簡易檢索 / 詳目顯示

研究生: 張宏維
Hung Wei, Chang
論文名稱: 表面聲波氣體及生化感測器研製與應用
Preparation and Application of Surface Acoustic Wave Gas- and Bio-Sensor
指導教授: 施正雄
Shih, Jeng-Shong
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2007
畢業學年度: 96
語文別: 中文
論文頁數: 164
中文關鍵詞: 剪力水平表面聲波碳六十免疫感測器胰島素
英文關鍵詞: Shear horizontal surface acoustic wave, SH-SAW, C60, Fullerene, Immunosensor, insulin
論文種類: 學術論文
相關次數: 點閱:699下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究建立表面聲波氣體及生化感測器,以偵測有機氣體及生化物質,例如:蛋白質和胰島素。在本研究中研製一低價位的氣體表面聲波感測器以偵測微量有機氣體污染物,本研究亦建立剪力水平表面聲波液體感測器已偵測血紅素、肌紅素、麥膠蛋白及胰島素等。

    氣相表面聲波感測器是利用低價位(<10美金)通訊用SAW晶片及頻率計數器和RS-232組裝而成,並自行撰寫電腦程式來做頻率訊號收集及數據收集處理此氣體表面聲波感測器用來偵測各種空氣污染物例如:有機酸、醛類、醇類、烷類、烯類及炔類等,並且利用這自組裝的表面聲波感測器所構成的多頻道系統也用來同時偵測各種不同的空氣污染物。

    剪力水平表面聲波感測器塗佈有C60/蛋白質,例如C60/血紅素, C60/肌紅素,C60/榖膠蛋白,C60/抗胰島素等,分別來偵測水溶液中特定待測物,例如:抗血紅素抗體,抗肌紅素抗體,抗榖膠蛋白抗體,以及胰島素。血紅素和肌紅素分別與C60之間的作用力及固定化是利用塗佈有C60的剪力水平表面聲波感測器對血紅素和肌紅素吸附所引起的頻率變化只有部分回復的現象以及FT-IR光譜中有新的吸收峰產生來判斷,C60與血紅素之間有化學鍵的生成,利用這樣的化學鍵生成來把水溶液中的血紅素固定在剪力水平表面聲波感測器表面上。而利用這樣固定有C60/血紅素或者C60/肌紅素的剪力水平表面聲波感測器來分別偵測水溶液中的抗血紅素和抗肌紅素抗體,兩者的靈敏度分別是0.14 和1.27 kHz/(g/mL),偵測下限分別是0.32 以及 0.035 g/mL。此外,雙頻道塗佈C60-Hb及C60-Mb表面聲波感測器亦被以研製以同時偵測血紅素和肌紅素抗體。
    而塗佈有C60/抗胰島素抗體的剪力水平表面聲波感測器亦被研製並用來偵測水溶液中的胰島素。此剪力水平表面聲波胰島素感測器在人體胰島素濃度範圍內,感測器的頻率感應訊號和胰島素濃度有良好線性關係及很好的靈敏度(130 Hz/pM),而感測器的偵測下限是0.58pM。

    Surface acoustic wave gas and Bio-sensors were developed to detect organic gases and biospecies, e.g. proteins and insulin. An inexpensive surface acoustic wave (SAW) sensor system was developed and used to detect trace pollutants in the air. For liquid environment, a shear-horizontal surface acoustic wave sensor system was established to apply in immunosensor system to detect various samples, e.g. hemoglobin, myoglobin, gliadin, and insulin, in aqueous solution.

    The homemade SAW gas sensor is composed of a low cost (< 10 $USD) SAW chip for correspondence, an inexpensive counter and RS-232 computer interface with a written computer program for frequency signal acquisition and data processing. With different adsorbent coatings, various SAW gas sensors were prepared to detect organic pollutants, e.g. carboxylic acids, aldehydes, alchohols, alkanes, alkenes, alkynes in the air. Furthermore, the multi-channel SAW gas detection system was also developed to detect various air pollutants simultaneously.

    Shear horizontal surface acoustic wave sensors immobilized with C60/proteins, e.g. C60/hemoglobin(C60-Hb), C60/myoglobin(C60-Mb), and C60/gliadin, and C60/anti-insulin coatings were prepared and applied to detect specific antibodies, e.g. anti-hemoglobin, anti-myoglobin, anti-gliadin, insulin, respectively, in liquid environments. The immobilizations of hemoglobin and myoglobin onto fullerene were studied through a C60-coated SH-SAW sensor system in liquid. The partially irreversible responses for these proteins were observed by the desorption study, which implied that fullerene could chemically react with these proteins. Both C60-Hb and C60-Mb coating materials were successfully prepared and identified with an FTIR spectrometer. The C60-Hb and C60-Mb coated SH-SAW immunosensors exhibited linear frequency responses to the concentration of anti-Hb and anti-Mb antibodies with sensitivities of 0.14 and 1.27 kHz/ (g/mL), respectively. Both C60-protein coated SH-SAW immunosensorms showed detection limits of 0.32 and 0.035 g/mL for anti-Hb and anti-Mb antibodies, respectively, in aqueous solution. In addition, dual channel SAW immunosensors coated with C60-Hb and C60-Mb were prepared and applied to detect anti-Hb and anti-Mb antibodies simultaneously.

    An immobilized fullerene C60/anti-insulin antibody was prepared and applied in shear horizontal surface acoustic wave (SH-SAW) immunosensors to detect insulin in aqueous solutions. Within the range of normal human insulin concentration, the SH-SAW immunosensors immobilized with C60/anti-insulin coating exhibited linear frequency responses to the concentration of insulin with sensitivity of 130 Hz/pM. The SH-SAW immunosensor with C60/anti-insulin coating showed detection limit of 0.58 pM for insulin in aqueous solution.

    ABSTRACT 1 中文摘要 4 表目錄 13 第一章 緒論 14 1-1 生化感測器 14 1-2 抗體與抗原 23 1-3 碳六十 26 1-4 表面聲波感測器 28 1-4-1 表面聲波 28 1-4-2 壓電效應 29 1-4-3 雷力表面聲波(Rayleigh surface acoustic wave) 32 1-4-4 微擾理論(Perturbation theory) 39 1-4-5 表面聲波與液體接觸 47 1-4-6 剪力水平表面聲波感測器 45 第二章 氣體表面聲波感測器研製與應用 52 2-1 前言 52 2-2 氣體表面聲波感測器組裝測試 55 2-2-1通訊用表面聲波元件結構 55 2-2-2 表面聲波感測器組裝 61 2-2-3 計頻器讀取程式 63 2-3 氣體表面聲波感測器之應用 72 2-3-1 單頻道氣體感測器應用 72 2-3-3 多頻道氣體感測器應用 73 2-4 結語 77 第三章 蛋白質免疫表面聲波感測器 78 3-1 前言 78 3-2 實驗 80 3-2-1剪力水平表面聲波感測器系統 80 3-2-2藥品 81 3-3-3 多頻道液體表面聲波感測器 81 3-3 結果與討論 83 3-3-1 C60與血紅素之間作用力探討 83 3-2-2最適塗佈條件探討 89 3-3-4抗血紅素抗體濃度效應 95 3-3-5溫度與酸鹼度對於感測器的影響 97 3-3-6感測器再現性 99 3-3-7 碳60-血紅素的活性 100 3-3-7 C60-肌紅素的剪力水平表面聲波生化感測器 104 3-3-8 剪力水平表面聲波感測器偵測水中抗麩質抗體 107 3-3-9 多頻道液體生化感測器 110 3-4 結語 112 第四章 胰島素免疫生化感測器 113 4-1 前言 113 在這個部分,利用自行設計的震盪線路及溫度控制器來做為剪力水平表面聲波感測器系統,再利用修飾有C60抗體的剪力水平表面聲波感測器來測量水溶液中的胰島素,利用這樣方式可以達到快速且簡便方式來作為快速測量胰島素方式。 117 4-2實驗 119 4-2-1 藥品 119 4-2-2系統溫度測量與控制 119 4-2-2-1溫度測量 120 4-2-2-2 脈波寬度調變(Pulse Width Modulation; PWM) 124 4-2-2-3比例-積分-微分控制器(PID)應用 129 4-2-3震盪線路 138 4-3 結果與討論 143 4-3-1 C60與抗體之間作用力 143 4-3-2抗胰島素抗體濃度效應 143 4-3-2抗體與抗原之間反應 146 4-3-4胰島素濃度對頻率變化的影響 148 4-3-5 再現性與干擾物影響 150 4-4 結語 153 結論 154 參考文獻 155

    1. 張景裕, 張獻彰, 微奈米生物感測器系統在生物醫學的應用, 科儀新知28 (2006) 17-25.
    2. P. B. Luppa, L. J. Sokoll, D. W. Chan, Immunosensors—principles and applications to clinical chemistry Chinica Chimica Acta 314 (2001) 1-26.
    3. 田蔚城, 生物技術的發展與應用, 1997
    4. S. Michael, D. Panos, L. Nickolay, T. Christopher, Microcantilever Transducers: A New Approach in Sensor Technology, Anal. Chem. 1 (2002) 569A-575A.
    5. R. Raiteri, M. Grattarola, H.J. Butt, P. Skladal, Micromechanical cantilever based biosensors, Sens. Actuators, B, Chem. 79 (2001) 115-126.
    6. R. Berger, Micromechanical Cantilevers: Sensors for femtoscale science, Ph. D thesis, Basel, 1997.
    7. G. G. Guilbault, Determination of formaldehyde with an enzyme coated piezoelectric crystal, Anal. Chem. 55 (1983) 1682-1684.
    8. C. W. Chuang, J. S. Shih, Preparation and Application of Immobilized -Glucose Oxidase Enzyme in Fullerene C60-Coated Piezoelectric Quartz Crystal Glucose Sensor, Sens. Actuators, B, Chem. 81 (2001) 1-8..
    9. N.Y. Pan, J.S. Shih, Piezoelectric crystal immunosensors based on immobilized fullerene C60-antibodies, Sens. Actuators, B, Chem. 98 (2004) 180–187.
    10. C. C. Chen, H. W. Chang, J. S. Shih, Optical piezoelectric crystal sensor for L-amino acid esters based on immobilized C60-lipase enzyme, Sens. Actuators, B, Chem. 123 (2007) 1025-1033.
    11. Z. Lin, C.M. Yip, I.S. Joseph, M.D. Ward, Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids, Anal. Chem. 65 (1993) 1546–1551.
    12. J. J. Whiting, C. J. Lu, E. T. Zellers, R. D. Sacks, A portable, highspeed, vacuum-outlet GC vapor analyzer employing air as carrier gas and surface acoustic wave detection, Anal. Chem. 73 (2001) 4668–4675.
    13. H. B. Lin, J. S. Shih, Fullerene C60-cryptand coated surface acoustic wave quartz crystal sensor for organic vapors, Sens. Actuators, B, Chem. 92 (2003) 243–254.
    14. L. DeQuan, M. Min, Surface acoustic wave microsensors based on cyclodextrin coatings, Sens. Actuators, B, Chem. 69 (2000) 75–84.
    15. F. Bender, A. Skrypnik, A. Voigt, J. Marcoll, M. Rapp, Selective detection of HFC and HCFC refrigerants using a surface acoustic wave sensor system, Anal. Chem. 75 (2003) 5262–6266.
    16. U. Stahl, M. Rapp, T. Wessa, Adhesives: a new class of polymer coatings for surface acoustic wave sensors for fast and reliable process control applications, Anal. Chim. Acta 450 (2001) 27–36.
    17. H. P. Hsu, J.S. Shih, Surface Acoustic Wave Quartz Crystal Olefin Sensor Based on Ag(I)/Cryptand-22, Sens. Actuators, B, Chem 114 (2006) 720-727.
    18. J. Freudenberg, M. von Schickfus, S. Hunklinger, A SAW immunosensor for operation in liquid using a SiO2 protective layer, Sens. Actuators, B, Chem. 76 (2001) 147–151.
    19. K. Z. Kourosh, K.Z. Kourosh,W.Wojtek, Y.Y. Chen, F. Benjamin, G. Kosmas, Novel love mode surface acoustic wave based immunosensors, Sens. Actuators, B, Chem. 91 (2003) 143–147.
    20. K. Lange, F. Bender, A. Voigt, H. Gao, M. Rapp, A surface acoustic wave biosensor concept with low flow cell volumes for label-free detection, Anal. Chem. 75 (2003) 5561–5566.
    21. Z. Li, Y. Jones, J. Hossenlopp, R. Cernosek, F. Josse, Design considerations for high sensitivity guided SH-SAW chemical sensor for detection in aqueous environments, Freq. Control Symp. Exposition (2004) 185–192.
    22. J. Kondoh, K. Saito, S. Shiokawa, H. Suzuki, Multichannel shear horizontal surface acoustic wave microsensor for liquid characterization, IEEE Ultrason. Symp. (1995) 445–449.
    23. D. L. Nelson, M. M. Cox, Lehninger principles of biochemistry, 3rd ed., Worth, New York, 2000
    24. http://waynesword.palomar.edu/molecu1.htm
    25. http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookIMMUN.html
    26. Peter Parham原著;黎煥耀編譯, 免疫系統, 2002
    27. 李家維等編譯, 生物學, 1999.
    28. H. W. Kroto, J. R. Hoath, S. C. Bricn, R. F. Curl, R. E. Smalley, C60 Buckminster fullerene, Nature 318 (1985) 162-163.
    29. W. Kratschmer, D. R. Huffman, Solid C60: a new form of carbon, Nature 347 (1990) 354-358.
    30. R. E. Haufler, J. Conceicao, L. P. F. Chibante, Y. Chia, N. E. Byrne, S. Flangan, M. M. Haley, S. C. O’Brien, C. Pan, Z. Xiao, W. E. Billups, M. A. Ciufolini, R. H. Smalley, Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion, J. Phys. Chem. 94 (1990) 8634-8636.
    31. R. Taylor, R. M. Walton, The chemistry of fullerenes. Nature. 363 (1993) 685-693.
    32. M. Buhl, A. Hirsch, Spherical aromaticity of fullerenes, Chem. Rev. 101 (2001) 1153–1184.
    33. F. R. Christine, I. S. David, R. W. Stephen, Synthesis and Characterization of Water-Soluble Amino Fullerene Derivatives, Org. Lett., 2 (2000) 1011-1014.
    34. I. Hiroyuki, T. Naoki, N. Eiichi, One-Step Multiple Addition of Amine[60]Fullerene. Synthesis of Tetra(amino)fullerene Epoxide under Photochemical Aerobic Conditions Org. Lett., 2 (2000) 1011-1014.
    35. Christine F. Richardson, David I. Schuster, Stephen R. Wilson Synthesis and Characterization of Water-Soluble Amino Fullerene Derivatives, Org. Lett., (2000) Vol. 2, 1011-1014.
    36. J. G. Rouse, J. Yang, A. R. Barron, N. A. Riviere, Fullerene-based amino acid nanoparticle interactions with human epidermal keratinocytes, Toxicology in vitro 20 (2006) 1313-1320.
    37. 吳朗, 電子陶瓷-壓電, 全欣科技圖書. 1994.
    38. 吳朗, 感測與轉換原理、元件與應用, 全欣科技圖書. 1992.
    39. 彭成鑑, 壓電材料, 科儀新知. 16 (1995) 18-29.
    40. L. Rayleigh, On Waves Propagated along the Plane Surface of an Elastic Solid, Proc. London Math. Soc., 17 (1885) 4.
    41. H. Wohltjen, R. Dessy, Surface Acoustic Wave Probe for Chemical Analysis. I. Introduction and Instrument Description, Anal. Chem. 51 (1979) 1458-1464.
    42. H. Wholtjen, R. White, D. Ballantine, S. Martin, A. Ricoo, E. Zellers, G. Frye, Acoustic wave sensor-theory, design, and physico-chemical applications, Academic Press, San Diego, 1997.
    43. R. M. White, F. W. Voltmer, Direct Piezoelectric Coupling to Surface Elastic Waves, Appl. Phys. Lett. 7 (1965) 7 314.
    44. L. Wu, C. Y. Shen, Tu-Tang Shen, Surface acoustic wave sensors, Chemistry (The Chinese chem. soc., Tapipe) 59 (2001) 279-286.
    45. D. Morgan, surface-wave devices for signal processing, Amsterdam, (1991) 152.
    46. B. A. Auld, Acoustic fields and waves, vol. 2, 2nd ed., Malabar, Fla., 1990 CH12.
    47. H. Wohltjen, Mechanism of operation and design considerations for surface acoustic wave device vapor sensors, Sensors and Actuators. 5 (1984) 307-325.
    48. Z. Wang, J. N. Cheeke, K. J. Cheng, Perturbation method for analyzing mass sensitivity of planar multilayer acoustic sensors IEEE Trans. on Ultras. Freq. 43 (1996) 844-851.
    49. G. S. Calabrese, H. Wohltjen, M. K. Roy, A study of SAW delay line behavior in liquids. Proc. IEEE Ultrason. Symp. (1986) 607-609.
    50. W. W. Stuart, M. W. White, Flexural plate-wave sensor: chemical vapor sensing and electrostrictive excitation, Ultrasonics Symps. (1989) 595-598.
    51. S. J. Martin, A. J. Ricco, T. M. Niemczyk, G. C. Frye, Characterization of SH Acoustic plate mode liquid sensors, Sens. Actuators 20 (1989) 253-268.
    52. R. Dahint, M. Grunze, F. Josse, J. Renken, Acoutic plate mode sensor for immunochemical reactions, Anal. Chem. 66 (1994) 2888-2892.
    53. S. Shiokawa, J. Kondoh, Surface acoustic wave sensor for liquid-phase application, IEEE Ultrasonics Symposium (1999) 445-452.
    54. T. Nomura, A. Saitoh, Y. Horikoshi, Measurement of acoustic properties of liquid using liquid flow SH-SAW sensor system, Sens. Actuators, B, Chem. 76 (2001) 69-73.
    55. J. Kondoh, T. Muramatsu, T. Nakanishi, Y. Matsu, S. Shiokawa, Development of pratical surface acoustic wave liquid sensing system and its application for measurement of Japanese tea, Sens. Actuators, B, Chem. 92 (2003) 191-198.
    56. J. Fabien, B. Florian, W. C. Richard, Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids. Anal. Chem. 73 (2001) 5937-5944.
    57. K. NaKamura, M. Kazumi, H. Shimizu, SH-type and Rayleigh-type surface acoustic waves on rotated Y-cut LiTaO3. Proc. IEEE U.S. Symp., (1977) pp 819-822.
    58. K. Hashimoto, M. Yamaguchi, Piezoelectric non-leaky SH surface waves on an X cut LiTaO3 Acoustic wave device Technology Committee 150, 12th workshop record, (1987) pp 7-11.
    59. T. Moriizumi, Y. Unno, S. Shiokawa New sensor in liquid using leaky SAW. Proc. IEEE U.S. Symp., (1987) pp. 579-582.
    60. J. Kondoh, S. Shiokawa, A liquid sensor based on a shear horizontal SAW device, Electronics and Communications in Japan, Part 2, 76 (1993) 69-82.
    61. F. Josse, B. Florian, W. C. Richard, Z. Kristofer, Guided SH-SAW sensors for liquid-phase detection 2001 IEEE international frequency control symposium (2001) 454-461.
    62. J. Kondoh, S. Shiokawa, Liquid-Phase Microsensor Based on Surface Acoustic Wave Devices, Electronics and Communications in Japan, Part 2, Vol. 81, No. 11, 1998
    63. A. Turton, D. Bhattacharyya, D. Wood, Love-mode surface acoustic wave liquid sensors using polyimide waveguide layer. IEEE International Ultrasonics, Ferroelectrics and Frequency Control Joint 50th Anniversary Conference (2004) 250-256.
    64. Li Zhonghui, J. Yolanda, H. Jeanne, C. Richard, J. Fabien, Analysis of liquid-phase chemical detection using guided shear horizontal-surface acoustic wave sensors Anal. Chem., 77 (2005) 4595-4603
    65. J. C. Andle, J. F. Vetelino, F. Josse, A theoretical study of acoustic plate modes as biosensing elements, IEEE Ultrason. Symp., (1991) pp. 285-288.
    66. Jia Du, Geoffery L. Harding, A multilayer structure for love-mode acoustic sensor, Sens. and Actu. A 65 (1998) 152-159.
    67. 高頻電路與高頻測試器的製作, 無線電界雜誌社, 1995
    68. 謝勝治, 圖控式程式語言LABVIEW(含自動量測暨資料擷取), 2003
    69. 郭雅音, 臨床血清免疫學, 1997
    70. Ivan Roitt原著;王依蕾等編譯, 實用免疫學, 1995
    71. L.A. Currie, Detection in Analytical Chemistry, ACS Press, Washington, DC, 1988.
    72. G. I. Long, J. D. Winefordner, Limit of detection: a closer look at IUPAC definition, Anal. Chem. 55 (1983) 712A–724A.
    73. K.C. Chen, Microbial Enzyme Engineering, Yi-Hsien Publishing Co., Taipei, 1989.
    74. M.S. Chang, J.S. Shih, Fullerene–cryptand-coated piezoelectric crystal membrane glucose enzyme sensor, Sens. Actuators, B, Chem. 67 (2000) 275–281.
    75. R. S. Yalow, S. A. Betson, Assay of Plasma Insulin in Human Subjects by Immunological Methods. Nature 184 (1959) 1648-1649.
    76. D. Chevenne, F. Trivin, D. Porquet Insulin assays and reference values. Diabetes Metab 25 (1999) 459-476.
    77. L. Cheng, G. E. Pacey, J.A. Cox, Carbon Electrodes Modified with Ruthenium Metallodendrimer Multilayers for the Mediated Oxidation of Methionine and Insulin at Physiological pH, Anal. Chem. 73 (2001) 5607-5610.
    78. J. Wang, M. Musameh, Electrochemical detection of trace insulin at carbon-nanotube-modified electrodes, Anal. Chim. Acta 511 (2004) 33-36.
    79. J. Wang, X. Zhang, Needle-Type Dual Microsensor for the Simultaneous Monitoring of Glucose and Insulin, Anal. Chem. 73 (2001) 844-847.
    80. A.D. Kippen, F. Cerini, L. Vadas, R. Stocklin, L. Vu, R.E. Offord, K. J. Rose, Biol. Chem. 272 (1997) 12513.
    81. T. Ohkubo, Biomed. Chromatogr. 8 (1994) 301.
    82. C. Toriumi, K. Imai, Anal. Chem. 74 (2002) 2321.
    83. Biosensors and Bioelectronics 22 (2007) 1382–1389
    84. D. Chevenne, F. Trivin, D. Porquet Insulin assays and reference values. Diabetes Metab 25 (1999) 459-476.
    85. M. Zhang, C. Mullens, W. Gorski, Insulin Oxidation and Determination at Carbon Electrodes Anal. Chem. 77 (2005) 6396-6401.
    86. Campbell, Colin Surface acoustic wave devices for mobile and wireless communications, Academic Press, Boston, 1998.
    87. Y. Kazuhiko, T. Masao, Applications for piezoelectric leaky surface waves. Ultrasonics symposium (1990) 11-18.
    88. Y. T. Shen, C. L. Huang, R. Chen, L. Wu, A novel SH-SAW sensor system, Sens. Actuators, B, Chem. 107 (2005) 283–290.
    89. 陳瑞和, 感測器, 全華科技圖書
    90. 孫清華, 感測器應用電路設計與製作, 全華科技圖書
    91. Pulse Width Modulation (PWM) Using NI-DAQmx and LabVIEW http://zone.ni.com/devzone/cda/tut/p/id/2991.
    92. PID Control toolset user manual, National instruments.
    93. 沈金鐘, PID控制器理論調整與實現, 滄海書局, 2001
    94. 何中庸, 高頻電路設計基礎, 全華科技圖書, 1981.
    95. A. B. Williams, F. J. Taylor, Electronic filter design handbook, 3rd Edition, Mcgraw Hill, N. Y., 1995
    96. R. F. Schmitt, J. W. Allen, R. Wright, Rapid design of SAW oscillator electronics for sensor applications. Sens. Actuators, B, Chem. 76 (2001) 80-85.

    無法下載圖示
    QR CODE