研究生: |
曹榮鑣 Tsao, Jung-Piao |
---|---|
論文名稱: |
白藜蘆醇補充對人體運動後骨骼肌肉能量代謝的影響 Effect of Resveratrol Supplementation on Energy Metabolism in Exercised Human Skeletal Muscle |
指導教授: |
程一雄
Cheng, I-Shiung |
學位類別: |
博士 Doctor |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 增補劑 、肌肉肝醣 、粒線體生合成 |
英文關鍵詞: | ergogenic aids, muscle glycogen, mitochondrial biogenesis |
DOI URL: | http://doi.org/10.6345/NTNU201900853 |
論文種類: | 學術論文 |
相關次數: | 點閱:220 下載:6 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討補充白藜蘆醇 (resveratrol, RES) 對運動後肌肉肝醣及粒線體生合成效率的影響。這次研究招募 9 名規律運動健康男性受試者執行單盲交叉試驗,受試者隨機分配接受白藜蘆醇試驗 (RES) 與安慰組試驗 (placebo),兩次試驗至少間隔 14 天以上。受試者試驗前 3 天口服 480 mg RES 或安慰劑膠囊,實驗當天早上給予 1 份 300 大卡的輕食飲食並搭配 480 mg RES 或安慰劑膠囊,安靜休息 1 小時後,立即進行 60 分鐘 70 % VO2max 強度單次腳踏車運動挑戰。運動後隨即給予增補劑 (480 mg RES 或 placebo) 並進食每公斤體重 2 克碳水化合物餐點。運動後立即進行第 1 次肌肉穿刺,第 3 小時進行第 2 次肌肉穿刺。同時,每間隔 60 分鐘收集氣體樣本;每間隔 30 分鐘進行血液採樣。研究結果顯示: 一、運動恢復期血糖、胰島素、非酯化脂肪酸、甘油、三酸甘油酯;抗氧化指標 TAC、GSH/GSSH 及發炎反應 TNF-α、IL-6 濃度;呼吸交換率未達顯著差異;二、恢復期肌肉肝醣再合成量未達顯著差異;三、骨骼肌對葡萄糖吸收相關基因 TBC1D1、TBC1D4、HK-II、GLUT4;脂肪氧化 CPT-1、UCP-3 基因表現量未達顯著差異;四、粒線體電子傳遞鏈目標基因 cytochrome b 及 cytochrome c;粒線體融合及分裂相關基因 BECLIN-1、DRP-1、FIS1、MFN1、MFN2 及 OPA1;粒腺體生合成訊息傳遞路徑 SIRT1、PGC1-α、ERR-α、NRF1、NRF2 及 TFAM 基因表現量皆未達顯著差異。因此,這次研究結果無法支持白藜蘆醇補充增強運動恢復期抗氧化和清除發炎能力,同時無法支持白藜蘆醇補充能夠提升肌肉肝醣再合成、粒線體質量及粒線體生合成的效率的研究假設。
The purpose of the study was to investigate the effect of oral resveratrol (RES) supplementation on muscle glycogen re-synthesis and mitochondria biogenesis in the exercised human skeletal muscle. Nine healthy male subjects with regular physical exercise were recruited into this a single-blind crossover designed study with RES and placebo trials randomly, separated by a 14 days washout period. All participants consumed RES (480 mg) or placebo capsules 3 days before the exercise challenge. On the day of performing exercise challenge, every subject completed a single bout of exercise at 70% VO2max for 60 min cycling exercise after oral RES or placebo supplementation accompanied by 300 kcal normal diet. Immediately after exercise challenge, all samples were obtained including muscle, exchange gaseous and blood samples. Simultaneously, all subjects finished a high carbohydrate meal (2 g CHO per/kg) accompany with RES/placebo capsules. Second muscle biopsy was performed at 3-h after exercise. During this period, gaseous exchange samples were collected every 60-min and blood sampling was collected every 30-min. The results of this study showed that (1) there was no significance in blood glucose, insulin, non-esterified fatty acids, glycerol, triglycerides, TAC, GSH/GSSH, TNF-α, IL-6, and respiratory exchange rate between the trials; (2) no significant increase of muscle glycogen re-synthesis was found after RES supplementation during recovery; (3) there were no significant difference in transcript factors of glucose-uptake gene expression of TBC1D1, TBC1D4, HK-II, GLUT4 and fat oxidation gene expression of CPT-1, UCP-3 between both trials, (4) no significant changes were found in the gene expressions of mitochondrial electron transport chain target including cytochrome b and cytochrome c; mitochondrial fusion and fission related gene expression of BECLIN-1, DRP-1, FIS1, MFN1, MFN2 and OPA1; mitochondrial biogenesis related gene expression of SIRT1, PGC1-α, ERR-α, NRF1, NRF2 and TFAM between RES/placebo trials. Therefore, we conclude that there is as yet no evidence in the present study to demonstrate oral resveratrol supplementation can improve the capacity of antioxidant, anti-inflammation during recovery periods. Simultaneously, oral resveratrol supplementation can not enhance muscle glycogen re-synthesis, mitochondrial mass and mitochondrial biogenesis in exercised skeletal muscle.
Agarwal, B., & Baur, J. A. (2011). Resveratrol and life extension. Annals of the New York Academy of Sciences, 1215(1), 138-143. doi:10.1111/j.1749-6632.2010.05850.x
Baltaci, S. B., Mogulkoc, R., & Baltaci, A. K. (2016). Resveratrol and exercise. Biomedical Reports, 5(5), 525-530. doi:10.3892/br.2016.777
Barbieri, E., & Sestili, P. (2012). Reactive oxygen species in skeletal muscle signaling. Journal of Signal Transduction,1-17. doi:10.1155/2012/982794
Bernecker, C., Scherr, J., Schinner, S., Braun, S., Scherbaum, W., & Halle, M. (2013). Evidence for an exercise induced increase of TNF‐α and IL‐6 in marathon runners. Scandinavian Journal of Medicine & Science in Sports, 23(2), 207-214. doi:10.1111/j.1600-0838.2011.01372.x
Bo, H., Zhang, Y., & Ji, L. L. (2010). Redefining the role of mitochondria in exercise: a dynamic remodeling. Annals of the New York Academy of Sciences, 1201(1), 121-128. doi:10.1111/j.1749-6632.2010.05618.
Cai, Y. J., Fang, J. G., Ma, L. P., Yang, L., & Liu, Z. L. (2003). Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1637(1), 31-38. doi:10.1016/S0925-4439(02)00174-6
Carey, A. L., Steinberg, G. R., Macaulay, S. L., Thomas, W. G., Holmes, A. G., Ramm, G., . . . James, D. E. (2006). Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes, 55(10), 2688-2697. doi:10.2337/db05-1404
Cartoni, R., Léger, B., Hock, M. B., Praz, M., Crettenand, A., Pich, S., . . . Zorzano, A. (2005). Mitofusins 1/2 and ERRα expression are increased in human skeletal muscle after physical exercise. The Journal of Physiology, 567(1), 349-358. doi:10.1113/jphysiol.2005.092031
Chang, C. C., Lin, K. Y., Peng, K. Y., Day, Y. J., & Hung, L. M. (2016). Resveratrol exerts anti-obesity effects in high-fat diet obese mice and displays differential dosage effects on cytotoxicity, differentiation, and lipolysis in 3T3-L1 cells. Endocrine Journal, 63(2), 169-178. doi:10.1507/endocrj.EJ15-0545
Cheng, I.S., Huang, S.W., Lu, H.C., Wu, C.L., Chu, Y.C., Lee, S.D., . . . Kuo, C.H. (2012). Oral hydroxycitrate supplementation enhances glycogen synthesis in exercised human skeletal muscle. British Journal of Nutrition, 107(7), 1048-1055. doi:10.1017/S0007114511003862
Cioffi, F., Senese, R., de Lange, P., Goglia, F., Lanni, A., & Lombardi, A. (2009). Uncoupling proteins: a complex journey to function discovery. Biofactors, 35(5), 417-428. doi:10.1002/biof.54
Cohen, P. (1993). Dissection of the protein phosphorylation cascades involved in insulin and growth factor action: Portland Press Limited. Biochemical Society Transactions,21(3),555-567. doi:10.1002/biof.54
Crandall, J. P., Oram, V., Trandafirescu, G., Reid, M., Kishore, P., Hawkins, M., . . . Barzilai, N. (2012). Pilot study of resveratrol in older adults with impaired glucose tolerance. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 67(12), 1307-1312. doi:10.1093 / gerona / glr235
Csiszar, A., Labinskyy, N., Pinto, J. T., Ballabh, P., Zhang, H., Losonczy, G., . . . Zhang, C. (2009). Resveratrol induces mitochondrial biogenesis in endothelial cells. American Journal of Physiology-Heart and Circulatory Physiology, 297(1), H13-H20. doi:10.1152/ajpheart.00368.2009
Das, S., & Das, D. K. (2007). Anti-inflammatory responses of resveratrol. Inflammation & allergy drug targets, 6(3), 168-173. doi:10.2174/187152807781696464
Davinelli, S., Sapere, N., Visentin, M., Zella, D., & Scapagnini, G. (2013). Enhancement of mitochondrial biogenesis with polyphenols: combined effects of resveratrol and equol in human endothelial cells. Immunity & Ageing, 10(1), 28. doi:10.1186/1742-4933-10-28
de Oliveira, M. R., Nabavi, S. F., Manayi, A., Daglia, M., Hajheydari, Z., & Nabavi, S. M. (2016). Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view. Biochimica et Biophysica Acta (BBA)-General Subjects, 1860(4), 727-745. doi:10.1016/j.bbagen.2016.01.017
del Mar Blanquer-Rosselló, M., Hernández-López, R., Roca, P., Oliver, J., & Valle, A. (2017). Resveratrol induces mitochondrial respiration and apoptosis in SW620 colon cancer cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 1861(2), 431-440. doi:10.1016/j.bbagen.2016.10.009
Ding, H., Jiang, N., Liu, H., Liu, X., Liu, D., Zhao, F., . . . Zhang, Y. (2010). Response of mitochondrial fusion and FISsion protein gene expression to exercise in rat skeletal muscle. Biochimica et Biophysica Acta (BBA)-General Subjects, 1800(3), 250-256. doi:10.1016/j.bbagen.2009.08.007
Dolinsky, V. W., Jones, K. E., Sidhu, R. S., Haykowsky, M., Czubryt, M. P., Gordon, T., & Dyck, J. R. (2012). Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. The Journal of Physiology, 590(11), 2783-2799. doi:10.1113/jphysiol.2012.230490
Dominy, J. E., & Puigserver, P. (2013). Mitochondrial biogenesis through activation of nuclear signaling proteins. Cold Spring Harbor perspectives in Biology, 5(7), a015008 doi:10.1101/cshperspect.a015008
Doyle JA, Shennan WM, Strauss RL. 1993. Effects of eccentric and concentric exercise on muscle glycogen replenishment. Journal of Applied Physiology, 74, 1848-1855. doi:org/10.1152/jappl.1993.74.4.1848
Drew, B., Phaneuf, S., Dirks, A., Selman, C., Gredilla, R., Lezza, A., . . . Leeuwenburgh, C. (2003). Effects of aging and caloric restriction on mitochondrial energy production in gastrocnemius muscle and heart. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 284(2), R474-R480. doi:10.1152/ajpregu.00455.2002
Duntas, L. (2011). Resveratrol and its impact on aging and thyroid function. Journal of Endocrinological Investigation, 34(10), 788-792. doi:10.3275/7926
Faghihzadeh, F., Adibi, P., & Hekmatdoost, A. (2015). The effects of resveratrol supplementation on cardiovascular risk factors in patients with non-alcoholic fatty liver disease: a randomised, double-blind, placebo-controlled study. British Journal of Nutrition, 114(5), 796-803. doi:10.1017/S0007114515002433
Fan, X., Hussien, R., & Brooks, G. A. (2010). H2O2-induced mitochondrial fragmentation in C2C12 myocytes. Free Radical Biology and Medicine, 49(11), 1646-1654. doi:10.1016/j.freeradbiomed.2010.08.024
Feng, Z., Bai, L., Yan, J., Li, Y., Shen, W., Wang, Y., . . . Chen, Y. (2011). Mitochondrial dynamic remodeling in strenuous exercise-induced muscle and mitochondrial dysfunction: regulatory effects of hydroxytyrosol. Free Radical Biology and Medicine, 50(10), 1437-1446. doi:10.1016/j.freeradbiomed.2011.03.001
Filler, K., Lyon, D., Bennett, J., McCain, N., Elswick, R., Lukkahatai, N., & Saligan, L. N. (2014). Association of mitochondrial dysfunction and fatigue: a review of the literature. BBA Clinical, 1, 12-23. doi:10.1016 / j.bbacli.2014.04.001
Frayn, K. (1983). Calculation of substrate oxidation rates in vivo from gaseous exchange. Journal of Applied Physiology, 55(2), 628-634. doi:10.1152/jappl.1983.55.2.628
Graf, B. A., Milbury, P. E., & Blumberg, J. B. (2005). Flavonols, flavones, flavanones, and human health: epidemiological evidence. Journal of Medicinal Food, 8(3), 281-290. doi:10.1089/jmf.2005.8.281
Gusba, J., Wilson, R., Robinson, D., & Graham, T. (2008). Interleukin‐6 and its mRNA responses in exercise and recovery: relationship to muscle glycogen. Scandinavian Journal of Medicine & Science in Sports, 18(1), 77-85. doi:10.1111/j.1600-0838.2006.00635.x
Higashida, K., Kim, S. H., Jung, S. R., Asaka, M., Holloszy, J. O., & Han, D. H. (2013). Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation. PLoS Biology, 11(7), e1001603. doi:10.1371/journal.pbio.1001603
Holloszy, J. O. (2005). Exercise-induced increase in muscle insulin sensitivity. Journal of Applied Physiology, 99(1), 338-343. doi:10.1152/japplphysiol.00123.2005
Huang, S., & Czech, M. P. (2007). The GLUT4 glucose transporter. Cell metabolism, 5(4), 237-252. doi:10.1016/j.cmet.2007.03.006
Ivy, J. L. (1998). Glycogen resynthesis after exercise: effect of carbohydrate intake. International Journal of Sports Medicine, 19(S 2), S142-S145. doi:10.1055/s-2007-971981 10.1055/s-2007-971981
Ivy, J. L., Goforth Jr, H. W., Damon, B. M., McCauley, T. R., Parsons, E. C., & Price, T. B. (2002). Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. Journal of Applied Physiology, 93(4), 1337-1344. doi:10.1152/japplphysiol.00394.2002
Jamurtas, A. Z., Fatouros, I. G., Deli, C. K., Georgakouli, K., Poulios, A., Draganidis, D., . . . Avloniti, A. (2018). The effects of acute low-volume HIIT and aerobic exercise on leukocyte count and redox status. Journal of Sports Science & Medicine, 17(3), 501-508.
Jensen, M. D. (2003). Fate of fatty acids at rest and during exercise: regulatorymechanisms. Acta physiologica Scandinavica, 178(4), 385-390. doi.org/10.1046/j.1365-201X.2003.01167.x
Jensen, J., Rustad, P. I., Kolnes, A. J., & Lai, Y.C. (2011). The role of skeletal muscle glycogen breakdown for regulation of insulin sensitivity by exercise. Frontiers in Physiology, 2, 112. doi:10.3389/fphys.2011.00112
Jeong, H. W., Cho, S. Y., Kim, S., Shin, E. S., Kim, J. M., Song, M. J., . . . Seo, D.-B. (2012). Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of SIRT1 and AMPK in rats. PloS One, 7(7), e40073. doi:10.1371/journal.pone.0040073
Joe, A. K., Liu, H., Suzui, M., Vural, M. E., Xiao, D., & Weinstein, I. B. (2002). Resveratrol induces growth inhibition, S-phase arrest, apoptosis, and changes in biomarker expression in several human cancer cell lines. Clinical Cancer Research, 8(3), 893-903.
Jonckheere, A. I., Smeitink, J. A., & Rodenburg, R. J. (2012). Mitochondrial ATP synthase: architecture, function and pathology. Journal of Inherited Metabolic Disease, 35(2), 211-225. doi:10.1007/s10545-011-9382-9
Kim, S.K., Joe, Y., Zheng, M., Kim, H. J., Yu, J.K., Cho, G. J., . . . Ryter, S. W. (2014). Resveratrol induces hepatic mitochondrial biogenesis through the sequential activation of nitric oxide and carbon monoxide production. Antioxidants & Redox Signaling, 20(16), 2589-2605. doi:10.1089/ars.2012.5138
Knop, F., Konings, E., Timmers, S., Schrauwen, P., Holst, J. J., & Blaak, E. (2013). Thirty days of resveratrol supplementation does not affect postprandial incretin hormone responses, but suppresses postprandial glucagon in obese subjects. Diabetic Medicine, 30(10), 1214-1218. doi:10.1111/dme.12231
Kuipers, H., Verstappen, F., Keizer, H., Geurten, P., & Van Kranenburg, G. (1985). Variability of aerobic performance in the laboratory and its physiologic correlates. International Journal of Sports Medicine, 6(4), 197-201. doi:10.1055/s-2008-1025839
Kuo, C.H., Hwang, H., Lee, M.-C., Castle, A. L., & Ivy, J. L. (2004). Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle. Journal of Applied Physiology, 96(2), 621-627. doi:10.1152/japplphysiol.00830.2003
Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., . . . Elliott, P. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell, 127(6), 1109-1122. doi:10.1016/j.cell.2006.11.013
Martins, L. A. M., Vieira, M. Q., Ilha, M., de Vasconcelos, M., Biehl, H. B., Lima, D. B., . . . Guma, F. C. R. (2015). The interplay between apoptosis, mitophagy and mitochondrial biogenesis induced by resveratrol can determine activated hepatic stellate cells death or survival. Cell Biochemistry and Biophysics, 71(2), 657-672. doi:10.1007/s12013-014-0245-5
McAnulty, L. S., Miller, L. E., Hosick, P. A., Utter, A. C., Quindry, J. C., & McAnulty, S. R. (2013). Effect of resveratrol and quercetin supplementation on redox status and inflammation after exercise. Applied Physiology, Nutrition, and Metabolism, 38(7), 760-765. doi:10.1139/apnm-2012-0455
Metzger, S., Goldschmidt, N., Barash, V., Peretz, T., Drize, O., Shilyansky, J., . . . Chajek-Shaul, T. (1997). Interleukin-6 secretion in mice is associated with reduced glucose-6-phosphatase and liver glycogen levels. American Journal of Physiology-Endocrinology and Metabolism, 273(2), E262-E267. doi:10.1152/ajpendo.1997.273.2.E262
Mishra, P., Varuzhanyan, G., Pham, A. H., & Chan, D. C. (2015). Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization. Cell Metabolism, 22(6), 1033-1044. doi:10.1016/j.cmet.2015.09.027
Mooney, R. A. (2007). Counterpoint: interleukin-6 does not have a beneficial role in insulin sensitivity and glucose homeostasis. Journal of Applied Physiology, 102(2), 816-818. doi:10.1152/japplphysiol.01208a.2006
Movahed, A., Nabipour, I., Lieben Louis, X., Thandapilly, S. J., Yu, L., Kalantarhormozi, M., . . . Netticadan, T. (2013). Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Evidence-Based Complementary and Alternative Medicine,.1-11. doi:10.1155/2013/851267
Mukherjee, S., Dudley, J. I., & Das, D. K. (2010). Dose-dependency of resveratrol in providing health benefits. Dose Response, 8(4), 9-15. doi:10.2203/dose-response.09-015.Mukherjee
Muñoz, V. R., Gaspar, R. C., Kuga, G. K., da Rocha, A. L., Crisol, B. M., Botezelli, J. D., . . . Cintra, D. E. (2018). Exercise increases Rho‐kinase activity and insulin signaling in skeletal muscle. Journal of Cellular Physiology, 233(6), 4791-4800. doi:10.1002 / jcp.26278
Ni, H.M., Williams, J. A., & Ding, W.X. (2015). Mitochondrial dynamics and mitochondrial quality control. Redox Biology, 4, 6-13. doi: 10.1016/j.redox.2014.11.006
Ostrowski, K., Rohde, T., Asp, S., Schjerling, P., & Pedersen, B. K. (1999). Pro‐and anti‐inflammatory cytokine balance in strenuous exercise in humans. The Journal of Physiology, 515(1), 287-291. doi: 10.1111/j.1469-7793.1999.287ad.x
Pawlak DP, Genyer GS, Brand-Miller JC. (2000). Long term feeding with high glycemic index starch leads to obesity in mature rats. Proceedings of the Nutrition Society of Australia;24:215; (abstract)
Pedersen, B., Steensberg, A., & Schjerling, P. (2001). Muscle-derived interleukin-6: possible biological effects. The Journal of Physiology, 536(2), 329-337. doi:10.1111/j.1469-7793.2001.0329c.xd
Pedersen, B. K., & Febbraio, M. A. (2008). Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiological Reviews, 88(4), 1379-1406. doi:10.1152/physrev.90100.2007
Penalva, R., Esparza, I., Larraneta, E., González-Navarro, C. J., Gamazo, C., & Irache, J. M. (2015). Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. Journal of Agricultural and Food Chemistry, 63(23), 5603-5611. doi:10.1021/jf505694e
Petersen, A., & Pedersen, B. (2006). The role of IL-6 in mediating the anti inflammatory. J Physiol Pharmacol, 57(10), 43-51.
Picard, M., Gentil, B. J., McManus, M. J., White, K., St. Louis, K., Gartside, S. E., . . . Turnbull, D. M. (2013). Acute exercise remodels mitochondrial membrane interactions in mouse skeletal muscle. Journal of Applied Physiology, 115(10), 1562-1571. doi:10.1152/japplphysiol.00819.2013
Posadino, A. M., Cossu, A., Giordo, R., Zinellu, A., Sotgia, S., Vardeu, A., . . . Pintus, G. (2015). Resveratrol alters human endothelial cells redox state and causes mitochondrial-dependent cell death. Food and Chemical Toxicology, 78, 10-16. doi:10.1016/j.fct.2015.01.017
Poulsen, M. M., Vestergaard, P. F., Clasen, B. F., Radko, Y., Christensen, L. P., Stødkilde-Jørgensen, H., . . . Jørgensen, J. O. L. (2013). High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes, 62(4), 1186-1195. doi:10.2337/db12-0975
Powers, S. K., & Jackson, M. J. (2008). Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiological Rreviews, 88(4), 1243-1276. doi:10.1152/physrev.00031.2007
Price, N. L., Gomes, A. P., Ling, A. J., Duarte, F. V., Martin-Montalvo, A., North, B. J., . . . Teodoro, J. S. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metabolism, 15(5), 675-690. doi:10.1016/j.cmet.2012.04.003
Ramos-Jiménez, A., Hernández-Torres, R. P., Torres-Durán, P. V., Romero-Gonzalez, J., Mascher, D., Posadas-Romero, C., & Juárez-Oropeza, M. A. (2008). The respiratory exchange ratio is associated with fitness indicators both in trained and untrained men: a possible application for people with reduced exercise tolerance. Clinical Medicine. Circulatory, Respiratory and Pulmonary Medicine, 2, CCRPM. S449. doi:10.4137/CCRPM.S449
R Neves, A., Lucio, M., LC Lima, J., & Reis, S. (2012). Resveratrol in medicinal chemistry: a critical review of its pharmacokinetics, drug-delivery, and membrane interactions. Current Medicinal Chemistry, 19(11), 1663-1681. doi:10.2174/092986712799945085
Roach, W. G., Chavez, J. A., Mîinea, C. P., & Lienhard, G. E. (2007). Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1. Biochemical Journal, 403(2), 353-358. doi:10.1042/BJ20061798
Robb, E. L., Moradi, F., Maddalena, L. A., Valente, A. J., Fonseca, J., & Stuart, J. A. (2017). Resveratrol stimulates mitochondrial fusion by a mechanism requiring mitofusin-2. Biochemical and Biophysical Research Communications, 485(2), 249-254. doi:10.1016/j.bbrc.2017.02.102
Robitaille, J., Houde, A., Lemieux, S., Pérusse, L., Gaudet, D., & Vohl, M.-C. (2007). Variants within the muscle and liver isoforms of the carnitine palmitoyltransferase I (CPT1) gene interact with fat intake to modulate indices of obesity in French-Canadians. Journal of Molecular Medicine, 85(2), 129-137. doi:10.1007/s00109-006-0116-7
Rodgers, J. T., Lerin, C., Gerhart-Hines, Z., & Puigserver, P. (2008). Metabolic adaptations through the PGC‐1α and SIRT1 pathways. FEBS Letters, 582(1), 46-53. doi:10.1016/j.febslet.2007.11.034
Santel, A., Frank, S., Gaume, B., Herrler, M., Youle, R. J., & Fuller, M. T. (2003). Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. Journal of Cell Science, 116(13), 2763-2774. doi:10.1242/jcs.00479
Sato, M., Maulik, G., Bagchi, D., & Das, D. K. (2000). Myocardial protection by protykin, a novel extract of trans-resveratrol and emodin. Free Radical Research, 32(2), 135-144. doi:10.1080/10715760000300141
Scarpulla, R. C. (2008). Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiological Reviews, 88(2), 611-638. doi:10.1152/physrev.00025.2007
Scribbans, T. D., Ma, J. K., Edgett, B. A., Vorobej, K. A., Mitchell, A. S., Zelt, J. G., . . . Gurd, B. J. (2014). Resveratrol supplementation does not augment performance adaptations or fibre-type–specific responses to high-intensity interval training in humans. Applied Physiology Nutrition and Metabolism, 39(11), 1305-1313. doi:10.1139/apnm-2014-0070
Sergides, C., Chirilă, M., Silvestro, L., Pitta, D., & Pittas, A. (2016). Bioavailability and safety study of resveratrol 500 mg tablets in healthy male and female volunteers. Experimental and Therapeutic Medicine, 11(1), 164-170. doi:10.3892/etm.2015.2895
Shen, Y., Xu, X., Yue, K., & Xu, G. (2015). Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high‐fat diet‐fed rats. Obesity, 23(5), 1000-1006. doi:10.1002/oby.21056
Spanier, G., Xu, H., Xia, N., Tobias, S., Deng, S., Wojnowski, L., . . . Li, H. (2009). Resveratrol reduces endothelial oxidative stress by modulating the gene expression of superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPx1) and NADPH oxidase subunit (Nox4). Journal of Physiol and Pharmacology, 60(4), 111-116.
Summerlin, N., Soo, E., Thakur, S., Qu, Z., Jambhrunkar, S., & Popat, A. (2015). Resveratrol nanoformulations: challenges and opportunities. International Journal of Pharmaceutics, 479(2), 282-290. doi:10.1016/j.ijpharm.2015.01.003
Sung, M. M., Byrne, N. J., Robertson, I. M., Kim, T. T., Samokhvalov, V., Levasseur, J., . . . Denou, E. (2017). Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 312(4), H842-H853. doi:10.1152/ajpheart.00455.2016
Švajger, U., & Jeras, M. (2012). Anti-inflammatory effects of resveratrol and its potential use in therapy of immune-mediated diseases. International Reviews of Immunology, 31(3), 202-222. doi:10.3109/08830185.2012.665108
Trela, B. C., & Waterhouse, A. L. (1996). Resveratrol: isomeric molar absorptivities and stability. Journal of Agricultural and Food Chemistry, 44(5), 1253-1257. doi:10.1021/jf9504576
Ungvari, Z., Orosz, Z., Rivera, A., Labinskyy, N., Xiangmin, Z., Olson, S., . . . Csiszar, A. (2007). Resveratrol increases vascular oxidative stress resistance. American Journal of Physiology-Heart and Circulatory Physiology, 292(5), H2417-H2424. doi:10.1152/ajpheart.01258.2006
Voduc, N., La Porte, C., Tessier, C., Mallick, R., & Cameron, D. W. (2014). Effect of resveratrol on exercise capacity: a randomized placebo-controlled crossover pilot study. Applied Physiology, Nutrition and Metabolism, 39(10), 1183-1187. doi:10.1139/apnm-2013-0547
Wallace, D. C. (2005). A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annual Review Genetics., 39, 359-407.
Walle, T. (2011). Bioavailability of resveratrol. Annals of the New York Academy of Sciences, 1215(1), 9-15. doi: 10.1111/j.1749-6632.2010.05842.x
Wang, L., Jia, Y., Rogers, H., Suzuki, N., Gassmann, M., Wang, Q., . . . Noguchi, C. T. (2013). Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1α and AMPK activation. The International Journal of Biochemistry & Cell Biology, 45(7), 1155-1164. doi:10.1016/j.biocel.2013.03.007
Wang, S., Liang, X., Yang, Q., Fu, X., Rogers, C. J., Zhu, M., . . . Du, M. (2015). Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International Journal of Obesity, 39(6), 967-976. doi:10.1038/ijo.2015.23
Westerblad, H., Bruton, J. D., & Katz, A. (2010). Skeletal muscle: energy metabolism, fiber types, fatigue and adaptability. Experimental Cell Research, 316(18), 3093-3099. doi:10.1016/j.yexcr.2010.05.019
Westermann, B. (2010). Mitochondrial fusion and FISsion in cell life and death. Nature Reviews Molecular Cell Biology, 11(12), 872-884. doi:10.1038/nrm3013
Williams, C. B., Zelt, J. G., Simpson, C. A., & Gurd, B. J. (2013). The impact of a single dose of resveratrol on intramuscular signaling and whole body fat oxidation in humans. The FASEB Journal, 27(1 Supplement), lb830-lb830.
Wirawan, E., Walle, L. V., Kersse, K., Cornelis, S., Claerhout, S., Vanoverberghe, I., . . . Declercq, W. (2010). Caspase-mediated cleavage of Beclin-1 inactivates BECLIN-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death & Disease, 1(1), e18. doi:10.1038/cddis.2009.16
Wojtaszewski, J. F., Hansen, B. F., Kiens, B., Markuns, J., Goodyear, L., & Richter, E. (2000). Insulin signaling and insulin sensitivity after exercise in human skeletal muscle. Diabetes, 49(3), 325-331. doi:10.2337/diabetes.49.3.325
Wu, C. L., Nicholas, C., Williams, C., Took, A., & Hardy, L. (2003). The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. British Journal of Nutrition, 90(6), 1049-1056. doi:10.1079/BJN20031006
Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., . . . Scarpulla, R. C. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell, 98(1), 115-124. doi:10.1016/S0092-8674(00)80611-X
Xiao, N. N. (2015). Effects of resveratrol supplementation on oxidative damage and lipid peroxidation induced by strenuous exercise in rats. Biomolecules & Therapeutics, 23(4), 374-378. doi:10.4062/biomolther.2015.015
Yen, C.C., Chang, C.W., Hsu, M.C., & Wu, Y.T. (2017). Self-nanoemulsifying drug delivery system for resveratrol: enhanced oral bioavailability and reduced physical fatigue in rats. International Journal of Molecular Sciences, 18(9), 1853. doi:10.3390/ijms18091853
Yoshino, J., Conte, C., Fontana, L., Mittendorfer, B., Imai, S.-i., Schechtman, K. B., . . . Patterson, B. W. (2012). Resveratrol supplementation does not improve metabolic function in nonobese women with normal glucose tolerance. Cell Metabolism, 16(5), 658-664. doi:10.1016/j.cmet.2012.09.015
Zare Javid, A., Hormoznejad, R., Yousefimanesh, H. A., Zakerkish, M., Haghighi‐zadeh, M. H., Dehghan, P., & Ravanbakhsh, M. (2017). The impact of resveratrol supplementation on blood glucose, insulin, insulin resistance, triglyceride, and periodontal markers in type 2 diabetic patients with chronic periodontitis. Phytotherapy Research, 31(1), 108-114. doi:10.1002/ptr.5737
Zhang, J. (2006). Resveratrol inhibits insulin responses in a SIRT1-independent pathway. Biochemical Journal, 397(3), 519-527. doi:10.1042/BJ20050977
Zong, H., Ren, J. M., Young, L. H., Pypaert, M., Mu, J., Birnbaum, M. J., & Shulman, G. I. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proceedings of the National Academy of Sciences, 99(25), 15983-15987. doi:10.1073 / pnas.252625599
Zuniga, J. M., Housh, T. J., Camic, C. L., Bergstrom, H. C., Traylor, D. A., Schmidt, R. J., & Johnson, G. O. (2012). Metabolic parameters for ramp versus step incremental cycle ergometer tests. Applied Physiology, Nutrition, and Metabolism, 37(6), 1110-1117. doi: 10.1139/h2012-098