兩者的優勢,使新衍生的變型兼具更好的最佳化效率和更好的精確度。此變型一開始先採全域最佳型快速收斂,接著再採用區域最佳型的探索能力,當最佳化效果不彰時,再使用田口法,自群體中萃取出具有潛力的元素,形成群體學習的對象,間接加強了群體的最佳化能力。實驗結果以t檢定驗證此改良型粒子群演算法的確結合了此兩種傳統方法的各自優點,在15個適應性函數的條件下展現擁有更好的表現。
我們將此整合田口法的粒子群演算法變型應用在鋁/鐵酸鉍摻雜鈮/二氧化鉿/p型矽MFIS結構之電容器的最佳化上,以期得到最佳的製程配方。鐵電材料因其特殊的鈣鈦礦結構,很適合當作記憶體單元的材料。其中鐵酸鉍因具有高居禮溫度、高尼爾溫度、低結晶溫度和很大的殘留極化值的優點,所以成為一種很具前景的記憶體材料。唯其漏電流太大的缺點仍待改善。藉由摻雜鈮可解決此問題,最終的目標是產生具有最大記憶視窗寬度和最小漏電流密度的電容結構。考量最大記憶視窗寬度與最小漏電流密度的情況,可得最佳化後的配方:鈮摻雜直流濺鍍瓦數15.5watt、氧化層厚度69.2nm、氬氧比17.3、快速熱退火850°C。
This study is about the application of improved particle swarm optimization (PSO) integrating Taguchi method over Nb-doped BiFeO3 MFIS capacitors. This thesis has two main subjects: (1) The variant of PSO integrating Taguchi method. (2) The optimization of Nb-doped BiFeO3 MFIS capacitors.
PSO has been a popular optimization technique applied over many fields. The two of PSO variants, gbest and lbest, are reported to have the advantages of exploratory capability and exploitability, respectively. Integrating Taguchi method combines these two advantages for a newly-derived PSO variant with better efficiency and less error. The novel variant proceeds with gbest for fast convergence until the shrinking of the swarm stops. lbest succeeds the following optimization to the occurrence of deadlock. Then, the Taguchi method helps to extract best recipe from the swarm to continue the optimization. The experimental results are analyzed with t-test. The superiority of this variant has been verified under fifteen fitness functions.
This proven PSO variant is utilized over Al/ Nb-doped BiFeO3/HfO2/p-Si capacitors for fabrication recipe. Ferroelectric materials are suitable for being memory cells with its unique “Perovskite” structure. BiFeO3 is one of the promising substitutes with high Curie temperature, high Neel temperature, low crystallization temperature, and large remnant polarization. But the major issue is its relatively large leakage current. Doping Nb can suppress the leakage. The larger memory window and the less leakage current is the contribution of this study. The optimized recipe is 15.5 W for DC power of Nb sputtering, 69.2 nm for insulator thickness, 17.3 for argon-to-oxyen ratio, and 850°C for RTA temperature.
[1] Z. Hu, M. Li, B. Yu, L. Pei, J. Liu,J. Wang, X. Zhao, “Enhanced multiferroic properties of BiFeO3 thin films by Nd and high-valence Mo co-doping ”, Journal of Applied Physics Letters, vol. 42, pp. 1850101 - 1850105, 2009.
[2] A. Z. Simoes, R. F. Pianno, E. C. Aguiar, E. Longo, J. A. Varela, “Effect of niobium dopant on fatigue characteristics of BiFeO3 thin films grown on Pt electrodes”, Journal of Alloys and Compounds, vol. 479, pp. 274 – 279, 2009.
[3] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory”, Proceedings of International Symposium on Micro Machine and Human Science, pp. 39 - 43, 1995.
[4] Y. Shi and R. C. Eberhart, “A modified particle swarm optimizer”, Proceedings of IEEE International Conference on Evolutionary Computation, pp. 69 - 73, 1998.
[5] G. Ueno, K.Yasuda, and N. Iwasaki, “Robust adaptive particle swarm optimization”, Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 3915 - 3920, 2005.
[6] J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics”, Journal of IEEE Transactions on Antennas and Propagation, vol. 52, pp. 397 - 407, 2004.
[7] A. A. A. Esmin, A. R. Aoki, and G. L. Torres, “Particle swarm optimization for fuzzy membership functions optimization”, Proceedings of IEEE International Conference on System, Man and Cybernetics, pp. 6 - 9, 2002.
[8] Z. He, C. Wei, L. Yang, X. Gao, S. Yao, R. C. Eberhart, and Y. Shi, “Extracting rules from fuzzy neural network by particle swarm optimization”, Proceedings of IEEE World Congress on Evolutionary Computation, pp. 74 - 77, 1998.
[9] R. C. Eberhart and Y. Shi, “Tracking and optimizing dynamic systems with particle swarms”, Proceedings of IEEE World Congress on Evolutionary Computation, pp. 94 - 100, 2001.
[10] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and convergence in a multidimensional complex space”, Journal of IEEE Transactions on Evolutionary Computation, vol. 6, pp. 58 - 73, 2002.
[11] S. T. Hsieh, T. Y. Sun, C. C. Liu, and S. J. Tsai, “Efficient population utilization strategy for particle swarm optimizer”, Journal of IEEE Transactions on Systems, Man, and Cybernetics, vol. 39, pp. 444 - 456, 2009.
[12] J. G. Brainerd, L. G. Cumming, A. G. Jensen, W. N. Tuttle, and C. H. Page, “Standards on circuits : definitions of terms in network topology”, Proceedings of The Institute of Radio Engineers, pp. 27 - 29, 1951.
[13] K. E. Parsopoulos and M. N. Vrahatis, “Unified particle swarm optimization for tackling operations research problems”, Proceedings of IEEE Symposium on Swarm Intelligence, pp. 53 - 59, 2005.
[14] E. Mendel, R. A. Krohling, and M. Campos, “Swarm algorithms with chaotic jumps applied to noisy optimization problems”, Information Sciences, doi:10.1016/j.ins.2010.06.007. , 2010
[15] S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho, “OPSO: orthogonal particle swarm optimization and its application to task assignment problems”, Journal of IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, vol. 38, pp. 288 –298, 2008.
[16] W. Chen, X. C. Yu, and H. Wang, “PSO-GA on endmember extraction for hyperspectral Imagery”, Proceedings of IEEE International Conference on Computer Application and System Modeling, pp. 459 - 464, 2010.
[17] D. K. Fronek and I. Sader, “Benchmarks for microprocessors”, Proceedings of IEEE Southeastcon, pp. 610 - 613, 1981.
[18] X. Hu and R. C. Eberhart, “Adaptive particle swarm optimization : detection and response to dynamic systems”, Proceedings of IEEE Congress on Evolutionary Computation, pp. 1666 - 1670, 2002.
[19] 李輝煌, 田口方法品質設計的原理與實務, 高立圖書有限公司出版, 2000。
[20] Y. Kobayashi, Y. Wada, and T. Kiguchi, “Knowledge representation and utilization for optimal route search”, Journal of IEEE Transactions on Systems, Man, and Cybernetics, vol. 16, pp. 454 - 462, 1986.
[21] R. O. Kuehl, Design of experiments : statistical principles of research design and analysis, 2nd edition, Duxbury press, CA, 2000.
[22] K. Ashenayi, S. Singh, and I. Hoballah, “Application of normal distribution in modeling global irradiation”, Proceedings of Southeastern Symposium on System Theory, pp. 470 - 474, 1988.
[23] D. C. Montgomery, Design and analysis of experiments, 7th edition, John Wiley & Sons, 2009.
[24] J. Zhou, L. Li, Z. Li, and J. Han, “Small sample failure distribution research based on Gray Theory”, Proceedings of International Conference on Information Engineering and Computer Science, pp. 1 - 4, 2009.
[25] T. Cahyadi, P. Y. Tan, M. T. Ng, T. Yeo, J. J. Boh, and B. Fun, “The use of Taguchi method for process design of experiment to resolve gate oxide integrity issue”, Proceedings of IEEE International Integrated Reliability Workshop, pp. 128 – 131, 2009.
[26] S. Stoica, “Robust test methods applied to functional design verification”, Proceedings of the International Test Conference, pp. 848 –857, 2008.
[27] K. Y. Wong, V. P. Singh, and J. S. Rustagi, “Statistical methods in manufacturing”, Proceedings of IEEE/CHMT International Electronic Manufacturing Technology Symposium, pp. 215–218, 1993.
[28] G. Taguchi, “Taguchi methods in LSI fabrication process”, Proceedings of IEEE International Workshop on Statistical Methodology, pp. 1 – 6, 2001.
[29] D. Clausing, “Taguchi methods to improve the development process”, Proceedings of IEEE International Conference on Communications, pp. 826 – 832, 1988.
[30] M. Severgnini, L. Pattini, C. Consolandi, E. Rizzi, C. Battaglia, G. D. Bellis, and S. Cerutti, “Application of the Taguchi method to the analysis of the deposition step in microarray production”, Journal of IEEE Transactions on NanoBioscience, vol. 5, pp. 164 –172, 2006.
[31] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-k gate dielectrics: current status and materials properties considerations”, Journal of Applied Physics, vol. 89, pp. 5243 – 5275, 2001.
[32] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd editon, Wiley, New York, pp. 298, 2007.
[33] 劉傳璽, 陳進來, 半導體物理元件與製程-理論與實務, 五南文化出版社, 2008。
[34] E. H. Nicollian and J. R. Brews, MOS(Metal Oxide Semiconductor)Physics and Technology, Wiley, New York, 1982.
[35] J. Roberson and C. W. Chen, “Schottky barrier heights of tantalum oxide, barium strontium titanate, lead titanate, and strontium bismuth tantalite”, Journal of Applied Physics Letter, vol. 74, pp. 1168-1170, 1999.
[36] F. C. Chiu, “Interface characterization and carrier transportation in metal/HfO2/silicon structure”, Journal of Applied Physics, vol. 100, pp. 1141021-1141025, 2006.
[37] L. S. Roman, I. A. Hu¨mmelgen, F. C. Nart, L. O. Pe´ res, and E. L. D. Sa, “ Determination of electroaffinity and ionization potential of conjugated polymers via Fowler–Nordheim tunneling measurements: Theoretical formulation and application to poly(p-phenylene vinylene) ”, Journal of Chemical Physics, vol. 105, pp. 10614-10620, 1996.
[38] D. K. Schroder, Semiconductor Material and Device Characterization, 2nd edition, Widely, New York, pp. 392, 1998.
[39] P. C. Juan, S. M. Chen, and Y. M. Lee, “Temperature dependence of the current conduction mechanisms in ferroelectric Pb(Zr0.53,Ti0.47)O3 thin films”, Journal of Applied Physics, vol. 95, pp. 3120-3125, 2004.
[40] F. C. Chiu, Z. H. Lin, C. W. Chang, C. C. Wang, K. F. Chuang, C. Y. Huang, Y. M. Lee, and H. L. Hwang, “Electron conduction mechanism and band diagram of sputter-deposited Al/ZrO2/Si structure”, Journal of Applied Physics, vol. 97, pp. 0345061- 0345065, 2005.
[41] J. G. Simmons, “Poole-Frenkel effect and Schottky effect in metal-insulator-metal systems”, Journal of Physical Review, vol. 155, pp. 657- 660, 1967.
[42] 王明璁,應用於金氧半電晶體閘極氧化層的氧化鋯薄膜電性之研究,國立清華大學博士論文,民國九十五年六月
[43] G. F. Alapatt, W. R. Harrell, Y. Freeman, and P. Lessner, “Observation of the Poole-Frenkel effect in Tantalum polymer capacitors”, Proceedings of the IEEE Southeast Conference, pp. 498–501, 2010.
[44] W. R. Harrell and J. Frey, “Observation of Poole-Frenkel effect saturation in SiO2 and other insulating films”, Journal of Thin Solid Films, vol. 352, pp. 195- 204, 1999.
[45] D. A. Buchanan, “Scaling the gate dielectric: Materials, integration, and reliability”, Journal of IBM Research and Development, vol. 43, pp. 245-264, 1999.
[46] T. Hatayama, S. Hino, N. Miura, T. Oomori, E. Tokumitsu, “Remarkable increase in the channel mobility of SiC-MOSFETs by controlling the interfacial SiO2 layer between Al2O3 and SiC”, Journal of IEEE Transactions on Electron Devices, vol. 55, pp. 2041 - 2045, 2008.
[47] B. E. Deal, “Standardized terminology for oxide charges associated with thermally oxidized silicon”, Journal of IEEE Transactions on Electron Devices, vol. 27, pp. 606 - 608, 1980
[48] B. E. Deal, M. Sklar, A. S. Grove, and E. H. Snow, “Characteristics of the Surface-State Charge (Qss) of thermally oxidized silicon”, Journal of The Electrochemical Society, vol. 114, pp. 266-274, 1967.
[49] M. Atalla and D. Khang, “A new "Hot electron" triode structure with semiconductor-metal emitter”, Journal of IEEE Transactions on Electron Devices, vol. 9, pp. 507 - 508, 1962.
[50] W. G. Pfann and C. G. B. Garrett, “Semiconductor varactors using surface space-charge layers”, Proceedings of Institute of Radio Engineers, pp. 2011-2025, 1959.
[51] K. T. Lee, C. F. Huang, J. Gong, and B. H. Liou, “Electrical characteristics of Al2O3/TiO2/Al2O3 nanolaminate MOS capacitor on p-GaN with post metallization annealing and (NH4)2SX treatments”, Journal of IEEE Electron Device Letters, vol. 30, pp. 907-909, 2009.
[52] T. Sumi and P. D. Maniar, “Ferroelectric nonvolatile memory technology and its applications”, Journal of Japanese Applied Physics, vol. 35, pp.1516-1520, 1996.
[53] 阮弼群,應用於非揮發性記憶元件介電層的鋯鈦酸鉛鐵電薄膜電性之研
究,國立清華大學博士論文,民國九十四年九月。
[54] G. W. Dietz, M. Schumacher, and R. Waser, “Leakage current in Ba0.7Sr0.3TiO3 thin films for ultrahigh-density dynamic random access memories”, Journal of Applied Physics, vol. 82, pp. 2359-2361, 1997.
[55] C. H. Liu, Y. L. Chen, and J. Y. Chen, “Ameliorated particle swarm optimization by integrating Taguchi method ”, Proceedings of International Conference on Machine Learning and Cybernetics, pp. 1823 – 1828, 2010.
[56] 羅正忠、張鼎張,半導體製程技術導論,台灣培生教育出版股份有限公司,2009。
[57] 白木靖寬、吉田貞史,薄膜工程學,全華科技圖書股份有限公司,2006。
[58] M. Ohring, The Materials Science of Thin Film, 2nd edition, Academic Press, San Diego, 2002.
[59] 汪建民主編,材料分析 Materials Analysis, 中國材料科學學會出版,1998。