研究生: |
康風都 |
---|---|
論文名稱: |
女子短距離選手無氧跑步能力之研究 Study on anaerobic running capacity of short-distance female |
指導教授: |
林正常
Lin, Jung-Charng |
學位類別: |
碩士 Master |
系所名稱: |
體育學系 Department of Physical Education |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
中文關鍵詞: | 短距離選手 、無氧跑步能力 、無氧動力測驗 |
英文關鍵詞: | short-distance runner, anaerobic running capacity, anaerobic test |
論文種類: | 學術論文 |
相關次數: | 點閱:397 下載:20 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在探討以不同短距離最佳跑步成績推算速度-時間非線性模式 (V-t) 、速度-時間倒數線性模式 (V-1/t)、距離-時間線性模式 (D-t)、三參數非線性模式(3P) 所得之無氧跑步能力(anaerobic running capacity,簡稱ARC) 與垂直跳測驗、短距離最大努力跑步測驗、Margaria-Kalamen動力測驗和Wingate 動力測驗結果的相關情形,以便確認跑步ARC的效度。
本研究以16名女子短距離跑步選手為受試對象,依平衡次序的方式,進行田徑場五個不同距離(50m、100m、200m、300m和400m)的最大跑步能力測驗,以求得各數學模式之ARC。之後再進行垂直跳測驗、Margaria-Kalamen動力測驗和Wingate 動力測驗。測驗結果先以單因子重覆量數變異數分析,考驗各種測量方法所測得之ARC差異,再以皮爾遜積差相關探討各種數學模式之跑步ARC與不同無氧運動能力測驗結果間的相關與差異情形。
各數學模式所推算出來的ARC皆達顯著差異水準,特別是3P非線性模式所推算的ARC較能代表全部無氧能量所能作功的距離。各數學模式ARC與各種無氧動力測驗之相關中,只發現兩非線性模式之ARC與各無氧動力測驗的相關達顯著水準,而以3P非線性模式之ARC與各無氧動力測驗相關較高(r=.810~.830),為評估女子短距離選手無氧跑步能力之最佳數學模式。
The purposes of this study were to determine the anaerobic running capacity (ARC) and to study the correlation between ARC values and running performance. Sixteen female runners were tested on five short-distance runs with balanced order. The ARC data were obtained from the calculations using non-linear velocity-time model, linear model of velocity-1/time model, linear model of distance-time and non-linear model of three parameters. ARC data were analyzed by ANOVA with one-way repeated measures to study the significance of ARC values among different models. To further study the correlation between ARC values and anaerobic capacity tests, the measurements of vertical jump, Margaria-Kalamen test, and Wingate test on runners were also conducted. Pearson’s product-moment statistic model was employed to determine the correlation between the ARC values obtained from the mathematical model and anaerobic capacity. It was found that ARC values calculated from different models were significantly different. While, the ARC that determined by the 3P model was the best predictor of all the anaerobic running distance tests. Correlation between ARC and anaerobic capacity revealed significant correlation between two non-linear models and anaerobic capacity, and higher correlation was found between the ARC determined by the 3P model and anaerobic capacity(r=.810~.830). It is concluded that 3P non-linear model is the best model for evaluating ARC in female short-distance runners.
一、中文部份
王順正。(1992)。垂直跳動力測驗的探討。台北:中華民國大專院校體育總會八十一年度體育學術研討會專刊,349-362。
王順正。(1998)。長跑選手臨界速度跑的生理反應研究。國立台灣師範大學體育研究所博士論文,台北市,台灣。
王順正、林正常、莊泰源與郭堉圻。(1998)。實驗室與田徑場跑步速度耐力模式測驗結果的比較。體育學報,26,289-296。
吳忠芳、林正常與王順正。(1998)。青少年游泳選手臨界速度數學推算模式之比較研究。體育學報,25,149-158。
吳忠芳、王順正、林玉瓊、莊泰源與林正常。(1999)。長跑選手無氧跑步能力判定法之比較研究。體育學報,28。
呂香珠。(1991)。無氧動力測驗的新詮釋及其應用時機。中華體育,16,61-69。
林正常。(1993)。運動科學與訓練--運動教練手冊。台北 : 銀禾文化。
林正常。(1996)。運動生理學實驗指引。台北 : 師大書苑。
二、 英文部份
Bangsbo, J., Michalsic, L., and Petersen, A.(1993). Accumulated O2 deficit during intense exercise and muscle characteristics of elite athletes. International Journal of Sports Medicine, 14 , 207-213.
Bulbulian, R., Wilcox, A. R., and Darabos, B. L.(1986). Anaerobic contribution to distance running performance of trained cross-country athletes. Medicine and Science in Exercise and Sports, 18 , 107-113.
Bulbulian, R., Jeong, J. W., and Murphy, M.(1996). Comparsion of anaerobic components of the Wingate and critical power tests in males and females. Medicine and Science in Exercise and Sports, 28 , 1336-1341.
Craig, I. S., and Morgan, D. W.(1998). Relationship between 800-m running performance and accumulated oxygen deficit in middle-distance runners. Medicine and Science in Exercise and Sports, 30 , 1631-1636.
DeVries, H. A., and Moritani, T.(1980). A simple, direct method for estimation of aerobic power and anaerobic threshold. Abstract. Medicine and Science in Exercise and Sports, 12 , 86.
Gaesser, G. A,, Carnevale, T. J., Garfinkel, A., Walter, D. O., and Womack, C. J.(1995). Estimation of critical power with nonlinear and linear models. Medicine and Science in Exercise and Sports, 27 , 1430-1438.
Green, S., Bishop, D., and Jenkins, D.(1995). Effect of end-point cadence on the maximal work-time relationship. European Journal of Applied Physiology , 71, 559-561.
Green, S., and Dawson, B. T.(1996). Methodological effects on the VO2-power regression and the accumulated O2 deficit. Medicine and Science in Exercise and Sports, 28 , 392-397.
Hill, D. W., and Smith, J. C.(1994). A method to ensure the accuracy of estimates of anaerobic capacity derived using the critical power concept. The Journal Sports Medicine and Physical Fitness, 34 , 23-37.
Hill, D. W., Smith, J. C., Chasteen, S. D., Leuschel, J. L. and Miller, S. A.(1994). Methodological considerations in estimation of parameters of the power-time relationship. Abstract. Medicine and Science in Exercise and Sports, 26 , 5 , p44.
Housh, T. J., DeVries, H. A., Housh, D. J., Tichy, M. W., Smyth, K. D., and Tichy, A. M.(1991). The relationship between critical power and the onset of blood lactate accumulation. The Journal Sports Medicine and Physical Fitness, 31 , 31-36.
Housh, T. J., Johnson, G.O., McDowell, S. L., Housh, D. J. and Pepper, M. L.(1992). The relationship between anaerobic running capacity and peak plasma lactate. The Journal Sports Medicine and Physical Fitness, 32 , 117-122.
Housh, D. J., Housh, T. J. and Bauge, S. M.(1990). A methodological consideration for the determination of critical power and anaerobic work capacity. Research Quarterly for Exercise and Sport, 61 , 406-409.
Hopkins, W. G., Edmund, I. M., Hamilton, B.H., Macfarlane, D. J. and Ross, B. H. (1989). Relation between power and endurance for treadmill running of short duration. Ergonomics, 32 , 1565-1571.
Jenkins, D. G. and Quigley, B. M.(1991). The y-intercept of the critical power function as a measure of anaerobic work capacity. Ergonomics,34 , 13-22.
Kalamen, J.(1968). Measurement of maximum muscular power in man. Doctoral Dissertation, The Ohio State University.
Margaria, R., Aghemo, P. and Rovelli, E.(1966). Measurement of muscular power (anaerobic) in man. Journal of Applied Physiology, 21 , 1662-1664.
Medbo, J. I., Mohn, A., Tabata, I., Bahr, R., Vaage, O. and Sejersted, O. M.(1988). Anaerobic capacity determined by maximal accumulated O2 deficit. Journal of Applied Physiology, 64 , 50-60.
Monod, H. and Scherrer, J.(1965). The work capacity of a synergic muscular group. Ergonomics, 8 , 329-338.
Morton, R. H.(1996). A 3-parameter critical power model. Ergonomics,39 , 611-619.
Morton, R. H. and Hodgson, D. J.(1996). The relationship between power output and endurance : a brief review. European Journal Applied Physiology,73 , 491-502.
Nebelsick-Gullett, L.J., Housh, T. J., Johnson, G. O. and Bauge, S. M.(1988). A comparison between methods of measuring anaerobic work capacity. Ergonomics,31 , 1413-1419.
Toussaint, H.M., Wakayoshi, K., Hollander, A.P. and Ogita, F.(1998). Simulated front crawl swimming performance related to critical speed and critical power. Medicine and Science in Exercise and Sports, 30 , 144-151.
Vandewalle, H., Kapitaniak, B., Grun, S., Raveneau, S. and Monod, H.(1989). Comparison between a 30-s all-out test and a time-work test on a cycle ergometer. European Journal Applied Physiology, 58 , 375-381.
Vandewalle, H., Vautier, J. F., Kachouri, M., Lechevalier, J-M and Mond, H.(1997). Work-exhaustion time relationships and the critical power concept - a critical review. The Journal Sports Medicine and Physical Fitness, 37 , 89-102.
Weyand, P. G. and Cureton, K. J.(1993). Peak oxygen deficit during one and two legged cycling in men and women. Medicine and Science in Exercise and Sports, 25 , 584-591