簡易檢索 / 詳目顯示

研究生: 林芸婷
LIN, Yun-Ting
論文名稱: 中斷久坐對健康者腹部與臀部皮下脂肪組織間隙血糖調控之影響
Effect of Breaking up Prolonged Sitting on Subcutaneous Abdominal and Gluteal Adipose Tissue Interstitial Glucose Responses in Healthy Individuals
指導教授: 陳勇志
Chen, Yung-Chih
口試委員: 郭俸志 王鶴森 陳勇志
口試日期: 2021/09/24
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 59
中文關鍵詞: 連續式血糖監測儀葡萄糖脂肪組織
英文關鍵詞: Continuous Glucose Monitoring, Glycemic, Adipose Tissue
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202101551
論文種類: 學術論文
相關次數: 點閱:167下載:30
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 研究背景:脂肪組織是人體中重要的內分泌器官、能量儲存庫,也在血糖的代謝上扮演著非常重要的角色。但目前的研究仍缺乏有無身體活動的介入下,比較不同部位中的脂肪組織對於血糖調控的差異性。研究目的:本研究目的主要探討健康者在有無中斷久坐腹部與臀部的皮下脂肪組織間質細胞血糖調控的影響。研究方法:20位健康參與者於皮下腹部與臀部脂肪組織分別安裝一台連續式血糖監測儀 (continuous glucose monitor, CGM),並於安裝CGM七天內以平衡次序法完成時長約320分鐘的久坐與中斷久坐的實驗室測驗。久坐實驗中,參與者在整個實驗期間維持坐姿;中斷久坐實驗中,參與者以每20分鐘以6.4公里/小時的速度在跑步機上快走2分鐘,累積15次,總計30分鐘,其餘時間則維持坐姿。兩次實驗中皆提供兩餐相同的餐點 (早餐與午餐,每餐562 ± 81大卡 (平均數 ± 標準差),含77 % 碳水化合物、16%脂肪、7%蛋白質)。研究結果:久坐實驗中,腹部皮下脂肪組織間隙血糖顯著高於臀部脂肪組織 (p = 0.03)。久坐與中斷久坐實驗中,腹部與臀部血糖的曲線下面積 (iAUC) 則無差異 (all, p > 0.05)。結論:本研究顯示健康者在久坐情境中,腹部的皮下脂肪組織間質細胞的血糖濃度顯著高於與臀部皮下脂肪組織,但在久坐與身體活動情境下,兩部位的血糖曲線下增加面積沒有差異。

    Background: Adipose tissue is not only responsible for storing excess energy as triglycerides, but also plays a vital role in regulating glucose homeostasis. However, it is still unknown regarding glycemic regulation in different adipose depots under (in)active status. Purposes: The study aims to investigate the differences between abdominal (Ab) and gluteal (Glu) adipose tissue interstitial glucose concentrations under sedentary (SIT) and physical activity (PA) conditions. Methods: Twenty healthy participants [age: 30 ± 8 yr; body mass: 63 ± 9 kg; BMI: 22.6 ± 2.1 kg/m2, (Mean ± SD)], with continuous glucose monitors (CGMs) inserted on Ab and Glu, completed two separate trials (SIT and PA) within 7 days under counterbalanced design. PA was composed of walking for 2 min at 6.4 km/h every 20 min over approximately 320 min (30 min walking in total), participants sat on a chair in the remained period apart from walking. In SIT, participants were asked to remain seated throughout the trial. Two identical meals (breakfast and lunch) [562 ± 81 kcal in one meal (Mean ± SD); 77% carbohydrate, 16% fat, 7% protein] were provided during trials. Results: Abdominal adipose tissue interstitial glucose concentrations were significantly higher than gluteal under SIT trial, while no regional difference was found under PA trial. There were no differences on incremental glucose area under the curve (iAUC) between Ab and Glu under SIT and PA trials in healthy individuals (all, p > 0.05). Conclusion: The current study showed subcutaneous abdominal adipose tissue interstitial glucose concentrations was significantly higher than gluteal region under SIT trial, while the glucose responses did not differ under acute sedentary compared to physical activity condition in healthy individuals.

    Chapter 1 Introduction 1 Section 1 Background 1 Section 2 Purpose 2 Section 3 Study Hypothesis 3 Section 4 Operational Definition 3 Chapter 2 Literature Review 4 Section 1 Subcutaneous Adipose Tissue Function 4 Section 2 SAT in Abdominal and Gluteal: functional differences 5 Section 3 SAT for Glucose Metabolism: Ab and Glu 7 Section 4 Adipose Tissue Glycemic Regulation and Physically (in)active 8 Section 5 Study Significances 9 Section 6 Chapter Summary 9 Chapter 3  Experimental Design 10 Section 1 Study participants 10 Section 2 Study Protocol 10 Section 3 Study Methods 11 Section 4 Data Collection Procedure 14 Section 5 Data Analysis 14 Chapter 4  Results 17 Section 1 Participants Characteristics 17 Section 2 Physiological Responses Before SIT and PA Trials 17 Section 3 Physiological Responses during PA Trials 18 Section 4 Abdominal, Gluteal Adipose Tissue Interstitial and Finger Pricking Blood Glucose Responses during SIT and PA trials. 19 Chapter 5  Discussions 26 Section 1 Adipose Tissue Interstitial Glucose Responses between Abdominal and Gluteal Regions in the SIT trial 26 Section 2 Abdominal Adipose Tissue Glucose Responses between SIT and PA 29 Section 3 Gluteal Adipose Tissue Glucose Responses between SIT and PA 31 Section 4 The Changes of Adipose Tissue Interstitial Glycemic iAUC (%) in Ab and Glu between SIT and PA 33 Section 5 Adipose Tissue Interstitial and Finger Pricking Blood Glucose Responses between SIT and PA 33 Section 6 Study Limitations 34 Chapter 6  Conclusion 35 References 36 Appendix 1 50 Appendix 2 51 Appendix 3 59

    References
    Abate, N., Garg, A., Peshock, R. M., Stray-Gundersen, J., & Grundy, S. M. (1995). Relationships of generalized and regional adiposity to insulin sensitivity in men. Journal of Clinical Investigation, 96(1), 88–98. doi:10.1172/jci118083
    Abel, E. D., Peroni, O., Kim, J. K., Kim, Y.-B., Boss, O., Hadro, E., Minnemann, T., Shulman, G. I., & Kahn, B. B. (2001). Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature, 409(6821), 729–733. doi:10.1038/3505557
    Abranches, M. V., Oliveira, F. C. E. de, Conceição, L. L. da, & Peluzio, M. do C. G. (2015). Obesity and diabetes: the link between adipose tissue dysfunction and glucose homeostasis. Nutrition Research Reviews, 28(2), 121–132. doi:10.1017/s0954422415000098
    Atkinson, G. (2001). Analysis of repeated measurements in physical therapy research. Physical Therapy in Sport, 2(4), 194–208. doi:10.1054/ptsp.2001.0071
    Amitani, M., Asakawa, A., Amitani, H., & Inui, A. (2013). The role of leptin in the control of insulin-glucose axis. Frontiers in Neuroscience, 7. doi: 10.3389/fnins.2013.00051
    Arner, P., Hellström, L., Wahrenberg, H., & Brönnegård, M. (1990). Beta-adrenoceptor expression in human fat cells from different regions. Journal of Clinical Investigation, 86(5), 1595–1600. doi:10.1172/jci114880
    Arner, P., Hellström, L., Wahrenberg, H., & Brönnegård, M. (1990). Beta-adrenoceptor expression in human fat cells from different regions. Journal of Clinical Investigation, 86(5), 1595–1600. doi: 10.1172/jci114880
    Arner, P., Kriegholm, E., Engfeldt, P., & Bolinder, J. (1990). Adrenergic regulation of lipolysis in situ at rest and during exercise. Journal of Clinical Investigation, 85(3), 893–898. doi: 10.1172/jci114516
    Bastard, J.-P., Maachi, M., van Nhieu, J. T., Jardel, C., Bruckert, E., GrimaldiA., Robert, J.-J., Capeau, J., & Hainque, B. (2002). Adipose Tissue IL-6 Content Correlates with Resistance to Insulin Activation of Glucose Uptake both in Vivo and in Vitro. The Journal of Clinical Endocrinology & Metabolism, 87(5), 2084–2089. doi:10.1210/jcem.87.5.8450
    Bennett, D. A., Du, H., Bragg, F., Guo, Y., Wright, N., Yang, L., Bian, Z., Chen, Y., YU, C., Wang, S., Meng, F., Lv, J., Chen, J., Li, L., Clarke, R., & Chen, Z. (2019). Physical activity, sedentary leisure-time and risk of incident type 2 diabetes: a prospective study of 512 000 Chinese adults. BMJ Open Diabetes Research & Care, 7(1), e000835. doi: 10.1136/bmjdrc-2019-000835
    Bergman, B. C., Cornier, M.-A., Horton, T. J., & Bessesen, D. H. (2007). Effects of fasting on insulin action and glucose kinetics in lean and obese men and women. American Journal of Physiology-Endocrinology and Metabolism, 293(4), 1103–1111. doi:10.1152/ajpendo.00613.2006
    Bickerton, A. S. T., Roberts, R., Fielding, B. A., Hodson, L., Blaak, E. E., Wagenmakers, A. J. M., Gilbert, M., Karpe, F., & Frayn, K. N. (2006). Preferential Uptake of Dietary Fatty Acids in Adipose Tissue and Muscle in the Postprandial Period. Diabetes, 56(1), 168–176. doi:10.2337/db06-0822
    Blüher, M. (2013). Importance of adipokines in glucose homeostasis. Diabetes Management, 3(5), 389–400. doi:10.2217/dmt.13.35
    Bonuccelli, S., Muscelli, E., Gastaldelli, A., Barsotti, E., Astiarraga, B. D., Holst, J. J., Mari, A., & Ferrannini, E. (2009). Improved tolerance to sequential glucose loading (Staub-Traugott effect): size and mechanisms. American Journal of Physiology-Endocrinology and Metabolism, 297(2), 532–537. doi:10.1152/ajpendo.00127.2009
    Borg G. (1970). Perceived exertion as an indicator of somatic stress. Scandinavian Journal of Rehabilitation Medicine, 2(2), 92–98.
    Boyko, E. J., Fujimoto, W. Y., Leonetti, D. L., & Newell-Morris, L. (2000). Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care, 23(4), 465–471. doi: 10.2337/diacare.23.4.465
    Calonne, J., Fares, E.-J., Montani, J.-P., Schutz, Y., Dulloo, A., & Isacco, L. (2021). Dynamics of Fat Oxidation from Sitting at Rest to Light Exercise in Inactive Young Humans. Metabolites, 11(6), 334.doi:10.3390/metabo11060334
    Cao, H., Gerhold, K., Mayers, J. R., Wiest, M. M., Watkins, S. M., & Hotamisligil, G. S. (2008). Identification of a Lipokine, a Lipid Hormone Linking Adipose Tissue to Systemic Metabolism. Cell, 134(6), 933–944. doi:10.1016/j.cell.2008.07.048
    Chan, D. C. (2003). Waist circumference, waist-to-hip ratio and body mass index as predictors of adipose tissue compartments in men. QJM, 96(6), 441–447. doi:10.1093/qjmed/hcg069
    Chen, Y.-C., Betts, J. A., Walhin, J.-P., & Thompson, D. (2018). Adipose Tissue Responses to Breaking Sitting in Men and Women with Central Adiposity. Medicine & Science in Sports & Exercise, 50(10), 2049–2057. doi:10.1249/mss.0000000000001654
    Cigolini, M., Bonora, E., Querena, M., Moghetti, P., Cacciatori, V., Zancanaro, C., Benati, D., & Muggeo, M. (1988). Differences in glucose metabolic enzyme activities in human adipose tissue from abdominal and gluteal regions. Metabolism, 37(9), 820–823. doi: 10.1016/0026-0495(88)90114-x
    Cohen, J. C., & Berger, G. M. (1990). Effects of glucose ingestion on postprandial lipemia and triglyceride clearance in humans. Journal of Lipid Research, 31(4), 597–602.
    Coon, P. J., Rogus, E. M., Drinkwater, D., Muller, D. C., & Goldberg, A. P. (1992). Role of body fat distribution in the decline in insulin sensitivity and glucose tolerance with age. The Journal of Clinical Endocrinology & Metabolism, 75(4), 1125–1132. doi:10.1210/jcem.75.4.1400882
    Dimitriadis, G. D., Maratou, E., Kountouri, A., Board, M., & Lambadiari, V. (2021). Regulation of Postabsorptive and Postprandial Glucose Metabolism by Insulin-Dependent and Insulin-Independent Mechanisms: An Integrative Approach. Nutrients, 13(1), 159. doi:10.3390/nu13010159
    Djurhuus, C. B., Gravholt, C. H., Nielsen, S., Mengel, A., Christiansen, J. S., Schmitz, O. E., & Møller, N. (2002). Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. American Journal of Physiology-Endocrinology and Metabolism, 283(1), 172–177. doi: 10.1152/ajpendo.00544.2001
    Dunstan, D. W., Kingwell, B. A., Larsen, R., Healy, G. N., Cerin, E., Hamilton, M. T., Shaw, J. E., Bertovic, D. A., Zimmet, P. Z., Salmon, J., & Owen, N. (2012). Breaking Up Prolonged Sitting Reduces Postprandial Glucose and Insulin Responses. Diabetes Care, 35(5), 976–983. doi: 10.2337/dc11-1931
    Dunstan, D. W., Dogra, S., Carter, S. E., & Owen, N. (2021). Sit less and move more for cardiovascular health: emerging insights and opportunities. Nature Reviews Cardiology, 18(9), 637–648. doi:10.1038/s41569-021-00547-y
    Dowling, H. J., Fried, S. K., & Pi-Sunyer, F. Xavier. (1995). Insulin resistance in adipocytes of obese women: Effects of body fat distribution and race. Metabolism, 44(8), 987–995. doi:10.1016/0026-0495(95)90094-2
    Dye, L., Mansfield, M., Lasikiewicz, N., Mahawish, L., Schnell, R., Talbot, D., Chauhan, H., Croden, F., & Lawton, C. (2009). Correspondence of continuous interstitial glucose measurement against arterialised and capillary glucose following an oral glucose tolerance test in healthy volunteers. British Journal of Nutrition, 103(1), 134–140. doi:10.1017/s0007114509991504
    Fatani, S., Abdelbasit, N., Al-Amodi, H. S., Mukhtar, M., & Babakr, A. (2018). Testosterone, obesity, and waist circumference as determinants of metabolic syndrome in Saudi women. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, (11), 175–181. doi: 10.2147/dmso.s156021
    Ferrannini, E., Barrett, E. J., Bevilacqua, S., & DeFronzo, R. A. (1983). Effect of fatty acids on glucose production and utilization in man. Journal of Clinical Investigation, 72(5), 1737–1747. doi:10.1172/jci111133
    Fielding, B. A., & Frayn, K. N. (1998). Lipoprotein lipase and the disposition of dietary fatty acids. British Journal of Nutrition, 80(6), 495–502. doi:10.1017/s0007114598001585
    FitzGerald, L., M. Macey, P., & Brecht, M.-L. (2012). Pathways to Interleukin-6 in Healthy Males and Serious Leisure Male Athletes: Physical Activity, Body Composition and Age. PLoS ONE, 7(7). doi: 10.1371/journal.pone.0040513
    Frayn, K. (2002). Adipose tissue as a buffer for daily lipid flux. Diabetologia, 45(9), 1201–1210. doi: 10.1007/s00125-002-0873-y
    Frayn, K. N., & Karpe, F. (2013). Regulation of human subcutaneous adipose tissue blood flow. International Journal of Obesity, 38(8), 1019–1026. doi:10.1038/ijo.2013.200
    Flatt, J. P., Ravussin, E., Acheson, K. J., & Jéquier, E. (1985). Effects of dietary fat on postprandial substrate oxidation and on carbohydrate and fat balances. Journal of Clinical Investigation, 76(3), 1019–1024. doi:10.1172/jci112054
    Flores‐Opazo, M., Raajendiran, A., Watt, M. J., & Hargreaves, M. (2019). Exercise serum increases GLUT4 in human adipocytes. Experimental Physiology, 104(5), 630–634. doi:10.1113/ep087495
    Giovannitti, J. A., Thoms, S. M., & Crawford, J. J. (2015). Alpha-2 Adrenergic Receptor Agonists: A Review of Current Clinical Applications. Anesthesia Progress, 62(1), 31–38. doi:10.2344/0003-3006-62.1.31
    Goossens, G. H. (2017). The Metabolic Phenotype in Obesity: Fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obesity Facts, 10(3), 207–215. doi: 10.1159/000471488
    Goossens, G. H., Bizzarri, A., Venteclef, N., Essers, Y., Cleutjens, J. P., Konings, E., Jocken, J. W. E., Čajlaković, M., Ribitsch, V., Clément, K., & Blaak, E. E. (2011). Increased Adipose Tissue Oxygen Tension in Obese Compared With Lean Men Is Accompanied by Insulin Resistance, Impaired Adipose Tissue Capillarization, and Inflammation. Circulation, 124(1), 67–76. doi:10.1161/circulationaha.111.027813
    Grundy, S. M. (2004). Obesity, Metabolic Syndrome, and Cardiovascular Disease. The Journal of Clinical Endocrinology & Metabolism, 89(6), 2595–2600. doi: 10.1210/jc.2004-0372
    Gu, P., & Xu, A. (2013). Interplay between adipose tissue and blood vessels in obesity and vascular dysfunction. Reviews in Endocrine and Metabolic Disorders, 14(1), 49–58. doi:10.1007/s11154-012-9230-8
    Hayes, P., Adams, K., Dave, J., & Goedecke, J. (2013). Ethnic-Specific Associations between Abdominal and Gluteal Fat Distribution and the Metabolic Complications of Obesity: Implications for the Use of Liposuction. Plastic Surgery: An International Journal, 1–14. doi:10.5171/2013.796359
    Henson, J., Yates, T., Edwardson, C. L., Khunti, K., Talbot, D., Gray, L. J., Leigh, T. M., Carter, P., & Davies, M. J. (2013). Sedentary Time and Markers of Chronic Low-Grade Inflammation in a High Risk Population. PLoS ONE, 8(10), 78350. doi:10.1371/journal.pone.0078350
    Henson, J., Edwardson, C. L., Bodicoat, D. H., Bakrania, K., Davies, M. J., Khunti, K., Talbot, D. C. S., & Yates, T. (2017). Reallocating sitting time to standing or stepping through isotemporal analysis: associations with markers of chronic low-grade inflammation. Journal of Sports Sciences, 36(14), 1586–1593. doi: 10.1080/02640414.2017.1405709
    Hermsdorff, H. H. M., Zulet, M. Á., Puchau, B., & Martínez, J. A. (2010). Central Adiposity Rather Than Total Adiposity Measurements Are Specifically Involved in the Inflammatory Status from Healthy Young Adults. Inflammation, 34(3), 161–170. doi:10.1007/s10753-010-9219-y
    Horowitz, J. F. (2003). Fatty acid mobilization from adipose tissue during exercise. Trends in Endocrinology & Metabolism, 14(8), 386–392. doi:10.1016/s1043-2760(03)00143-7
    Howard, W. J. (2006). Obesity and the Risk of Myocardial Infarction in 27 000 participants from 52 countries: A Case-Control Study. Yearbook of Endocrinology, 2006, 111–112. doi: 10.1016/s0084-3741(08)70315-9
    Hsieh, C.-J., Wang, P.-W., & Chen, T.-Y. (2014). The relationship between regional abdominal fat distribution and both insulin resistance and subclinical chronic inflammation in non-diabetic adults. Diabetology & Metabolic Syndrome, 6(1). doi: 10.1186/1758-5996-6-49
    Huang, S., & Czech, M. P. (2007). The GLUT4 Glucose Transporter. Cell Metabolism, 5(4), 237–252. doi:10.1016/j.cmet.2007.03.006
    Højbjerre, L., Rosenzweig, M., Dela, F., Bruun, J. M., & Stallknecht, B. (2007). Acute exercise increases adipose tissue interstitial adiponectin concentration in healthy overweight and lean subjects. European Journal of Endocrinology, 157(5), 613–623. doi:10.1530/eje-07-0213
    Jeukendrup, A. E., & Wallis, G. A. (2005). Measurement of Substrate Oxidation During Exercise by Means of Gas Exchange Measurements. International Journal of Sports Medicine, 26, 28–37. doi:10.1055/s-2004-830512
    Karpe, F., & Pinnick, K. E. (2014). Biology of upper-body and lower-body adipose tissue—link to whole-body phenotypes. Nature Reviews Endocrinology, 11(2), 90–100. doi: 10.1038/nrendo.2014.185
    Karastergiou, K., Smith, S. R., Greenberg, A. S., & Fried, S. K. (2012). Sex differences in human adipose tissues – the biology of pear shape. Biology of Sex Differences, 3(1), 13. doi: 10.1186/2042-6410-3-13
    Karastergiou, K., Bredella, M. A., Lee, M.-J., Smith, S. R., Fried, S. K., & Miller, K. K. (2016). Growth hormone receptor expression in human gluteal versus abdominal subcutaneous adipose tissue: Association with body shape. Obesity, 24(5), 1090–1096. doi:10.1002/oby.21460
    Kamohara, S., Burcelin, R., Halaas, J. L., Friedman, J. M., & Charron, M. J. (1997). Acute stimulation of glucose metabolism in mice by leptin treatment. Nature, 389(6649), 374–377. doi: 10.1038/38717
    Klein, S., Allison, D. B., Heymsfield, S. B., Kelley, D. E., Leibel, R. L., Nonas, C., & Kahn, R. (2007). Waist circumference and cardiometabolic risk: a consensus statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, The Obesity Society; the American Society for Nutrition; and the American Diabetes Association. The American Journal of Clinical Nutrition, 85(5), 1197–1202. doi:10.1093/ajcn/85.5.1197
    Klein, S., Coppack, S. W., Mohamed-Ali, V., & Landt, M. (1996). Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes, 45(7), 984–987. doi:10.2337/diabetes.45.7.984
    Kopchick, J. J., Berryman, D. E., Puri, V., Lee, K. Y., & Jorgensen, J. O. L. (2019). The effects of growth hormone on adipose tissue: old observations, new mechanisms. Nature Reviews Endocrinology, 16(3), 135–146. doi:10.1038/s41574-019-0280-9
    Krotkiewski, M., Björntorp, P., Sjöström, L., & Smith, U. (1983). Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. Journal of Clinical Investigation, 72(3), 1150–1162. doi:10.1172/jci111040
    Landin, K., LÖnnroth, P., Krotkiewski, M., Holm, G., & Smith, U. (1990). Increased insulin resistance and fat cell lipolysis in obese but not lean women with a high waist/hip ratio. European Journal of Clinical Investigation, 20(s1), 530–535. doi: 10.1111/j.1365-2362.1990.tb01922.x
    Langin, D., Frhbeck, G., Frayn, K. N., & Lafontan, M. (2009). Adipose Tissue: Development, Anatomy and Functions. Obesity, 79–108. doi: 10.1002/9780470712221.ch4
    Lara-Castro, C., Luo, N., Wallace, P., Klein, R. L., & Garvey, W. T. (2005). Adiponectin Multimeric Complexes and the Metabolic Syndrome Trait Cluster. Diabetes, 55(1), 249–259. doi:10.2337/diabetes.55.01.06.db05-1105
    Lemieux, I. (2004). Energy Partitioning in Gluteal-Femoral Fat: Does the Metabolic Fate of Triglycerides Affect Coronary Heart Disease Risk? Arteriosclerosis, Thrombosis, and Vascular Biology, 24(5), 795–797. https://doi.org/10.1161/01.atv.0000126485.80373.33
    Li, S., Xiao, J., Ji, L., Weng, J., Jia, W., Lu, J., Zhou, Z., Guo, X., Liu, J., Shan, Z., Zhu, D., Chen, L., Zhao, Z., Tian, H., Ji, Q., Ge, J., Li, Q., Lin, L., Yang, Z., & He, J. (2014). BMI and waist circumference are associated with impaired glucose metabolism and type 2 diabetes in normal weight Chinese adults. Journal of Diabetes and Its Complications, 28(4), 470–476. doi:10.1016/j.jdiacomp.2014.03.015
    Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2T −ΔΔC Method. Methods, 25(4), 402–408. doi: 10.1006/meth.2001.1262
    LJ, K., H, E., & JC, Y. (2018). Utilization of Waist Circumference to Determine Type 2 Diabetes Risk among Normal and Overweight Populations. Advances in Obesity, Weight Management & Control, 8(1). doi:10.15406/aowmc.2018.08.00219
    Manolopoulos, K. N., Karpe, F., & Frayn, K. N. (2010). Gluteofemoral body fat as a determinant of metabolic health. International Journal of Obesity, 34(6), 949–959. doi: 10.1038/ijo.2009.286
    Marin, P. (1995). Assimilation and mobilization of triglycerides in subcutaneous abdominal and femoral adipose tissue in vivo in men: effects of androgens. Journal of Clinical Endocrinology & Metabolism, 80(1), 239–243. doi:10.1210/jc.80.1.239
    McQuaid, S. E., Humphreys, S. M., Hodson, L., Fielding, B. A., Karpe, F., & Frayn, K. N. (2010). Femoral Adipose Tissue May Accumulate the Fat That Has Been Recycled as VLDL and Nonesterified Fatty Acids. Diabetes, 59(10), 2465–2473. doi: 10.2337/db10-0678
    McCarthy, M., Edwardson, C. L., Davies, M. J., Henson, J., Bodicoat, D. H., Khunti, K., Dunstan, D. W., King, J. A., & Yates, T. (2017). Fitness Moderates Glycemic Responses to Sitting and Light Activity Breaks. Medicine & Science in Sports & Exercise, 49(11), 2216–2222. doi:10.1249/mss.0000000000001338
    McTernan, P. G., McTernan, C. L., Chetty, R., Jenner, K., Fisher, F. M., Lauer, M. N., Crocker, J., Barnett, A. H., & Kumar, S. (2002). Increased Resistin Gene and Protein Expression in Human Abdominal Adipose Tissue. The Journal of Clinical Endocrinology & Metabolism, 87(5), 2407–2410. doi: 10.1210/jcem.87.5.8627
    Misra, A., & Vikram, N. K. (2003). Clinical and pathophysiological consequences of abdominal adiposity and abdominal adipose tissue depots. Nutrition, 19(5), 457–466. doi:10.1016/s0899-9007(02)01003-1
    MÅRIN, P., REBUFFÉ-SCRIVE, M., & BJÖRNTORP, P. (1990). Uptake of triglyceride fatty acids in adipose tissue in vivo in man. European Journal of Clinical Investigation, 158–165. doi: 10.1111/j.1365-2362.1990.tb02263.x
    Narang, B. J., Atkinson, G., Gonzalez, J. T., & Betts, J. A. (2020). A Tool to Explore Discrete-Time Data: The Time Series Response Analyser. International Journal of Sport Nutrition and Exercise Metabolism, 30(5), 374–381. doi:10.1123/ijsnem.2020-0150
    Ng, J. M., Azuma, K., Kelley, C., Pencek, R., Radikova, Z., Laymon, C., Price, J., Goodpaster, B. H., & Kelley, D. E. (2012). PET imaging reveals distinctive roles for different regional adipose tissue depots in systemic glucose metabolism in nonobese humans. American Journal of Physiology-Endocrinology and Metabolism, 303(9), 1134–1141. doi:10.1152/ajpendo.00282.2012
    Nielsen, N. B., Højbjerre, L., Sonne, M. P., Alibegovic, A. C., Vaag, A., Dela, F., & Stallknecht, B. (2009). Interstitial concentrations of adipokines in subcutaneous abdominal and femoral adipose tissue. Regulatory Peptides, 155(1–3), 39–45. doi: 10.1016/j.regpep.2009.04.010
    Nygaard, H., Tomten, S. E., & Høstmark, A. T. (2009). Slow postmeal walking reduces postprandial glycemia in middle-aged women. Applied Physiology, Nutrition, and Metabolism, 34(6), 1087–1092. doi:10.1139/h09-110
    Passaro, A., Miselli, M. A., Sanz, J. M., Dalla Nora, E., Morieri, M. L., Colonna, R., Pišot, R., & Zuliani, G. (2017). Gene expression regional differences in human subcutaneous adipose tissue. BMC Genomics, 18(1). doi: 10.1186/s12864-017-3564-2
    Patel, P., & Abate, N. (2013). Role of Subcutaneous Adipose Tissue in the Pathogenesis of Insulin Resistance. Journal of Obesity, 2013, 1–5. doi: 10.1155/2013/489187
    Peddie, M. C., Bone, J. L., Rehrer, N. J., Skeaff, C. M., Gray, A. R., & Perry, T. L. (2013). Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. The American Journal of Clinical Nutrition, 98(2), 358–366. doi:10.3945/ajcn.112.051763
    Pinkhasov, B. B., Selyatitskaya, V. G., Karapetyan, A. R., & Astrakhantseva, E. L. (2012). Metabolic syndrome in men and women with upper or lower types of body fat distribution. Health, 04(12), 1381–1389. doi:10.4236/health.2012.412a200
    Pinnick, K. E., Nicholson, G., Manolopoulos, K. N., McQuaid, S. E., Valet, P., Frayn, K. N., Denton, N., Min, J. L., Zondervan, K. T., Fleckner, J., McCarthy, M. I., Holmes, C. C., & Karpe, F. (2014). Distinct Developmental Profile of Lower-Body Adipose Tissue Defines Resistance Against Obesity-Associated Metabolic Complications. Diabetes, 63(11), 3785–3797. doi: 10.2337/db14-0385
    Rana, J. S., Arsenault, B. J., Despres, J.-P. ., Cote, M., Talmud, P. J., Ninio, E., Wouter Jukema, J., Wareham, N. J., Kastelein, J. J. P., Khaw, K.-T. ., & Matthijs Boekholdt, S. (2009). Inflammatory biomarkers, physical activity, waist circumference, and risk of future coronary heart disease in healthy men and women. European Heart Journal, 32(3), 336–344. doi:10.1093/eurheartj/ehp010
    Randle, P. J., Garland, P. B., Hales, C. N., & Newsholme, E. A. (1963). The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet, 281(7285), 785–789. doi: 10.1016/s0140-6736(63)91500-9
    Reaven, G. M. (1988). Role of Insulin Resistance in Human Disease. Diabetes, 37(12), 1595–1607. doi:10.2337/diab.37.12.1595
    Rebrin, K., Sheppard, N. F., & Steil, G. M. (2010). Use of Subcutaneous Interstitial Fluid Glucose to Estimate Blood Glucose: Revisiting Delay and Sensor Offset. Journal of Diabetes Science and Technology, 4(5), 1087–1098. doi: 10.1177/193229681000400507
    Rebrin, K., Steil, G. M., van Antwerp, W. P., & Mastrototaro, J. J. (1999). Subcutaneous glucose predicts plasma glucose independent of insulin: implications for continuous monitoring. American Journal of Physiology-Endocrinology and Metabolism, 277(3), 561–571. doi:10.1152/ajpendo.1999.277.3.e561
    Richelsen, B. (1986). Increased α2- but similar β-adrenergic receptor activities in subcutaneous gluteal adipocytes from females compared with males. European Journal of Clinical Investigation, 16(4), 302–309. doi:10.1111/j.1365-2362.1986.tb01346.x
    Roberts, R., Hodson, L., Dennis, A. L., Neville, M. J., Humphreys, S. M., Harnden, K. E., Micklem, K. J., & Frayn, K. N. (2009). Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia, 52(5), 882–890. doi:10.1007/s00125-009-1300-4
    Rosenthal, M., Haskell, W. L., Solomon, R., Widstrom, A., & Reaven, G. M. (1983). Demonstration of a relationship between level of physical training and insulin-stimulated glucose utilization in normal humans. Diabetes, 32(5), 408–411. doi:10.2337/diabetes.32.5.408
    Ross, R., Shaw, K. D., Rissanen, J., Martel, Y., de Guise, J., & Avruch, L. (1994). Sex differences in lean and adipose tissue distribution by magnetic resonance imaging: anthropometric relationships. The American Journal of Clinical Nutrition, 59(6), 1277–1285. doi:10.1093/ajcn/59.6.1277
    Rossetti, P., Bondia, J., Vehí, J., & Fanelli, C. G. (2010). Estimating Plasma Glucose from Interstitial Glucose: The Issue of Calibration Algorithms in Commercial Continuous Glucose Monitoring Devices. Sensors, 10(12), 10936–10952. doi: 10.3390/s101210936
    Salans, L. B., & Dougherty, J. W. (1971). The effect of insulin upon glucose metabolism by adipose cells of different size. Journal of Clinical Investigation, 50(7), 1399–1410. doi:10.1172/jci106623
    Seidell, J. C., Pérusse, L., Després, J.-P., & Bouchard, C. (2001). Waist and hip circumferences have independent and opposite effects on cardiovascular disease risk factors: the Quebec Family Study. The American Journal of Clinical Nutrition, 74(3), 315–321. doi:10.1093/ajcn/74.3.315
    Shambrook, P., Kingsley, M. I., Wundersitz, D. W., Xanthos, P. D., Wyckelsma, V. L., & Gordon, B. A. (2017). Glucose response to exercise in the post-prandial period is independent of exercise intensity. Scandinavian Journal of Medicine & Science in Sports, 28(3), 939–946. doi: 10.1111/sms.12999
    Smith, A. D., Crippa, A., Woodcock, J., & Brage, S. (2016). Physical activity and incident type 2 diabetes mellitus: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetologia, 59(12), 2527–2545. doi: 10.1007/s00125-016-4079-0
    Snijder, M. B., Zimmet, P. Z., Visser, M., Dekker, J. M., Seidell, J. C., & Shaw, J. E. (2004). Independent and opposite associations of waist and hip circumferences with diabetes, hypertension and dyslipidemia: the AusDiab Study. International Journal of Obesity, 28(3), 402–409. doi: 10.1038/sj.ijo.0802567
    Sotornik, R., Brassard, P., Martin, E., Yale, P., Carpentier, A. C., & Ardilouze, J.-L. (2012). Update on adipose tissue blood flow regulation. American Journal of Physiology-Endocrinology and Metabolism, 302(10), 1157–1170. doi:10.1152/ajpendo.00351.2011
    Spartano, N. L., Stevenson, M. D., Xanthakis, V., Larson, M. G., Andersson, C., Murabito, J. M., & Vasan, R. S. (2017). Associations of objective physical activity with insulin sensitivity and circulating adipokine profile: the Framingham Heart Study. Clinical Obesity, 7(2), 59–69. doi:10.1111/cob.12177
    Summers, L. K. M., Samra, J. S., Humphreys, S. M., Morris, R. J., & Frayn, K. N. (1996). Subcutaneous Abdominal Adipose Tissue Blood Flow: Variation within and between Subjects and Relationship to Obesity. Clinical Science, 91(6), 679–683. doi:10.1042/cs0910679
    Tan, G. D., Goossens, G. H., Humphreys, S. M., Vidal, H., & Karpe, F. (2004). Upper and Lower Body Adipose Tissue Function: A Direct Comparison of Fat Mobilization in Humans. Obesity Research, 12(1), 114–118. doi: 10.1038/oby.2004.15
    Tchoukalova, Y. D., Koutsari, C., Karpyak, M. V., Votruba, S. B., Wendland, E., & Jensen, M. D. (2008). Subcutaneous adipocyte size and body fat distribution. The American Journal of Clinical Nutrition, 87(1), 56–63. doi: 10.1093/ajcn/87.1.56
    Thomas, D., & Apovian, C. (2017). Macrophage functions in lean and obese adipose tissue. Metabolism, 72, 120–143. doi:10.1016/j.metabol.2017.04.005
    Thompson, D., Karpe, F., Lafontan, M., & Frayn, K. (2012). Physical Activity and Exercise in the Regulation of Human Adipose Tissue Physiology. Physiological Reviews, 92(1), 157–191. doi:10.1152/physrev.00012.2011
    Trayhurn, P., & Wood, I. S. (2004). Adipokines: inflammation and the pleiotropic role of white adipose tissue. British Journal of Nutrition, 92(3), 347–355. doi:10.1079/bjn20041213
    Tsiloulis, T., & Watt, M. J. (2015). Exercise and the Regulation of Adipose Tissue Metabolism. Progress in Molecular Biology and Translational Science, 175–201. doi:10.1016/bs.pmbts.2015.06.016
    Vague, J. (1996). The Degree of Masculine Differentiation of Obesities: Obesity Research, 4(2), 204–212. doi: 10.1002/j.1550-8528. 1996. tb00536.x
    Vozarova, B., Weyer, C., Hanson, K., Tataranni, P. A., Bogardus, C., & Pratley, R. E. (2001). Circulating Interleukin-6 in Relation to Adiposity, Insulin Action, and Insulin Secretion. Obesity Research, 9(7), 414–417. doi: 10.1038/oby.2001.54
    Wahrenberg, H., Lönnqvist, F., & Arner, P. (1989). Mechanisms underlying regional differences in lipolysis in human adipose tissue. Journal of Clinical Investigation, 84(2), 458–467. doi: 10.1172/jci114187
    Wellhoener, P., Fruehwald-Schultes, B., Kern, W., Dantz, D., Kerner, W., Born, J., Fehm, H. L., & Peters, A. (2000). Glucose Metabolism Rather Than Insulin Is a Main Determinant of Leptin Secretion in Humans. The Journal of Clinical Endocrinology & Metabolism, 85(3), 1267–1271. doi:10.1210/jcem.85.3.6483
    Weyer, C., Foley, J. E., Bogardus, C., Tataranni, P. A., & Pratley, R. E. (2000). Enlarged subcutaneous abdominal adipocyte size, but not obesity itself, predicts Type II diabetes independent of insulin resistance. Diabetologia, 43(12), 1498–1506. doi:10.1007/s001250051560
    Wolfe, R. R. (1998). Metabolic interactions between glucose and fatty acids in humans. The American Journal of Clinical Nutrition, 67(3), 519-526 doi: 10.1093/ajcn/67.3.519s
    Yates, T., Khunti, K., Wilmot, E. G., Brady, E., Webb, D., Srinivasan, B., Henson, J., Talbot, D., & Davies, M. J. (2012). Self-Reported Sitting Time and Markers of Inflammation, Insulin Resistance, and Adiposity. American Journal of Preventive Medicine, 42(1), 1–7. doi:10.1016/j.amepre.2011.09.022
    Yeh, S. T. (2002). Using trapezoidal rule for the area under a curve calculation. Proceedings of the 27th Annual SAS® User Group International (SUGI’02).

    下載圖示
    QR CODE