簡易檢索 / 詳目顯示

研究生: 廖澤銘
Liu, Chak-Ming
論文名稱: 鐵磁性材料與二維材料之異質結構分析: 結構,磁性和特性操控
Hetero-structures of ferromagnetic and two-dimensional materials: Structure, Magnetism and Manipulation
指導教授: 林文欽
Lin, Wen-Chin
口試委員: 林文欽
Lin, Wen-Chin
藍彥文
Lan, Yann-Wen
傅祖怡
Fu, Tsu-Yi
莊子弘
Chuang, Tzu-Hung
郭建成
Kuo, Chien-Cheng
口試日期: 2023/07/03
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 227
中文關鍵詞: 二維材料鐵磁材料化學吸附物理吸附異質結構半導體行為接觸力掃描探針蝕刻
英文關鍵詞: two-dimensional material, ferromagnetic material, chemisorption processes, physisorption processes, heterostructures, scanning probe lithography, semiconductor property, contact force
研究方法: 實驗設計法參與觀察法調查研究主題分析觀察研究現象分析
DOI URL: http://doi.org/10.6345/NTNU202301316
論文種類: 學術論文
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在二維材料體系中,獨特的特性和穩定的單層對稱結構具有發展令人興奮的物理的巨大潛力。此研究專注於製造 2D/2D 或 2D/鐵磁材料所組合的異質結構,並分析各種測量結果以研究幾個關鍵因素,包括擴散和插層現象、界面交互作用、以及涉及電子注入的化學吸附和物理吸附過程。在石墨烯(Gr)/CoPd系統中,Gr的覆蓋可以保護 CoPd 層免受氧化和層間擴散。如果沒有Gr,當暴露在大氣環境中 64 天時,表面粗糙度會增加,克爾強度百分比會降低。這表明未受保護的 CoPd 層隨著時間氧化和克爾強度退化。另一方面,當Gr存在時,形態和克爾強度保持穩定,保持CoPd的初始狀態。Gr充當保護屏障,防止氧氣和其他可能導致 CoPd 層氧化和降解的物質擴散。高溫成長的CoPd在 MoS2 上的沉積方法產生了均勻且平坦的二維層,如AFM 圖像中所觀察到的。CoPd 層的形態顯著影響 MAE,其中 CoPd/MoS2 的不同方位角方向表現出不同的磁異向能(MAE)。克爾圖像和磁滯迴線測量表明,改變 CoPd 層中 Co 和 Pd 的百分比組成(例如 Co 50%和35%)會導致 MoS2 的不同方位角方向都有其獨立的 MAE。 這表明MoS2的磁性能和優選磁化方向可以通過設計CoPd層的成分來控制。採用接觸力AFM技術可以去除PMMA殘留物,減小層間距離,剝離Gr層。通過施加110 nN的接觸力,樣品的粗糙度降低,並且可以觀察到Gr層中的皺紋。然而,由於剝離過程中引入缺陷,樣品的 PL 強度也會降低。當接觸力增加到 220 nN 以上時,結構損傷變得更加明顯,從輕微且不連續的薄片到 Gr 層完全剝落,使 MoS2 表面暴露。接觸力的作用對於確定剝落程度和最終的表面形態至關重要。此外,我們亦探討了在 Pt 尖端上施加正偏壓或負偏壓以及摩擦 Gr/MoS2 表面的影響,導致異質結構發生物理和化學變化,稱為掃描探針蝕刻。 該過程可以誘導MoS2從2H到1T相的相變或導致Mo-O鍵的形成。除了機械磨損之外,樣品和鉑尖端之間的水橋中還會發生電化學反應。產生的內部電場可以促進水分子的分離並誘導HER或OER。 這會導致 MoS2 結構的扭曲或氧鍵的形成。SPL處理後,D和G拉曼峰強度的比值(I(D)/I(G))和I(G)/I(2D)比值可以洞察Gr結構的變化,包括空位濃度、結構連續性和晶格應變。MoS2 的 PL 特性表現出半導體行為改變。透過以上多個二維異質結構的研究,更多的功能性及操控有機會應用在未來的二維元件之中。

    The unique characteristics and stable single-layered symmetry structures in the two-dimensional material system hold great potential for developing exciting physics. My research focuses on fabricating heterostructures involving 2D/2D or 2D/ferromagnetic material combinations and analyzing various measurements to investigate several critical factors. These factors include the diffusion barrier and intercalation phenomena, the influence of interfacial interactions, and the chemisorption and physisorption processes involving electron injection. The coverage of Gr provides protection to the CoPd layer against oxidation and interlayer diffusion, as discussed in Chapter 4. Without Gr, when exposed to the atmospheric environment for 64 days, the roughness of the surface increases, and the Kerr intensity percentage decreases. This suggests that the unprotected CoPd layer is susceptible to oxidation and Kerr intensity degradation over time. On the other hand, when Gr is present, the morphology and Kerr intensity remain stable, maintaining the CoPd layer's initial state. Gr acts as a protective barrier, preventing the diffusion of oxygen and other species that can cause oxidation and degradation of the CoPd layer. The high-temperature deposition method of CoPd on MoS2 results in a uniform and flat 2D layer, as observed in the AFM images. The CoPd layer's morphology significantly impacts the MAE, where the resulting different azimuth orientations of CoPd/MoS2 exhibit distinct MAE values. Kerr images and hysteresis loop measurements show that varying the Co and Pd percentage composition in the CoPd layer (e.g., Co 50% and 35%) leads to independent MAEs for different azimuthal orientations of MoS2. This indicates that the magnetic properties and preferred magnetization direction of MoS2 can be controlled by engineering the composition of the CoPd layer. The contact force AFM technique was used to remove PMMA residue, reduce the interlayer distance, and exfoliate the Gr layer. By applying a contact force of 110 nN, the roughness of the sample decreases, and wrinkles in the Gr layer can be observed. However, the PL intensity of the sample also decreases due to the introduction of defects during the exfoliation process. When the contact force is increased to above 220 nN, structural damage becomes more apparent, ranging from slight and non-continuous flakes to complete exfoliation of the Gr layer, leaving the MoS2 surface exposed. The role of contact force is crucial in determining the extent of exfoliation and the resulting surface morphology. We also explored the effects of applying positive or negative bias voltage on a Pt tip and rubbing the Gr/MoS2 surface, which leads to physical and chemical changes in the heterostructure, known as the scanning probe lithography. This process can induce phase transformation of MoS2 from the 2H phase to the 1T phase or result in the formation of Mo-O bonds. In addition to the mechanical wear, an electrochemical reaction occurs in the water bridge between the sample and the Pt tip. The internal electric field generated can facilitate the separation of water molecules and induce the HER or OER. This leads to distortions in the MoS2 structure or the formation of oxygen bonds. After the SPL treatment, the ratio of the D and G Raman peak intensities (I(D)/I(G)) and the I(G)/I(2D) ratio can provide insights into the changes in the Gr structure, including vacancy concentration, structural continuity, and lattice strain. The PL properties of MoS2 exhibit semiconductor behavior alternation.

    Acknowledgments……………………………………………………………………………i 摘要 …………………………………………………………………………………………iii Abstract……………………………..………………………………………………………iv Contents ……………………………………………………………………………………vi List of abbreviation …………………………………………………………………………viii Chapter 1 Introduction………………………………………………………………...1 1.1 Graphene protection………………………………………………………………...3 1.2 Ferromagnetic layer on MoS2 ……………………………………………………..5 1.3 Patterned creation and cleaning PMMA residue on Gr/MoS2 ………………………7 1.4 Electronic property in heterostructure Gr/MoS2 ……………………………………9 Chapter 2 Basic Concept …………………………………………………………….11 2.1 Thin film layer and island growth …………………………………………………11 2.2 Magnetism…………… …………………………………………………………...26 2.3 Two-dimensional material.……………………………………………………..47 2.4 Band gap of heterostructure ……………………………………………………….62 Chapter 3 Experimental instruments ……………………………………………71 3.1 Physical vapour deposition ………………………………………………………71 3.2 Chemical vapour deposition ………………………………………………………73 3.3 Magneto-optical Kerr microscopy ………………………………………………76 3.4 Atomic Force microscopy ………………………………………………………...82 3.5 Raman spectroscopy ………………………………………………………………86 3.6 Photoluminescence spectroscopy …………………………………………………90 3.7 X-ray photoelectron spectroscopy …………………………………………..…….93 3.8 Kelvin probe force microscopy ………………………………………………..…..98 3.9 Scanning tunneling microscopy …………………………………………………101 3.10 Transmission electron microscopy……………………………………………105 Chapter 4 Graphene protection and diffusion barrier ……………………...106 4.1 Introduction………………………………………………………………………106 4.2 Experiment ………………………………………………………………………107 4.3 Graphene protection against oxidation ………………………………………110 4.4 Graphene protection against interlayer diffusion ………………………………...115 4.5 Discussion ………………………………………………………………………121 Chapter 5 HT-deposited uniform CoxPd1- x/MoS2 flakes ……………………124 5.1 Introduction………………………………………………………………............124 5.2 Experiment ………………………………………………………………………125 5.3 Morphological and structure characterization …………………………………127 5.4 Magnetism property ……………………………………………………………..130 5.5 Hydrogenation effect …………………………………………………………….136 5.6 Discussion ……………………………………………………………………….137 Chapter 6 Gr/MoS2 heterostructure: Contact force AFM ………………….140 6.1 Introduction ………………………………………………………………….…140 6.2 Experimental …………………………………………………………………….140 6.3 Various contact forces removed PMMA on Gr/MoS2 …………………………142 6.4 The created square pattern on Gr/MoS2 …………………………………………150 6.5 Discussion ………………………………………………………………………153 Chapter 7 Gr/MoS2 heterostructure: Scanning Prob lithography ………..156 7.1 Introduction ……………………………………………………………………156 7.2 Experimental ……………………………………………………………………157 7.3 Fundamentally measure of heterostructure Gr/MoS2 ……………………………158 7.4 Triboelectricity effect with +10 V ………………………………………………161 7.5 Triboelectricity undergoes a chemical change at various positive biases ………...163 7.6 Triboelectricity undergoes a chemical change at -10V …………………………..165 7.7 Triboelectricity undergoes a chemical change at various negative biases ………167 7.8 XPS data analysis ………………………………………………………………169 7.9 Triboelectricity undergoes a physical change at various biases …………………171 7.10 Discussion ……………………………………………………………………….173 Chapter 8 Conclusion ……………………………………………………………….178 Bibliography ………………………………………………….……………………….183 Appendix A. Future work ……………………………………………………………219 Appendix B. Transfer method………………………………….……………………221 Curriculum viate…………………………………………………………………………224

    (1) Clare Duffy. IBM Says It Has Created the World’s Most Powerful Computer Chip https://edition.cnn.com/2021/05/06/tech/ibm-semiconductor-two-nanometer/index.html.
    (2) Ma, S.; Wang, Y.; Chen, X.; Wu, T.; Wang, X.; Tang, H.; Yao, Y.; Yu, H.; Sheng, Y.; Ma, J.; Ren, J.; Bao, W. Analog Integrated Circuits Based on Wafer-Level Two-Dimensional Mos2 Materials with Physical and SPICE Model. IEEE Access 2020, 8, 197287–197299. https://doi.org/10.1109/ACCESS.2020.3034321.
    (3) Ye, Z.; Tan, C.; Huang, X.; Ouyang, Y.; Yang, L.; Wang, Z.; Dong, M. Emerging MoS2 Wafer-Scale Technique for Integrated Circuits; Springer Nature Singapore, 2023; Vol. 15. https://doi.org/10.1007/s40820-022-01010-4.
    (4) Pendurthi, R.; Jayachandran, D.; Kozhakhmetov, A.; Trainor, N.; Robinson, J. A.; Redwing, J. M.; Das, S. Heterogeneous Integration of Atomically Thin Semiconductors for Non-von Neumann CMOS. Small 2022, 18 (33), 1–9. https://doi.org/10.1002/smll.202202590.
    (5) Schwierz, F. Graphene Transistors. Nat. Nanotechnol. 2010, 5 (7), 487–496. https://doi.org/10.1038/nnano.2010.89.
    (6) Singh, E.; Singh, P.; Kim, K. S.; Yeom, G. Y.; Nalwa, H. S. Flexible Molybdenum Disulfide (MoS 2 ) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Appl. Mater. Interfaces 2019, 11 (12), 11061–11105. https://doi.org/10.1021/acsami.8b19859.
    (7) Chhetry, A.; Yoon, H.; Sharifuzzaman, M.; Park, J. Y. Highly Sensitive and Reliable Strain Sensor Based on MoS2-Decorated Laser-Scribed Graphene for Wearable Electronics. 2019 20th Int. Conf. Solid-State Sensors, Actuators Microsystems Eurosensors XXXIII, TRANSDUCERS 2019 EUROSENSORS XXXIII 2019, No. June, 366–369. https://doi.org/10.1109/TRANSDUCERS.2019.8808354.
    (8) Li, N.; Wang, Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X.; Wang, G.; He, C.; Xie, L.; Zhu, J.; Du, L.; Yang, R.; Shi, D.; Zhang, G. Large-Scale Flexible and Transparent Electronics Based on Monolayer Molybdenum Disulfide Field-Effect Transistors. Nat. Electron. 2020, 3 (11), 711–717. https://doi.org/10.1038/s41928-020-00475-8.
    (9) Li, T.; Guo, W.; Ma, L.; Li, W.; Yu, Z.; Han, Z.; Gao, S.; Liu, L.; Fan, D.; Wang, Z.; Yang, Y.; Lin, W.; Luo, Z.; Chen, X.; Dai, N.; Tu, X.; Pan, D.; Yao, Y.; Wang, P.; Nie, Y.; Wang, J.; Shi, Y.; Wang, X. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire. Nat. Nanotechnol. 2021, 16 (11), 1201–1207. https://doi.org/10.1038/s41565-021-00963-8.
    (10) English, C. D.; Smithe, K. K. H.; Xu, R. L.; Pop, E. Approaching Ballistic Transport in Monolayer MoS2 Transistors with Self-Aligned 10 Nm Top Gates. Tech. Dig. - Int. Electron Devices Meet. IEDM 2017, 5.6.1-5.6.4. https://doi.org/10.1109/IEDM.2016.7838355.
    (11) Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K.; Taniguchi, T.; Nuckolls, C.; Kim, P.; Hone, J. Flexible and Transparent MoS2 Field-Effect Transistors on Hexagonal Boron Nitride-Graphene Heterostructures. ACS Nano 2013, 7 (9), 7931–7936. https://doi.org/10.1021/nn402954e.
    (12) Qian, Q.; Lei, J.; Wei, J.; Zhang, Z.; Tang, G.; Zhong, K.; Zheng, Z.; Chen, K. J. 2D Materials as Semiconducting Gate for Field-Effect Transistors with Inherent over-Voltage Protection and Boosted ON-Current. npj 2D Mater. Appl. 2019, 3 (1). https://doi.org/10.1038/s41699-019-0106-6.
    (13) Xiao, Y.; Zhou, M.; Zeng, M.; Fu, L. Atomic-Scale Structural Modification of 2D Materials. Adv. Sci. 2019, 6 (5). https://doi.org/10.1002/advs.201801501.
    (14) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-Layer MoS2 Transistors. Nat. Nanotechnol. 2011, 6 (3), 147–150. https://doi.org/10.1038/nnano.2010.279.
    (15) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nat. Nanotechnol. 2012, 7 (11), 699–712. https://doi.org/10.1038/nnano.2012.193.
    (16) Kaxiras, E.; Kong, J.; Wang, H. Graphene/MoS 2 Hybrid Technology for Large-Scale Two- Dimensional Electronics. 2014, No. Cvd.
    (17) Subramanian, S.; Xu, K.; Wang, Y.; Moser, S.; Simonson, N. A.; Deng, D.; Crespi, V. H.; Fullerton-Shirey, S. K.; Robinson, J. A. Tuning Transport across MoS2/Graphene Interfaces via as-Grown Lateral Heterostructures. npj 2D Mater. Appl. 2020, 4 (1). https://doi.org/10.1038/s41699-020-0144-0.
    (18) Sharma, C. H.; Thalakulam, M. Split-Gated Point-Contact for Electrostatic Confinement of Transport in MoS2/h-BN Hybrid Structures. Sci. Rep. 2017, 7 (1), 1–6. https://doi.org/10.1038/s41598-017-00857-7.
    (19) Roy, T.; Tosun, M.; Kang, J. S.; Sachid, A. B.; Desai, S. B.; Hettick, M.; Hu, C. C.; Javey, A. Field-Effect Transistors Built from All Two-Dimensional Material Components. ACS Nano 2014, 8 (6), 6259–6264. https://doi.org/10.1021/nn501723y.
    (20) Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F.; Pizzocchero, F.; Jessen, B. S.; Watanabe, K.; Taniguchi, T.; Muller, D. A.; Low, T.; Kim, P.; Hone, J. Multi-Terminal Transport Measurements of MoS2 Using a van Der Waals Heterostructure Device Platform. Nat. Nanotechnol. 2015, 10 (6), 534–540. https://doi.org/10.1038/nnano.2015.70.
    (21) Wang, L.; Meric, I.; Huang, P. Y.; Gao, Q.; Gao, Y.; Tran, H.; Taniguchi, T.; Watanabe, K.; Campos, L. M.; Muller, D. A.; Guo, J.; Kim, P.; Hone, J.; Shepard, K. L.; Dean, C. R. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science (80-. ). 2013, 342 (6158), 614–617. https://doi.org/10.1126/science.1244358.
    (22) K. S. Novoselov et al. Electric Field Effect in Atomically Thin Carbon Films. 2016, 306 (5696), 666–669.
    (23) Martin, M. B.; Dlubak, B.; Weatherup, R. S.; Piquemal-Banci, M.; Yang, H.; Blume, R.; Schloegl, R.; Collin, S.; Petroff, F.; Hofmann, S.; Robertson, J.; Anane, A.; Fert, A.; Seneor, P. Protecting Nickel with Graphene Spin-Filtering Membranes: A Single Layer Is Enough. Appl. Phys. Lett. 2015, 107 (1). https://doi.org/10.1063/1.4923401.
    (24) Kwak, J.; Jo, Y.; Park, S. D.; Kim, N. Y.; Kim, S. Y.; Shin, H. J.; Lee, Z.; Kim, S. Y.; Kwon, S. Y. Oxidation Behavior of Graphene-Coated Copper at Intrinsic Graphene Defects of Different Origins. Nat. Commun. 2017, 8 (1). https://doi.org/10.1038/s41467-017-01814-8.
    (25) Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.; Edgeworth, J.; Ruoff, R. S.; Al, C. E. T. Oxidation Resistance of Graphene- Coated Cu and Cu / Ni Alloy. 2011, No. 2, 1321–1327.
    (26) Nilsson, L.; Andersen, M.; Balog, R.; Lægsgaard, E.; Hofmann, P.; Besenbacher, F.; Hammer, B.; Stensgaard, I.; Hornekær, L. Graphene Coatings: Probing the Limits of the One Atom Thick Protection Layer. ACS Nano 2012, 6 (11), 10258–10266. https://doi.org/10.1021/nn3040588.
    (27) Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. Graphene as a Long-Term Metal Oxidation Barrier: Worse than Nothing. ACS Nano 2013, 7 (7), 5763–5768. https://doi.org/10.1021/nn4014356.
    (28) Singh Raman, R. K.; Chakraborty Banerjee, P.; Lobo, D. E.; Gullapalli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P. M.; Majumder, M. Protecting Copper from Electrochemical Degradation by Graphene Coating. Carbon N. Y. 2012, 50 (11), 4040–4045. https://doi.org/10.1016/j.carbon.2012.04.048.
    (29) Hong, J.; Lee, S.; Lee, S.; Han, H.; Mahata, C.; Yeon, H. W.; Koo, B.; Kim, S. Il; Nam, T.; Byun, K.; Min, B. W.; Kim, Y. W.; Kim, H.; Joo, Y. C.; Lee, T. Graphene as an Atomically Thin Barrier to Cu Diffusion into Si. Nanoscale 2014, 6 (13), 7503–7511. https://doi.org/10.1039/c3nr06771h.
    (30) Morrow, W. K.; Pearton, S. J.; Ren, F. Review of Graphene as a Solid State Diffusion Barrier. Small 2016, 12 (1), 120–134. https://doi.org/10.1002/smll.201501120.
    (31) Wang, Z.; Mi, B. Environmental Applications of 2D Molybdenum Disulfide (MoS2) Nanosheets. Environ. Sci. Technol. 2017, 51 (15), 8229–8244. https://doi.org/10.1021/acs.est.7b01466.
    (32) Applications, S. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. 2021, 1–24.
    (33) Li, H.; Qi, X.; Wu, J.; Zeng, Z.; Wei, J.; Zhang, H. Investigation of MoS2 and Graphene Nanosheets by Magnetic Force Microscopy. ACS Nano 2013, 7 (3), 2842–2849. https://doi.org/10.1021/nn400443u.
    (34) Lin, L.; Guo, Y. P.; He, C. Z.; Tao, H. L.; Huang, J. T.; Yu, W. Y.; Chen, R. X.; Lou, M. S.; Yan, L. Bin. First-Principles Study of Magnetism of 3d Transition Metals and Nitrogen Co-Doped Monolayer MoS2. Chinese Phys. B 2020, 29 (9). https://doi.org/10.1088/1674-1056/ab9741.
    (35) Fei, Z.; Huang, B.; Malinowski, P.; Wang, W.; Song, T.; Sanchez, J.; Yao, W.; Xiao, D.; Zhu, X.; May, A. F.; Wu, W.; Cobden, D. H.; Chu, J. H.; Xu, X. Two-Dimensional Itinerant Ferromagnetism in Atomically Thin Fe3GeTe2. Nat. Mater. 2018, 17 (9), 778–782. https://doi.org/10.1038/s41563-018-0149-7.
    (36) Lin, L.; Huang, J.; Yu, W.; Zhu, L.; Tao, H.; Wang, P.; Guo, Y. Electronic Structures and Magnetic Properties of S Vacancy and Mn Doped Monolayer MoS2: A First-Principle Study. Solid State Commun. 2019, 301 (August), 113702. https://doi.org/10.1016/j.ssc.2019.113702.
    (37) Kumar, P.; Kumar, A.; Kaur, D. Spin Valve Effect in Sputtered FL-MoS2 and Ferromagnetic Shape Memory Alloy Based Magnetic Tunnel Junction. Ceram. Int. 2021, 47 (4), 4587–4594. https://doi.org/10.1016/j.ceramint.2020.10.024.
    (38) Wang, W.; Narayan, A.; Tang, L.; Dolui, K.; Liu, Y.; Yuan, X.; Jin, Y.; Wu, Y.; Rungger, I.; Sanvito, S.; Xiu, F. Spin-Valve Effect in NiFe/MoS2/NiFe Junctions. Nano Lett. 2015, 15 (8), 5261–5267. https://doi.org/10.1021/acs.nanolett.5b01553.
    (39) Li, S.; Larionov, K. V.; Popov, Z. I.; Watanabe, T.; Amemiya, K.; Entani, S.; Avramov, P. V.; Sakuraba, Y.; Naramoto, H.; Sorokin, P. B.; Sakai, S. Graphene/Half-Metallic Heusler Alloy: A Novel Heterostructure toward High-Performance Graphene Spintronic Devices. Adv. Mater. 2020, 32 (6), 1–9. https://doi.org/10.1002/adma.201905734.
    (40) Jamilpanah, L.; Hajiali, M.; Mohseni, S. M. Interfacial Magnetic Anisotropy in Py/MoS2 Bilayer. J. Magn. Magn. Mater. 2020, 514. https://doi.org/10.1016/j.jmmm.2020.167206.
    (41) Lin, X.; Yang, W.; Wang, K. L.; Zhao, W. Two-Dimensional Spintronics for Low-Power Electronics. Nat. Electron. 2019, 2 (7), 274–283. https://doi.org/10.1038/s41928-019-0273-7.
    (42) Dhanarajgopal, A.; Chang, P. C.; Liu, S. Y.; Chuang, T. H.; Wei, D. H.; Kuo, C. C.; Kuo, C. N.; Lue, C. S.; Lin, W. C. Interfacial Magnetic Coupling in Co/Antiferromagnetic van Der Waals Compound FePS3. Appl. Surf. Sci. 2021, 567 (March). https://doi.org/10.1016/j.apsusc.2021.150864.
    (43) Hsu, C. C.; Lin, Z. Y.; Chang, P. C.; Chiu, H. C.; Chen, H. W.; Liu, H. L.; Bisio, F.; Lin, W. C. Magnetic Decoupling of Fe Coverage across Atomic Step of MoS2 Flakes on SiO2 Surface. J. Phys. D. Appl. Phys. 2017, 50 (41). https://doi.org/10.1088/1361-6463/aa86d2.
    (44) Liu, C. M.; Wang, W. H.; Jiang, P. H.; Lin, W. C. Magnetic Patterning through Graphene Protection against Oxidation and Interlayer Diffusion. Nanotechnology 2019, 30 (45). https://doi.org/10.1088/1361-6528/ab375e.
    (45) Mantovan, R.; Matveyev, Y.; Vinai, G.; Martella, C.; Torelli, P.; Molle, A.; Zarubin, S.; Lebedinskii, Y.; Zenkevich, A. Bonding Character and Magnetism at the Interface Between Fe and MoS2 Nanosheets. Phys. Status Solidi Appl. Mater. Sci. 2018, 215 (13), 1–5. https://doi.org/10.1002/pssa.201800015.
    (46) Hsu, C. C.; Liu, C. M.; Lin, Z. Y.; Lin, W. C. Morphology and Magnetism of CoPd Coverage on MoS2 Flakes/SiO2. J. Alloys Compd. 2019, 785, 436–444. https://doi.org/10.1016/j.jallcom.2019.01.189.
    (47) Chang, P. C.; Chen, Y. C.; Hsu, C. C.; Mudinepalli, V. R.; Chiu, H. C.; Lin, W. C. Hydrogenation-Induced Reversible Spin Reorientation Transition in Co50Pd50 Alloy Thin Films. J. Alloys Compd. 2017, 710, 37–46. https://doi.org/10.1016/j.jallcom.2017.03.221.
    (48) Lin, W. C.; Wang, B. Y.; Huang, H. Y.; Tsai, C. J.; Mudinepalli, V. R. Hydrogen Absorption-Induced Reversible Change in Magnetic Properties of Co-Pd Alloy Films. J. Alloys Compd. 2016, 661, 20–26. https://doi.org/10.1016/j.jallcom.2015.11.144.
    (49) Chang, P. C.; Liu, C. M.; Hsu, C. C.; Lin, W. C. Hydrogen-Mediated Magnetic Domain Formation and Domain Wall Motion in Co30Pd70 Alloy Films. Sci. Rep. 2018, 8 (1), 1–13. https://doi.org/10.1038/s41598-018-25114-3.
    (50) Chang, P. C.; Chang, Y. Y.; Wang, W. H.; Lo, F. Y.; Lin, W. C. Visualizing Hydrogen Diffusion in Magnetic Film through Magneto-Optical Kerr Effect. Commun. Chem. 2019, 2 (1), 1–8. https://doi.org/10.1038/s42004-019-0189-1.
    (51) Lin, W.; Zhuang, P.; Chou, H.; Gu, Y.; Roberts, R.; Li, W.; Banerjee, S. K.; Cai, W.; Akinwande, D. Electron Redistribution and Energy Transfer in Graphene/MoS2 Heterostructure. Appl. Phys. Lett. 2019, 114 (11). https://doi.org/10.1063/1.5088512.
    (52) Myoung, N.; Seo, K.; Lee, S. J.; Ihm, G. Large Current Modulation and Spin-Dependent Tunneling of Vertical Graphene/MoS2 Heterostructures. ACS Nano 2013, 7 (8), 7021–7027. https://doi.org/10.1021/nn402919d.
    (53) Thi, P.; Loan, K.; Zhang, W.; Lin, C.; Wei, K.; Li, L.; Chen, C. Graphene / MoS 2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation. 2014, 4838–4844. https://doi.org/10.1002/adma.201401084.
    (54) Chen, T. Y.; Loan, P. T. K.; Hsu, C. L.; Lee, Y. H.; Tse-Wei Wang, J.; Wei, K. H.; Lin, C. Te; Li, L. J. Label-Free Detection of DNA Hybridization Using Transistors Based on CVD Grown Graphene. Biosens. Bioelectron. 2013, 41 (1), 103–109. https://doi.org/10.1016/j.bios.2012.07.059.
    (55) Kang, M. A.; Kim, S. J.; Song, W.; Chang, S. jin; Park, C. Y.; Myung, S.; Lim, J.; Lee, S. S.; An, K. S. Fabrication of Flexible Optoelectronic Devices Based on MoS2/Graphene Hybrid Patterns by a Soft Lithographic Patterning Method. Carbon N. Y. 2017, 116, 167–173. https://doi.org/10.1016/j.carbon.2017.02.001.
    (56) Borah, C. K.; Tyagi, P. K.; Kumar, S. The Prospective Application of a Graphene/MoS2heterostructure in Si-HIT Solar Cells for Higher Efficiency. Nanoscale Adv. 2020, 2 (8), 3231–3243. https://doi.org/10.1039/d0na00309c.
    (57) Kang, J.; Shin, D.; Bae, S.; Hong, B. H. Graphene Transfer: Key for Applications. Nanoscale 2012, 4 (18), 5527–5537. https://doi.org/10.1039/c2nr31317k.
    (58) Seo, J.; Kim, C.; Ma, B. S.; Lee, T. I.; Bong, J. H.; Oh, J. G.; Cho, B. J.; Kim, T. S. Direct Graphene Transfer and Its Application to Transfer Printing Using Mechanically Controlled, Large Area Graphene/Copper Freestanding Layer. Adv. Funct. Mater. 2018, 28 (26), 1–9. https://doi.org/10.1002/adfm.201707102.
    (59) Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colomba, L.; Ruoff, R. S. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9 (12), 4359–4363. https://doi.org/10.1021/nl902623y.
    (60) Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y. Toward Intrinsic Graphene Surfaces: A Systematic Study on Thermal Annealing and Wet-Chemical Treatment of SiO2-Supported Graphene Devices. Nano Lett. 2011, 11 (2), 767–771. https://doi.org/10.1021/nl103977d.
    (61) Vazirisereshk, M. R.; Ye, H.; Ye, Z.; Otero-De-La-Roza, A.; Zhao, M. Q.; Gao, Z.; Johnson, A. T. C.; Johnson, E. R.; Carpick, R. W.; Martini, A. Origin of Nanoscale Friction Contrast between Supported Graphene, MoS2, and a Graphene/MoS2 Heterostructure. Nano Lett. 2019, 19 (8), 5496–5505. https://doi.org/10.1021/acs.nanolett.9b02035.
    (62) Goossens, A. M.; Calado, V. E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L. M. K. Mechanical Cleaning of Graphene. Appl. Phys. Lett. 2012, 100 (7), 1–4. https://doi.org/10.1063/1.3685504.
    (63) Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C.; Suenaga, K.; Chiu, P. W. Graphene Annealing: How Clean Can It Be? Nano Lett. 2012, 12 (1), 414–419. https://doi.org/10.1021/nl203733r.
    (64) Wood, J. D.; Doidge, G. P.; Carrion, E. A.; Koepke, J. C.; Kaitz, J. A.; Datye, I.; Behnam, A.; Hewaparakrama, J.; Aruin, B.; Chen, Y.; Dong, H.; Haasch, R. T.; Lyding, J. W.; Pop, E. Annealing Free, Clean Graphene Transfer Using Alternative Polymer Scaffolds. Nanotechnology 2015, 26 (5). https://doi.org/10.1088/0957-4484/26/5/055302.
    (65) Son, B. H.; Kim, H. S.; Jeong, H.; Park, J. Y.; Lee, S.; Ahn, Y. H. Electron Beam Induced Removal of PMMA Layer Used for Graphene Transfer. Sci. Rep. 2017, 7 (1), 1–7. https://doi.org/10.1038/s41598-017-18444-1.
    (66) Choi, W.; Shehzad, M. A.; Park, S.; Seo, Y. Influence of Removing PMMA Residues on Surface of CVD Graphene Using a Contact-Mode Atomic Force Microscope. RSC Adv. 2017, 7 (12), 6943–6949. https://doi.org/10.1039/c6ra27436f.
    (67) Moser, J.; Barreiro, A.; Bachtold, A. Current-Induced Cleaning of Graphene. Appl. Phys. Lett. 2007, 91 (16), 1–4. https://doi.org/10.1063/1.2789673.
    (68) Romanov, R. I.; Slavich, A. S.; Kozodaev, M. G.; Myakota, D. I.; Lebedinskii, Y. Y.; Novikov, S. M.; Markeev, A. M. Band Alignment in As-Transferred and Annealed Graphene/MoS2 Heterostructures. Phys. Status Solidi - Rapid Res. Lett. 2020, 14 (2), 1–6. https://doi.org/10.1002/pssr.201900406.
    (69) Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-Grown Monolayer Graphene onto Arbitrary Substrates. ACS Nano 2011, 5 (9), 6916–6924. https://doi.org/10.1021/nn201207c.
    (70) Li, R.; Li, Z.; Pambou, E.; Gutfreund, P.; Waigh, T. A.; Webster, J. R. P.; Lu, J. R. Determination of PMMA Residues on a Chemical-Vapor-Deposited Monolayer of Graphene by Neutron Reflection and Atomic Force Microscopy. Langmuir 2018, 34 (5), 1827–1833. https://doi.org/10.1021/acs.langmuir.7b03117.
    (71) Kedzierski, J.; Hsu, P. L.; Reina, A.; Kong, J.; Healey, P.; Wyatt, P.; Keast, C. Graphene-on-Insulator Transistors Made Using C on Ni Chemical-Vapor Deposition. IEEE Electron Device Lett. 2009, 30 (7), 745–747. https://doi.org/10.1109/LED.2009.2020615.
    (72) Pirkle, A.; Chan, J.; Venugopal, A.; Hinojos, D.; Magnuson, C. W.; McDonnell, S.; Colombo, L.; Vogel, E. M.; Ruoff, R. S.; Wallace, R. M. The Effect of Chemical Residues on the Physical and Electrical Properties of Chemical Vapor Deposited Graphene Transferred to SiO2. Appl. Phys. Lett. 2011, 99 (12), 2009–2012. https://doi.org/10.1063/1.3643444.
    (73) Rokni, H.; Lu, W. Direct Measurements of Interfacial Adhesion in 2D Materials and van Der Waals Heterostructures in Ambient Air. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-020-19411-7.
    (74) Torres, J.; Zhu, Y.; Liu, P.; Lim, S. C.; Yun, M. Adhesion Energies of 2D Graphene and MoS2 to Silicon and Metal Substrates. Phys. Status Solidi Appl. Mater. Sci. 2018, 215 (1), 1–8. https://doi.org/10.1002/pssa.201700512.
    (75) Kim, T.; Fan, S.; Lee, S.; Joo, M. K.; Lee, Y. H. High-Mobility Junction Field-Effect Transistor via Graphene/MoS2 Heterointerface. Sci. Rep. 2020, 10 (1), 1–8. https://doi.org/10.1038/s41598-020-70038-6.
    (76) Shih, C. J.; Wang, Q. H.; Son, Y.; Jin, Z.; Blankschtein, D.; Strano, M. S. Tuning On-off Current Ratio and Field-Effect Mobility in a MoS 2-Graphene Heterostructure via Schottky Barrier Modulation. ACS Nano 2014, 8 (6), 5790–5798. https://doi.org/10.1021/nn500676t.
    (77) Graphene-mos, A. T. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. 2014, 1–8. https://doi.org/10.1038/srep03826.
    (78) Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene Photonics and Optoelectronics. Nat. Photonics 2010, 4 (9), 611–622. https://doi.org/10.1038/nphoton.2010.186.
    (79) Díez-Betriu, X.; Álvarez-García, S.; Botas, C.; Álvarez, P.; Sánchez-Marcos, J.; Prieto, C.; Menéndez, R.; De Andrés, A. Raman Spectroscopy for the Study of Reduction Mechanisms and Optimization of Conductivity in Graphene Oxide Thin Films. J. Mater. Chem. C 2013, 1 (41), 6905–6912. https://doi.org/10.1039/c3tc31124d.
    (80) Xiong, X.; Jiang, C.; Xie, Q. Broadband Transmission Properties of Graphene-Dielectric Interfaces. Results Phys. 2019, 14 (July), 102521. https://doi.org/10.1016/j.rinp.2019.102521.
    (81) Ferrari, A. C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K. S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F. H. L.; Palermo, V.; Pugno, N.; Garrido, J. A.; Sordan, R.; Bianco, A.; Ballerini, L.; Prato, M.; Lidorikis, E.; Kivioja, J.; Marinelli, C.; Ryhänen, T.; Morpurgo, A.; Coleman, J. N.; Nicolosi, V.; Colombo, L.; Fert, A.; Garcia-Hernandez, M.; Bachtold, A.; Schneider, G. F.; Guinea, F.; Dekker, C.; Barbone, M.; Sun, Z.; Galiotis, C.; Grigorenko, A. N.; Konstantatos, G.; Kis, A.; Katsnelson, M.; Vandersypen, L.; Loiseau, A.; Morandi, V.; Neumaier, D.; Treossi, E.; Pellegrini, V.; Polini, M.; Tredicucci, A.; Williams, G. M.; Hee Hong, B.; Ahn, J. H.; Min Kim, J.; Zirath, H.; Van Wees, B. J.; Van Der Zant, H.; Occhipinti, L.; Di Matteo, A.; Kinloch, I. A.; Seyller, T.; Quesnel, E.; Feng, X.; Teo, K.; Rupesinghe, N.; Hakonen, P.; Neil, S. R. T.; Tannock, Q.; Löfwander, T.; Kinaret, J. Science and Technology Roadmap for Graphene, Related Two-Dimensional Crystals, and Hybrid Systems. Nanoscale 2015, 7 (11), 4598–4810. https://doi.org/10.1039/c4nr01600a.
    (82) Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman Spectroscopy in Graphene. Phys. Rep. 2009, 473 (5–6), 51–87. https://doi.org/10.1016/j.physrep.2009.02.003.
    (83) Ken-ichi Sasaki. Basic Principles of Raman Spectroscopy for Graphene. NTT Tech. Rev. 2013, 11 (8), 1–5.
    (84) Son, J.; Choi, M.; Hong, J.; Yang, I. S. Raman Study on the Effects of Annealing Atmosphere of Patterned Graphene. J. Raman Spectrosc. 2018, 49 (1), 183–188. https://doi.org/10.1002/jrs.5280.
    (85) Rabchinskii, M. K.; Saveliev, S. D.; Stolyarova, D. Y.; Brzhezinskaya, M.; Kirilenko, D. A.; Baidakova, M. V.; Ryzhkov, S. A.; Shnitov, V. V.; Sysoev, V. V.; Brunkov, P. N. Modulating Nitrogen Species via N-Doping and Post Annealing of Graphene Derivatives: XPS and XAS Examination. Carbon N. Y. 2021, 182, 593–604. https://doi.org/10.1016/j.carbon.2021.06.057.
    (86) Schultz, B. J.; Dennis, R. V.; Lee, V.; Banerjee, S. An Electronic Structure Perspective of Graphene Interfaces. Nanoscale 2014, 6 (7), 3444–3466. https://doi.org/10.1039/c3nr06923k.
    (87) Hall, E. O.; Petch, N. J.; Jacobsen, K. W.; Yip, S.; Meyers, M. A.; Mishra, A.; Benson, D. J.; Sanders, P. G.; Eastman, J. A.; Weertman, J. R.; Koch, C. C.; Youssef, K. M.; Scattergood, R. O.; Murty, K. L.; Shen, Y. F.; Lu, L.; Lu, Q. H.; Jin, Z. H.; Lu, K.; Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K.; Chen, J.; Lu, L.; Lu, K.; Misra, A.; Zhang, X.; Hammon, D.; Hoagland, R. G.; Meyers, M. A.; Chawla, K. K.; Horton, M.; Saddle, U.; Lu, L.; Lu, K.; Hansen, N.; Tsuji, N.; Mishra, R. K.; Asif, S. A. S.; Warren, O. L.; Minor, A. M.; Mizera, J.; Wyrzykowski, J. W.; Tao, N. R.; Lu, K.; Hazzledine, P. M.; Lu, L.; Shen, Y.; Suresh, S.; Li, J.; Samanta, A.; Kim, H. G.; Suresh, S.; Jin, Z.; Pantleon, W.; Ralph, B.; Si, X. Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane. 2009, No. January, 610–614.
    (88) Matis, B. R.; Burgess, J. S.; Bulat, F. A.; Friedman, A. L.; Houston, B. H.; Baldwin, J. W. Surface Doping and Band Gap Tunability in Hydrogenated Graphene. ACS Nano 2012, 6 (1), 17–22. https://doi.org/10.1021/nn2034555.
    (89) Son, J.; Lee, S.; Kim, S. J.; Park, B. C.; Lee, H. K.; Kim, S.; Kim, J. H.; Hong, B. H.; Hong, J. Hydrogenated Monolayer Graphene with Reversible and Tunable Wide Band Gap and Its Field-Effect Transistor. Nat. Commun. 2016, 7, 1–7. https://doi.org/10.1038/ncomms13261.
    (90) Li, Z.; Ye, R.; Feng, R.; Kang, Y.; Zhu, X.; Tour, J. M.; Fang, Z. Graphene Quantum Dots Doping of MoS 2 Monolayers. 2015, 5235–5240. https://doi.org/10.1002/adma.201501888.
    (91) Li, Y.; Qi, Z.; Liu, M.; Wang, Y.; Cheng, X.; Zhang, G.; Sheng, L. Photoluminescence of Monolayer MoS2 on LaAlO3 and SrTiO3 Substrates. Nanoscale 2014, 6 (24), 15248–15254. https://doi.org/10.1039/c4nr04602a.
    (92) Birmingham, B.; Yuan, J.; Filez, M.; Fu, D.; Hu, J.; Lou, J.; Scully, M. O.; Weckhuysen, B. M.; Zhang, Z. Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications. ACS Appl. Nano Mater. 2018, 1, 6226–6235. https://doi.org/10.1021/acsanm.8b01422.
    (93) Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS 2 via Chemical Doping. 2013, 1–5.
    (94) Roh, J.; Ryu, J. H.; Baek, G. W.; Jung, H.; Seo, S. G.; An, K.; Jeong, B. G.; Lee, D. C.; Hong, B. H.; Bae, W. K.; Lee, J. H.; Lee, C.; Jin, S. H. Threshold Voltage Control of Multilayered MoS 2 Field-Effect Transistors via Octadecyltrichlorosilane and Their Applications to Active Matrixed Quantum Dot Displays Driven by Enhancement-Mode Logic Gates. Small 2019, 15 (7), 1–10. https://doi.org/10.1002/smll.201803852.
    (95) Tang, J.; Wei, Z.; Wang, Q.; Wang, Y.; Han, B.; Li, X.; Huang, B.; Liao, M.; Liu, J.; Li, N.; Zhao, Y.; Shen, C.; Guo, Y.; Bai, X.; Gao, P.; Yang, W.; Chen, L.; Wu, K.; Yang, R.; Shi, D.; Zhang, G. In Situ Oxygen Doping of Monolayer MoS2 for Novel Electronics. Small 2020, 16 (42), 2–9. https://doi.org/10.1002/smll.202004276.
    (96) Zhumagulov, Y. V.; Vagov, A.; Gulevich, D. R.; Perebeinos, V. Electrostatic and Environmental Control of the Trion Fine Structure in Transition Metal Dichalcogenide Monolayers. Nanomaterials 2022, 12 (21), 1–15. https://doi.org/10.3390/nano12213728.
    (97) Liu, Y.; Shen, T.; Linghu, S.; Zhu, R.; Gu, F. Electrostatic Control of Photoluminescence from A and B Excitons in Monolayer Molybdenum Disulfide. Nanoscale Adv. 2022, 4 (11), 2484–2493. https://doi.org/10.1039/d2na00071g.
    (98) Henck, H.; Pierucci, D.; Chaste, J.; Naylor, C. H.; Avila, J.; Balan, A.; Silly, M. G.; Maria, C.; Henck, H.; Pierucci, D.; Chaste, J.; Naylor, C. H.; Avila, J.; Balan, A.; Silly, M. G.; Asensio, M. C.; Sirotti, F.; Johnson, A. T. C.; Lhuillier, E.; Ouerghi, A. With Tunable Photoresponse P-n Heterojunction with Tunable Photoresponse. 2016, 113103. https://doi.org/10.1063/1.4962551.
    (99) Garcia, R.; Knoll, A. W.; Riedo, E. Advanced Scanning Probe Lithography. Nat. Nanotechnol. 2014, 9 (8), 577–587. https://doi.org/10.1038/nnano.2014.157.
    (100) Howell, S. T.; Grushina, A.; Holzner, F.; Brugger, J. Thermal Scanning Probe Lithography—a Review. Microsystems Nanoeng. 2020, 6 (1), 1–24. https://doi.org/10.1038/s41378-019-0124-8.
    (101) Fan, P.; Gao, J.; Mao, H.; Geng, Y.; Yan, Y.; Wang, Y.; Goel, S.; Luo, X. Scanning Probe Lithography: State-of-the-Art and Future Perspectives. Micromachines 2022, 13 (2), 1–32. https://doi.org/10.3390/mi13020228.
    (102) Byun, I. S.; Yoon, D.; Choi, J. S.; Hwang, I.; Lee, D. H.; Lee, M. J.; Kawai, T.; Son, Y. W.; Jia, Q.; Cheong, H.; Park, B. H. Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation. ACS Nano 2011, 5 (8), 6417–6424. https://doi.org/10.1021/nn201601m.
    (103) Huang, S. De; Chu, E. De; Wang, Y. H.; Liou, J. W.; Wang, R. S.; Woon, W. Y.; Chiu, H. C. Variations in the Effective Work Function of Graphene in a Sliding Electrical Contact Interface under Ambient Conditions. ACS Appl. Mater. Interfaces 2022, 14 (23), 27328–27338. https://doi.org/10.1021/acsami.2c02096.
    (104) Hong, Y.; Chiang, W.; Tsai, H. Local Oxidation and Reduction of Graphene. 2017.
    (105) Liou, J. W.; Woon, W. Y. Revisiting Oxidation Scanning Probe Lithography of Graphene: Balance of Water Condensation Energy and Electrostatic Energy. J. Phys. Chem. C 2019, 123 (41), 25422–25427. https://doi.org/10.1021/acs.jpcc.9b04175.
    (106) Kim, S.; Kim, T. Y.; Lee, K. H.; Kim, T.; Cimini, F. A.; Kim, S. K.; Hinchet, R.; Kim, S.; Falconi, C. Rewritable Ghost Floating Gates by Tunnelling Triboelectrification for Two-Dimensional Electronics. Nat. Commun. 2017, 8 (May), 1–7. https://doi.org/10.1038/ncomms15891.
    (107) Wang, H.; Huang, C. C.; Polcar, T. Controllable Tunneling Triboelectrification of Two-Dimensional Chemical Vapor Deposited MoS2. Sci. Rep. 2019, 9 (1), 1–8. https://doi.org/10.1038/s41598-018-36830-1.
    (108) Martin, P. M. Handbook of Deposition Technologies for Films and Coatings, Third Edition Science, Applications and Technology; Elsevier Inc., 2010.
    (109) Pimpinelli, A.; J. Villain. Physics of Crystal Growth; CAMBRIDGE UNIVERSITY PRESS.
    (110) Oura, K.; Lifshits, V. G.; Saranin, A. A.; Zotov, A. V.; Katayama, M. Surface Science An Introduction; Springer-Verlag.
    (111) Xia, X.; Xie, S.; Liu, M.; Peng, H. C.; Lu, N.; Wang, J.; Kim, M. J.; Xia, Y. On the Role of Surface Diffusion in Determining the Shape or Morphology of Noble-Metal Nanocrystals. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (17), 6669–6673. https://doi.org/10.1073/pnas.1222109110.
    (112) Kittel, C. Introduction to Solid State Physics 8th; 1957; Vol. 10. https://doi.org/10.1107/s0365110x57001280.
    (113) Daff, T. D.; De Leeuw, N. H. A Density Functional Theory Investigation of the Molecular and Dissociative Adsorption of Hydrazine on Defective Copper Surfaces. J. Mater. Chem. 2012, 22 (43), 23210–23220. https://doi.org/10.1039/c2jm34646j.
    (114) Du, J.; Guo, Z.; Zhang, A.; Yang, M.; Li, M.; Xiong, S. Correlation between Crystallographic Anisotropy and Dendritic Orientation Selection of Binary Magnesium Alloys. Sci. Rep. 2017, 7 (1), 1–14. https://doi.org/10.1038/s41598-017-12814-5.
    (115) Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z.; Chen, W.; Xie, X.; Zong, J.; Shan, Y.; Guo, Y.; Willinger, M.; Wu, H.; Li, Q.; Wang, W.; Gao, P.; Wu, S.; Zhang, Y.; Jiang, Y.; Yu, D.; Wang, E.; Bai, X.; Wang, Z. J.; Ding, F.; Liu, K. Epitaxial Growth of a 100-Square-Centimetre Single-Crystal Hexagonal Boron Nitride Monolayer on Copper. Nature 2019, 570 (7759), 91–95. https://doi.org/10.1038/s41586-019-1226-z.
    (116) Wang, J.; Yu, H.; Zhou, X.; Liu, X.; Zhang, R.; Lu, Z.; Zheng, J.; Gu, L.; Liu, K.; Wang, D.; Jiao, L. Probing the Crystallographic Orientation of Two-Dimensional Atomic Crystals with Supramolecular Self-Assembly. Nat. Commun. 2017, 8 (1), 1–8. https://doi.org/10.1038/s41467-017-00329-6.
    (117) Ranguelov, B.; Michailov, M. Atomic Diffusion on Vicinal Surfaces: Step Roughening Impact on Step Permeability. J. Phys. Conf. Ser. 2014, 558 (1). https://doi.org/10.1088/1742-6596/558/1/012004.
    (118) Zhang, Z.; Lagally, M. G. Atomistic Processes in the Early Stages of Thin-Film Growth. Science (80-. ). 1997, 276 (5311), 377–383. https://doi.org/10.1126/science.276.5311.377.
    (119) Dong, J.; Zhang, L.; Dai, X.; Ding, F. The Epitaxy of 2D Materials Growth. Nat. Commun. 2020, 11 (1). https://doi.org/10.1038/s41467-020-19752-3.
    (120) Cranston, R. R.; Lessard, B. H. Metal Phthalocyanines: Thin-Film Formation, Microstructure, and Physical Properties. RSC Adv. 2021, 11 (35), 21716–21737. https://doi.org/10.1039/d1ra03853b.
    (121) Suo, Z. Motions of Microscopic Surfaces in Materials; Elsevier Masson SAS, 1997; Vol. 33. https://doi.org/10.1016/S0065-2156(08)70387-9.
    (122) Freund, L. B.; Suresh, S. Thin Film Materials Stress, Defect Formation and Surface Evolution. III-Vs Rev. 2006, 19 (7), 20–22. https://doi.org/10.1016/S0961-1290(06)71818-X.
    (123) Venables, J. A.; Spiller, G. D. T.; Hanbucken, M. Nucleation and Growth of Thin Films. Reports Prog. Phys. 1984, 47 (4), 399–459. https://doi.org/10.1088/0034-4885/47/4/002.
    (124) Machrafi, H. Surface Tension of Nanoparticle Dispersions Unravelled by Size-Dependent Non-Occupied Sites Free Energy versus Adsorption Kinetics. npj Microgravity 2022, 8 (1). https://doi.org/10.1038/s41526-022-00234-3.
    (125) Kenneth G. Libbrecht. Snow Crystals. A Case Study in Spontaneous Structure Formation; Princeton University Press, 2016.
    (126) Cao, Z. Thin Film Growth Physics, Materials Science and Applications; 2011. https://doi.org/10.1533/9780857094957.
    (127) Cho, B.; Bareño, J.; Foo, Y. L.; Hong, S.; Spila, T.; Petrov, I.; Greene, J. E. Phosphorus Incorporation during Si(001):P Gas-Source Molecular Beam Epitaxy: Effects on Growth Kinetics and Surface Morphology. J. Appl. Phys. 2008, 103 (12). https://doi.org/10.1063/1.2925798.
    (128) Shen, Y. H.; Hsu, C. C.; Chang, P. C.; Lin, W. C. Height Reversal in Au Coverage on MoS2 Flakes/SiO2: Thermal Control of Interfacial Nucleation. Appl. Phys. Lett. 2019, 114 (18). https://doi.org/10.1063/1.5094665.
    (129) Wang, H.; Yao, Z.; Jung, G. S.; Song, Q.; Hempel, M.; Palacios, T.; Chen, G.; Buehler, M. J.; Aspuru-Guzik, A.; Kong, J. Frank-van Der Merwe Growth in Bilayer Graphene. Matter 2021, 4 (10), 3339–3353. https://doi.org/10.1016/j.matt.2021.08.017.
    (130) Celasco, E.; Chaika, A. N. Handbook of Graphene, Volume 1 Growth, Synthesis, and Functionalization; John Wiley & Sons, Inc.
    (131) Cremers, V.; Puurunen, R. L.; Dendooven, J. Conformality in Atomic Layer Deposition: Current Status Overview of Analysis and Modelling. Appl. Phys. Rev. 2019, 6 (2). https://doi.org/10.1063/1.5060967.
    (132) Jeong, H.-C.; Williams, E. D. Steps on Surfaces: Experiment and Theory. Zeitschrift fur Naturforsch. - Sect. A J. Phys. Sci. 2002, 57 (6–7), 544–556. https://doi.org/10.1515/zna-2002-6-747.
    (133) Kolasinski, K. W. Surface Science: Foundations of Catalysis and Nanoscience; 2012. https://doi.org/10.1002/9781119941798.
    (134) Baranowski, M.; Bober, M.; Kudyba, A.; Sobczak, N. The Effect of Surface Condition on Wetting of HASTELLOY® X by Brazing Filler Metal of Ni-Pd-Cr-B-Si System. J. Mater. Eng. Perform. 2019, 28 (7), 3950–3959. https://doi.org/10.1007/s11665-019-03998-0.
    (135) Stöhr, J.; Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics; 2006; Vol. 152. https://doi.org/10.1007/978-3-540-30283-4.
    (136) Lacheisserie, É. du T. de; Gignoux, D.; Schlenker, M. Magnetism Fundamentals. 2005.
    (137) Mathias Getzlaf. Fundamental of Magnetism; 2017.
    (138) Mohn, P. Magnetism in the Solid State An Introduction; 2003; Vol. 6. https://doi.org/10.1016/s1369-7021(03)00433-4.
    (139) Eisberg, R.; Resnick, R. Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles; 1975; Vol. 26. https://doi.org/10.1088/0031-9112/26/7/030.
    (140) de’ Medici, L.; Capone, M. Modeling Many-Body Physics with Slave-Spin Mean-Field: Mott and Hund’s Physics in Fe-Superconductors. Springer Ser. Solid-State Sci. 2017, 186 (December), 115–185. https://doi.org/10.1007/978-3-319-56117-2_4.
    (141) Stephen Blundell. Magnetism in Condensed Matter. Oxford Univ. Press 2001, 80–81.
    (142) Alloul, H. Introduction to the Physics of Electrons in Solids; Springer-Verlag, 2016.
    (143) Mohapatra, J.; Liu, J. P. Rare-Earth-Free Permanent Magnets: The Past and Future, 1st ed.; Elsevier B.V., 2018; Vol. 27. https://doi.org/10.1016/bs.hmm.2018.08.001.
    (144) Lee, J. S.; Cha, J. M.; Yoon, H. Y.; Lee, J. K.; Kim, Y. K. Magnetic Multi-Granule Nanoclusters: A Model System That Exhibits Universal Size Effect of Magnetic Coercivity. Sci. Rep. 2015, 5 (June), 1–7. https://doi.org/10.1038/srep12135.
    (145) Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G.; Marzari, N. Two-Dimensional Materials from High-Throughput Computational Exfoliation of Experimentally Known Compounds. Nat. Nanotechnol. 2018, 13 (3), 246–252. https://doi.org/10.1038/s41565-017-0035-5.
    (146) Li, X. Two-Dimensional Materials https://encyclopedia.pub/entry/8063.
    (147) Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81 (1), 109–162. https://doi.org/10.1103/RevModPhys.81.109.
    (148) Cooper, D. R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; Yu, V. Experimental Review of Graphene. ISRN Condens. Matter Phys. 2012, 2012, 1–56. https://doi.org/10.5402/2012/501686.
    (149) Tiwari, S. K.; Sahoo, S.; Wang, N.; Huczko, A. Graphene Research and Their Outputs: Status and Prospect. J. Sci. Adv. Mater. Devices 2020, 5 (1), 10–29. https://doi.org/10.1016/j.jsamd.2020.01.006.
    (150) Pérez, M.; Elías, J.; Sosa, M.; Vallejo, M. Hybridization Bond States and Band Structure of Graphene: A Simple Approach. Eur. J. Phys. 2022, 43 (4). https://doi.org/10.1088/1361-6404/ac654e.
    (151) Tuček, J.; Błoński, P.; Ugolotti, J.; Swain, A. K.; Enoki, T.; Zbořil, R. Emerging Chemical Strategies for Imprinting Magnetism in Graphene and Related 2D Materials for Spintronic and Biomedical Applications. Chem. Soc. Rev. 2018, 47 (11), 3899–3990. https://doi.org/10.1039/c7cs00288b.
    (152) Terrones, M.; Botello-Méndez, A. R.; Campos-Delgado, J.; López-Urías, F.; Vega-Cantú, Y. I.; Rodríguez-Macías, F. J.; Elías, A. L.; Muñoz-Sandoval, E.; Cano-Márquez, A. G.; Charlier, J. C.; Terrones, H. Graphene and Graphite Nanoribbons: Morphology, Properties, Synthesis, Defects and Applications. Nano Today 2010, 5 (4), 351–372. https://doi.org/10.1016/j.nantod.2010.06.010.
    (153) Ferrari, A. C.; Basko, D. M. Raman Spectroscopy as a Versatile Tool for Studying the Properties of Graphene. Nat. Nanotechnol. 2013, 8 (4), 235–246. https://doi.org/10.1038/nnano.2013.46.
    (154) Bruna, M.; Ott, A. K.; Ijäs, M.; Yoon, D.; Sassi, U.; Ferrari, A. C. Doping Dependence of the Raman Spectrum of Defected Graphene. ACS Nano 2014, 8 (7), 7432–7441. https://doi.org/10.1021/nn502676g.
    (155) Casiraghi, C.; Hartschuh, A.; Lidorikis, E.; Qian, H.; Harutyunyan, H.; Gokus, T.; Novoselov, K. S.; Ferrari, A. C. Rayleigh Imaging of Graphene and Graphene Layers. Nano Lett. 2007, 7 (9), 2711–2717. https://doi.org/10.1021/nl071168m.
    (156) Pimenta, M. A.; Corro, E. Del; Carvalho, B. R.; Fantini, C.; Malard, L. M. Comparative Study of Raman Spectroscopy in Graphene and MoS2-Type Transition Metal Dichalcogenides. Acc. Chem. Res. 2015, 48 (1), 41–47. https://doi.org/10.1021/ar500280m.
    (157) Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying Disorder in Graphite-Based Systems by Raman Spectroscopy. Phys. Chem. Chem. Phys. 2007, 9 (11), 1276–1291. https://doi.org/10.1039/b613962k.
    (158) Cardona, M. Y. P. Y. Fundamentals of Semiconductors Physics and Materials; 2010.
    (159) Lan, Y.; Zondode, M.; Deng, H.; Yan, J. A.; Ndaw, M.; Lisfi, A.; Wang, C.; Pan, Y. Le. Basic Concepts and Recent Advances of Crystallographic Orientation Determination of Graphene by Raman Spectroscopy. Crystals 2018, 8 (10). https://doi.org/10.3390/cryst8100375.
    (160) Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97 (18), 1–4. https://doi.org/10.1103/PhysRevLett.97.187401.
    (161) Wu, J. Bin; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman Spectroscopy of Graphene-Based Materials and Its Applications in Related Devices. Chem. Soc. Rev. 2018, 47 (5), 1822–1873. https://doi.org/10.1039/c6cs00915h.
    (162) Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C. Probing the Nature of Defects in Graphene by Raman Spectroscopy. Nano Lett. 2012, 12 (8), 3925–3930. https://doi.org/10.1021/nl300901a.
    (163) Ait Abdelkader, S. A.; Boutahir, O.; Boutahir, M.; Fakrach, B.; Bentaleb, M.; Rahmani, A. H.; Chadli, H. Vacancies Effect on Graphene: Raman Study. J. Phys. Conf. Ser. 2019, 1292 (1). https://doi.org/10.1088/1742-6596/1292/1/012019.
    (164) Gokus, T.; Nair, R. R.; Bonetti, A.; Böhmler, M.; Lombardo, A.; Novoselov, K. S.; Geim, A. K.; Ferrari, A. C.; Hartschuh, A. Making Graphene Luminescent by Oxygen Plasma Treatment. ACS Nano 2009, 3 (12), 3963–3968. https://doi.org/10.1021/nn9012753.
    (165) Lin, P. C.; Villarreal, R.; Achilli, S.; Bana, H.; Nair, M. N.; Tejeda, A.; Verguts, K.; De Gendt, S.; Auge, M.; Hofsäss, H.; De Feyter, S.; Di Santo, G.; Petaccia, L.; Brems, S.; Fratesi, G.; Pereira, L. M. C. Doping Graphene with Substitutional Mn. ACS Nano 2021, 15 (3), 5449–5458. https://doi.org/10.1021/acsnano.1c00139.
    (166) Huang, P. Y.; Ruiz-Vargas, C. S.; Van Der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y.; Park, J.; McEuen, P. L.; Muller, D. A. Grains and Grain Boundaries in Single-Layer Graphene Atomic Patchwork Quilts. Nature 2011, 469 (7330), 389–392. https://doi.org/10.1038/nature09718.
    (167) Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett. 2011, 11 (8), 3190–3196. https://doi.org/10.1021/nl201432g.
    (168) Papanai, G. S.; Sharma, I.; Gupta, B. K. Probing Number of Layers and Quality Assessment of Mechanically Exfoliated Graphene via Raman Fingerprint. Mater. Today Commun. 2020, 22 (November 2019), 100795. https://doi.org/10.1016/j.mtcomm.2019.100795.
    (169) Yan, J.; Zhang, Y.; Kim, P.; Pinczuk, A. Electric Field Effect Tuning of Electron-Phonon Coupling in Graphene. Phys. Rev. Lett. 2007, 98 (16), 1–4. https://doi.org/10.1103/PhysRevLett.98.166802.
    (170) Ferrari, A. C. Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Phonon Coupling, Doping and Nonadiabatic Effects. Solid State Commun. 2007, 143 (1–2), 47–57. https://doi.org/10.1016/j.ssc.2007.03.052.
    (171) Ferrari, A. C.; Robertson, J. Interpretation of Raman Spectra of Disordered and Amorphous Carbon. Schweizerische Zeitschrift für Hydrol. 1969, 31 (2), 632–645. https://doi.org/10.1007/BF02543692.
    (172) Tang, Q.; Jiang, D. E. Stabilization and Band-Gap Tuning of the 1T-MoS2 Monolayer by Covalent Functionalization. Chem. Mater. 2015, 27 (10), 3743–3748. https://doi.org/10.1021/acs.chemmater.5b00986.
    (173) Velický, M.; Donnelly, G. E.; Hendren, W. R.; McFarland, S.; Scullion, D.; DeBenedetti, W. J. I.; Correa, G. C.; Han, Y.; Wain, A. J.; Hines, M. A.; Muller, D. A.; Novoselov, K. S.; Abruńa, H. D.; Bowman, R. M.; Santos, E. J. G.; Huang, F. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 2018, 12 (10), 10463–10472. https://doi.org/10.1021/acsnano.8b06101.
    (174) Zhao, Y.; Ouyang, G. Thickness-Dependent Photoelectric Properties of MoS2/Si Heterostructure Solar Cells. Sci. Rep. 2019, 9 (1), 1–11. https://doi.org/10.1038/s41598-019-53936-2.
    (175) Strachan, J.; Masters, A. F.; Maschmeyer, T. 3R-MoS2in Review: History, Status, and Outlook. ACS Appl. Energy Mater. 2021, 4 (8), 7405–7418. https://doi.org/10.1021/acsaem.1c00638.
    (176) Singh, A.; Shirodkar, S. N.; Waghmare, U. V. 1H and 1T Polymorphs, Structural Transitions and Anomalous Properties of (Mo,W)(S,Se)2 Monolayers: First-Principles Analysis. 2D Mater. 2015, 2 (3). https://doi.org/10.1088/2053-1583/2/3/035013.
    (177) Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and Phase Transition of a MoS2 Monolayer. J. Phys. Chem. C 2014, 118 (3), 1515–1522. https://doi.org/10.1021/jp4076355.
    (178) Toh, R. J.; Sofer, Z.; Luxa, J.; Sedmidubský, D.; Pumera, M. 3R Phase of MoS2 and WS2 Outperforms the Corresponding 2H Phase for Hydrogen Evolution. Chem. Commun. 2017, 53 (21), 3054–3057. https://doi.org/10.1039/c6cc09952a.
    (179) Liu, L.; Wu, J.; Wu, L.; Ye, M.; Liu, X.; Wang, Q.; Hou, S.; Lu, P.; Sun, L.; Zheng, J.; Xing, L.; Gu, L.; Jiang, X.; Xie, L.; Jiao, L. Phase-Selective Synthesis of 1T′ MoS 2 Monolayers and Heterophase Bilayers. Nat. Mater. 2018, 17 (12), 1108–1114. https://doi.org/10.1038/s41563-018-0187-1.
    (180) Han, S. W.; Park, Y.; Hwang, Y. H.; Jekal, S.; Kang, M.; Lee, W. G.; Yang, W.; Lee, G. Do; Hong, S. C. Electron Beam-Formed Ferromagnetic Defects on MoS2 Surface along 1 T Phase Transition. Sci. Rep. 2016, 6, 4–11. https://doi.org/10.1038/srep38730.
    (181) Zhu, J.; Wang, Z.; Yu, H.; Li, N.; Zhang, J.; Meng, J.; Liao, M.; Zhao, J.; Lu, X.; Du, L.; Yang, R.; Shi, D.; Jiang, Y.; Zhang, G. Argon Plasma Induced Phase Transition in Monolayer MoS2. J. Am. Chem. Soc. 2017, 139 (30), 10216–10219. https://doi.org/10.1021/jacs.7b05765.
    (182) Wang, Z.; Liu, X.; Zhu, J.; You, S.; Bian, K.; Zhang, G.; Feng, J.; Jiang, Y. Local Engineering of Topological Phase in Monolayer MoS2. Sci. Bull. 2019, 64 (23), 1750–1756. https://doi.org/10.1016/j.scib.2019.10.004.
    (183) Ouyang, B.; Xiong, S.; Yang, Z.; Jing, Y.; Wang, Y. MoS2 Heterostructure with Tunable Phase Stability: Strain Induced Interlayer Covalent Bond Formation. Nanoscale 2017, 9 (24), 8126–8132. https://doi.org/10.1039/c7nr02070h.
    (184) Jiang, K.; Luo, M.; Liu, Z.; Peng, M.; Chen, D.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. Rational Strain Engineering of Single-Atom Ruthenium on Nanoporous MoS2 for Highly Efficient Hydrogen Evolution. Nat. Commun. 2021, 12 (1). https://doi.org/10.1038/s41467-021-21956-0.
    (185) Gao, G.; Jiao, Y.; Ma, F.; Jiao, Y.; Waclawik, E.; Du, A. Charge Mediated Semiconducting-to-Metallic Phase Transition in Molybdenum Disulfide Monolayer and Hydrogen Evolution Reaction in New 1T′ Phase. J. Phys. Chem. C 2015, 119 (23), 13124–13128. https://doi.org/10.1021/acs.jpcc.5b04658.
    (186) Zhao, W.; Pan, J.; Fang, Y.; Che, X.; Wang, D.; Bu, K.; Huang, F. Metastable MoS2: Crystal Structure, Electronic Band Structure, Synthetic Approach and Intriguing Physical Properties. Chem. - A Eur. J. 2018, 24 (60), 15942–15954. https://doi.org/10.1002/chem.201801018.
    (187) Wang, B.; Ning, J.; Zhang, J.; Wang, D.; Hao, Y. Band Alignments Tuned by Spontaneous Polarization in Two-Dimensional MoS2/GaN van Der Waals Heterostructures. Phys. E Low-Dimensional Syst. Nanostructures 2022, 143 (May), 115360. https://doi.org/10.1016/j.physe.2022.115360.
    (188) Kuc, A.; Heine, T. The Electronic Structure Calculations of Two-Dimensional Transition-Metal Dichalcogenides in the Presence of External Electric and Magnetic Fields. Chem. Soc. Rev. 2015, 44 (9), 2603–2614. https://doi.org/10.1039/c4cs00276h.
    (189) Wang, H.; Li, C.; Fang, P.; Zhang, Z.; Zhang, J. Z. Synthesis, Properties, and Optoelectronic Applications of Two-Dimensional MoS2 and MoS2-Based Heterostructures. Chem. Soc. Rev. 2018, 47 (16), 6101–6127. https://doi.org/10.1039/c8cs00314a.
    (190) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From Bulk to Monolayer MoS2 Evolution of Raman Scattering. Adv. Funct. Mater. 2012, 22 (7), 1385–1390. https://doi.org/10.1002/adfm.201102111.
    (191) Guo, X.; Yang, G.; Zhang, J.; Xu, X. Structural, Mechanical and Electronic Properties of in-Plane 1T/2H Phase Interface of MoS2 Heterostructures. AIP Adv. 2015, 5 (9). https://doi.org/10.1063/1.4932040.
    (192) Wang, Z. 2H → 1T′ Phase Transformation in Janus Monolayer MoSSe and MoSTe: An Efficient Hole Injection Contact for 2H-MoS2. J. Mater. Chem. C 2018, 6 (47), 13000–13005. https://doi.org/10.1039/c8tc04951c.
    (193) Guo, C.; Pan, J.; Li, H.; Lin, T.; Liu, P.; Song, C.; Wang, D.; Mu, G.; Lai, X.; Zhang, H.; Zhou, W.; Chen, M.; Huang, F. Observation of Superconductivity in 1T′-MoS2 Nanosheets. J. Mater. Chem. C 2017, 5 (41), 10855–10860. https://doi.org/10.1039/c7tc03749j.
    (194) Saha, D.; Kruse, P. Editors’ Choice—Review—Conductive Forms of MoS 2 and Their Applications in Energy Storage and Conversion . J. Electrochem. Soc. 2020, 167 (12), 126517. https://doi.org/10.1149/1945-7111/abb34b.
    (195) Huang, H. H.; Fan, X.; Singh, D. J.; Zheng, W. T. First Principles Study on 2H-1T′ Transition in MoS2 with Copper. Phys. Chem. Chem. Phys. 2018, 20 (42), 26986–26994. https://doi.org/10.1039/c8cp05445b.
    (196) Lu, A. Y.; Martins, L. G. P.; Shen, P. C.; Chen, Z.; Park, J. H.; Xue, M.; Han, J.; Mao, N.; Chiu, M. H.; Palacios, T.; Tung, V.; Kong, J. Unraveling the Correlation between Raman and Photoluminescence in Monolayer MoS2 through Machine-Learning Models. Adv. Mater. 2022, 34 (34). https://doi.org/10.1002/adma.202202911.
    (197) Saito, R.; Tatsumi, Y.; Huang, S.; Ling, X.; Dresselhaus, M. S. Raman Spectroscopy of Transition Metal Dichalcogenides. J. Phys. Condens. Matter 2016, 28 (35). https://doi.org/10.1088/0953-8984/28/35/353002.
    (198) Guo, Y.; Zhang, W.; Wu, H.; Han, J.; Zhang, Y.; Lin, S.; Liu, C.; Xu, K.; Qiao, J.; Ji, W.; Chen, Q.; Gao, S.; Zhang, W.; Zhang, X.; Chai, Y. Discovering the Forbidden Raman Modes at the Edges of Layered Materials. Sci. Adv. 2018, 4 (12), 1–9. https://doi.org/10.1126/sciadv.aau6252.
    (199) Arul, N. S.; Nithya, V. D. Two Dimensional Transition Metal Dichalcogenides Synthesis, Properties, and Application; 2019. https://doi.org/10.1007/978-981-13-9045-6.
    (200) Ji, E.; Yang, K.; Shin, J. C.; Kim, Y.; Park, J. W.; Kim, J.; Lee, G. H. Exciton-Dominant Photoluminescence of MoS2 by a Functionalized Substrate. Nanoscale 2022, 14 (38), 14106–14112. https://doi.org/10.1039/d2nr03455g.
    (201) Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J.; Grossman, J. C.; Wu, J. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12 (11), 5576–5580. https://doi.org/10.1021/nl302584w.
    (202) Mitterreiter, E.; Schuler, B.; Micevic, A.; Hernangómez-Pérez, D.; Barthelmi, K.; Cochrane, K. A.; Kiemle, J.; Sigger, F.; Klein, J.; Wong, E.; Barnard, E. S.; Watanabe, K.; Taniguchi, T.; Lorke, M.; Jahnke, F.; Finley, J. J.; Schwartzberg, A. M.; Qiu, D. Y.; Refaely-Abramson, S.; Holleitner, A. W.; Weber-Bargioni, A.; Kastl, C. The Role of Chalcogen Vacancies for Atomic Defect Emission in MoS2. Nat. Commun. 2021, 12 (1), 1–8. https://doi.org/10.1038/s41467-021-24102-y.
    (203) Bretscher, H.; Li, Z.; Xiao, J.; Qiu, D. Y.; Refaely-Abramson, S.; Alexander-Webber, J. A.; Tanoh, A.; Fan, Y.; Delport, G.; Williams, C. A.; Stranks, S. D.; Hofmann, S.; Neaton, J. B.; Louie, S. G.; Rao, A. Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides. ACS Nano 2021, 15 (5), 8780–8789. https://doi.org/10.1021/acsnano.1c01220.
    (204) Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping. Nano Lett. 2013, 13 (12), 5944–5948. https://doi.org/10.1021/nl403036h.
    (205) Momose, T.; Nakamura, A.; Daniel, M.; Shimomura, M. Phosphorous Doped p -Type MoS2 Polycrystalline Thin Films via Direct Sulfurization of Mo Film. AIP Adv. 2018, 8 (2). https://doi.org/10.1063/1.5019223.
    (206) Golovynskyi, S.; Datsenko, O. I.; Dong, D.; Lin, Y.; Irfan, I.; Li, B.; Lin, D.; Qu, J. Trion Binding Energy Variation on Photoluminescence Excitation Energy and Power during Direct to Indirect Bandgap Crossover in Monolayer and Few-Layer MoS2. J. Phys. Chem. C 2021, 125 (32), 17806–17819. https://doi.org/10.1021/acs.jpcc.1c04334.
    (207) Dubey, S.; Lisi, S.; Nayak, G.; Herziger, F.; Nguyen, V. D.; Le Quang, T.; Cherkez, V.; González, C.; Dappe, Y. J.; Watanabe, K.; Taniguchi, T.; Magaud, L.; Mallet, P.; Veuillen, J. Y.; Arenal, R.; Marty, L.; Renard, J.; Bendiab, N.; Coraux, J.; Bouchiat, V. Weakly Trapped, Charged, and Free Excitons in Single-Layer MoS2 in the Presence of Defects, Strain, and Charged Impurities. ACS Nano 2017, 11 (11), 11206–11216. https://doi.org/10.1021/acsnano.7b05520.
    (208) Kim, H. J.; Yun, Y. J.; Yi, S. N.; Chang, S. K.; Ha, D. H. Changes in the Photoluminescence of Monolayer and Bilayer Molybdenum Disulfide during Laser Irradiation. ACS Omega 2020, 5 (14), 7903–7909. https://doi.org/10.1021/acsomega.9b04202.
    (209) Vaquero, D.; Clericò, V.; Salvador-Sánchez, J.; Martín-Ramos, A.; Díaz, E.; Domínguez-Adame, F.; Meziani, Y. M.; Diez, E.; Quereda, J. Excitons, Trions and Rydberg States in Monolayer MoS2 Revealed by Low-Temperature Photocurrent Spectroscopy. Commun. Phys. 2020, 3 (1). https://doi.org/10.1038/s42005-020-00460-9.
    (210) Christopher, J. W.; Goldberg, B. B.; Swan, A. K. Long Tailed Trions in Monolayer MoS2: Temperature Dependent Asymmetry and Resulting Red-Shift of Trion Photoluminescence Spectra. Sci. Rep. 2017, 7 (1). https://doi.org/10.1038/s41598-017-14378-w.
    (211) Kwon, S.; Jeong, D. Y.; Hong, C.; Oh, S.; Song, J.; Choi, S. H.; Kim, K. K.; Yoon, S.; Choi, T.; Yee, K. J.; Kim, J. H.; You, Y.; Kim, D. W. Exciton Transfer at Heterointerfaces of MoS2 Monolayers and Fluorescent Molecular Aggregates. Adv. Sci. 2022, 9 (23), 1–8. https://doi.org/10.1002/advs.202201875.
    (212) Coleman, C. C. Modern Physics for Semiconductor Science; Wiley, 2008.
    (213) Ashcroft, N. W.; Mermin, N. D. Solid State Physics.
    (214) Neamen, D. A. Semiconductor Physics and Semiconductor Devices; 1974; Vol. 28. https://doi.org/10.3169/itej1954.28.723.
    (215) Siu, C. Electronic Devices, Circuits, and Applications; Springer Nature Switzerland, 2022.
    (216) Mattox, D. M. Handbook of Physical Vapor Deposition ( PVD ) Processing Second Edition Dedication; 2009.
    (217) Carlsson, J. O.; Martin, P. M. Chemical Vapor Deposition. Handb. Depos. Technol. Film. Coatings Sci. Appl. Technol. 2009, 3, 314–363. https://doi.org/10.1016/B978-0-8155-2031-3.00007-7.
    (218) Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. Chemical Vapour Deposition. Nat. Rev. Methods Prim. 2021, 1 (1). https://doi.org/10.1038/s43586-020-00005-y.
    (219) Nam Trung, T.; Kamand, F. Z.; Al tahtamouni, T. M. Elucidating the Mechanism for the Chemical Vapor Deposition Growth of Vertical MoO2/MoS2 Flakes toward Photoelectrochemical Applications. Appl. Surf. Sci. 2020, 505 (August 2019). https://doi.org/10.1016/j.apsusc.2019.144551.
    (220) Yang, Y.; Pu, H.; Lin, T.; Li, L.; Zhang, S.; Sun, G. Growth of Monolayer MoS2 Films in a Quasi-Closed Crucible Encapsulated Substrates by Chemical Vapor Deposition. Chem. Phys. Lett. 2017, 679, 181–184. https://doi.org/10.1016/j.cplett.2017.05.015.
    (221) Sugano, S.; Kojima, N. Magneto-Optics; Springer, 2014; Vol. 184. https://doi.org/10.1007/978-3-319-04513-9_8.
    (222) Hecht, E. Optics; Addison Wesley, 2002.
    (223) Pershan, P. S. Magneto-Optical Effects. J. Appl. Phys. 1967, 38 (3), 1482–1490. https://doi.org/10.1063/1.1709678.
    (224) Haider, T. A Review of Magneto-Optic Effects and Its Application. Int. J. Electromagn. Appl. 2017, 7 (1), 17–24. https://doi.org/10.5923/j.ijea.20170701.03.
    (225) Pegoraro, F.; Radicati, L. A. Dielectric Tensor and Magnetic Permeability in the Weak Field Approximation of General Relativity. J. Phys. A. Math. Gen. 1980, 13 (7), 2411–2421. https://doi.org/10.1088/0305-4470/13/7/024.
    (226) Lan, T.; Ding, B.; Liu, B. Magneto‐optic Effect of Two‐dimensional Materials and Related Applications. Nano Sel. 2020, 1 (3), 298–310. https://doi.org/10.1002/nano.202000032.
    (227) Weinberger, P. John Kerr and His Effects Found in 1877 and 1878. Philos. Mag. Lett. 2008, 88 (12), 897–907. https://doi.org/10.1080/09500830802526604.
    (228) Kim, D.; Oh, Y. W.; Kim, J. U.; Lee, S.; Baucour, A.; Shin, J.; Kim, K. J.; Park, B. G.; Seo, M. K. Extreme Anti-Reflection Enhanced Magneto-Optic Kerr Effect Microscopy. Nat. Commun. 2020, 11 (1), 1–8. https://doi.org/10.1038/s41467-020-19724-7.
    (229) DiMarzio, C.; Sun, N.; Geiler, A.; Head, P.; Loura, R.; Marvin, H. Magneto-Optical Kerry Effect Microscope.
    (230) Voigtländer, B. Atomic Force Microscopy; 2019. https://doi.org/10.1007/978-3-030-13654-3_4.
    (231) Bhushan, B.; Fuchs, H.; Tomitori, M. Applied Scanning Probe Methods III; Springer-Verlag Berlin Heidelberg.
    (232) Langlois, E. D.; Shaw, G. A.; Kramar, J. A.; Pratt, J. R.; Hurley, D. C. Spring Constant Calibration of Atomic Force Microscopy Cantilevers with a Piezosensor Transfer Standard. Rev. Sci. Instrum. 2007, 78 (9). https://doi.org/10.1063/1.2785413.
    (233) Torii, A.; Sasaki, M.; Hane, K.; Okuma, S. A Method for Determining the Spring Constant of Cantilevers for Atomic Force Microscopy. Meas. Sci. Technol. 1996, 7 (2), 179–184. https://doi.org/10.1088/0957-0233/7/2/010.
    (234) Poggi, M. A.; McFarland, A. W.; Colton, J. S.; Bottomley, L. A. A Method for Calculating the Spring Constant of Atomic Force Microscopy Cantilevers with a Nonrectangular Cross Section. Anal. Chem. 2005, 77 (4), 1192–1195. https://doi.org/10.1021/ac048828h.
    (235) Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; Wiley.
    (236) Guo, J.; Zhang, C.; Liang, W.; Zhang, X. X.; Luo, S. N. Enhanced Coherent Phonon Excitation in Fe3GeTe2 via Resonance Raman Effect. Phys. Rev. B 2021, 103 (2), 1–8. https://doi.org/10.1103/PhysRevB.103.024302.
    (237) Ferraro, J. R.; Nakamoto, K.; Brown, C. W. Introductory Raman Spectroscopy; 2003; Vol. 4. https://doi.org/10.1038/sj.embor.embor770.
    (238) Bowley, H. J.; Gardiner, D. J.; Gerrard, D. L.; Graves, P. R.; Louden, J. D.; Turrell, G. Practical Raman Spectroscopy; 1990; Vol. 1.
    (239) Qian, Q.; Zhang, Z.; Chen, K. J. In Situ Resonant Raman Spectroscopy to Monitor the Surface Functionalization of MoS2 and WSe2 for High-k Integration: A First-Principles Study. Langmuir 2018, 34 (8), 2882–2889. https://doi.org/10.1021/acs.langmuir.7b03840.
    (240) Tan, S. J. R.; Sarkar, S.; Zhao, X.; Luo, X.; Luo, Y. Z.; Poh, S. M.; Abdelwahab, I.; Zhou, W.; Venkatesan, T.; Chen, W.; Quek, S. Y.; Loh, K. P. Temperature- and Phase-Dependent Phonon Renormalization in 1T’-MoS2. ACS Nano 2018, 12 (5), 5051–5058. https://doi.org/10.1021/acsnano.8b02649.
    (241) Samuel, A. Z.; Lai, B. H.; Lan, S. T.; Ando, M.; Wang, C. L.; Hamaguchi, H. O. Estimating Percent Crystallinity of Polyethylene as a Function of Temperature by Raman Spectroscopy Multivariate Curve Resolution by Alternating Least Squares. Anal. Chem. 2017, 89 (5), 3043–3050. https://doi.org/10.1021/acs.analchem.6b04750.
    (242) Yang, J.; Xu, R.; Pei, J.; Myint, Y. W.; Wang, F.; Wang, Z.; Zhang, S.; Yu, Z.; Lu, Y. Optical Tuning of Exciton and Trion Emissions in Monolayer Phosphorene. Light Sci. Appl. 2015, 4 (7), 1–7. https://doi.org/10.1038/lsa.2015.85.
    (243) Liu, E.; van Baren, J.; Lu, Z.; Taniguchi, T.; Watanabe, K.; Smirnov, D.; Chang, Y. C.; Lui, C. H. Exciton-Polaron Rydberg States in Monolayer MoSe2 and WSe2. Nat. Commun. 2021, 12 (1), 1–8. https://doi.org/10.1038/s41467-021-26304-w.
    (244) Koch, S. W.; Kira, M.; Khitrova, G.; Gibbs, H. M. Semiconductor Excitons in New Light. Nat. Mater. 2006, 5 (7), 523–531. https://doi.org/10.1038/nmat1658.
    (245) Lee, H.; Koo, Y.; Kumar, S.; Jeong, Y.; Heo, D. G.; Choi, S. H.; Joo, H.; Kang, M.; Siddique, R. H.; Kim, K. K.; Lee, H. S.; An, S.; Choo, H.; Park, K. D. All-Optical Control of High-Purity Trions in Nanoscale Waveguide. Nat. Commun. 2023, 14 (1), 1891. https://doi.org/10.1038/s41467-023-37481-1.
    (246) Tebyetekerwa, M.; Zhang, J.; Xu, Z.; Truong, T. N.; Yin, Z.; Lu, Y.; Ramakrishna, S.; Macdonald, D.; Nguyen, H. T. Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano 2020, 14 (11), 14579–14604. https://doi.org/10.1021/acsnano.0c08668.
    (247) Trupke, T.; Green, M. A.; Würfel, P.; Altermatt, P. P.; Wang, A.; Zhao, J.; Corkish, R. Temperature Dependence of the Radiative Recombination Coefficient of Intrinsic Crystalline Silicon. J. Appl. Phys. 2003, 94 (8), 4930–4937. https://doi.org/10.1063/1.1610231.
    (248) Suezawa, M.; Sasaki, Y.; Sumino, K. Dependence of Photoluminescence on Temperature in Dislocated Silicon Crystals. Phys. Status Solidi 1983, 79 (1), 173–181. https://doi.org/10.1002/pssa.2210790119.
    (249) Koirala, S.; Mouri, S.; Miyauchi, Y.; Matsuda, K. Homogeneous Linewidth Broadening and Exciton Dephasing Mechanism in MoT E2. Phys. Rev. B 2016, 93 (7), 1–5. https://doi.org/10.1103/PhysRevB.93.075411.
    (250) Wang, Y.; Yang, Y.; Wang, P.; Bai, X. Concentration- and Temperature-Dependent Photoluminescence of CsPbBr3 Perovskite Quantum Dots. Optik (Stuttg). 2017, 139, 56–60. https://doi.org/10.1016/j.ijleo.2017.03.117.
    (251) Failla, M.; García Flórez, F.; Salzmann, B. B. V.; Vanmaekelbergh, D.; Stoof, H. T. C.; Siebbeles, L. D. A. Effects of Pump Photon Energy on Generation and Ultrafast Relaxation of Excitons and Charge Carriers in CdSe Nanoplatelets. J. Phys. Chem. C 2023, 127 (4), 1899–1907. https://doi.org/10.1021/acs.jpcc.2c07292.
    (252) Birmingham, B.; Yuan, J.; Filez, M.; Fu, D.; Hu, J.; Lou, J.; Scully, M. O.; Weckhuysen, B. M.; Zhang, Z. Spatially-Resolved Photoluminescence of Monolayer MoS2 under Controlled Environment for Ambient Optoelectronic Applications. ACS Appl. Nano Mater. 2018, 1 (11), 6226–6235. https://doi.org/10.1021/acsanm.8b01422.
    (253) Drummond, B. H.; Aizawa, N.; Zhang, Y.; Myers, W. K.; Xiong, Y.; Cooper, M. W.; Barlow, S.; Gu, Q.; Weiss, L. R.; Gillett, A. J.; Credgington, D.; Pu, Y. J.; Marder, S. R.; Evans, E. W. Electron Spin Resonance Resolves Intermediate Triplet States in Delayed Fluorescence. Nat. Commun. 2021, 12 (1), 1–11. https://doi.org/10.1038/s41467-021-24612-9.
    (254) Stevie, F. A.; Donley, C. L. Introduction to X-Ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. A 2020, 38 (6), 063204. https://doi.org/10.1116/6.0000412.
    (255) Powell, C. J. Practical Guide for Inelastic Mean Free Paths, Effective Attenuation Lengths, Mean Escape Depths, and Information Depths in x-Ray Photoelectron Spectroscopy. J. Vac. Sci. Technol. A 2020, 38 (2), 023209. https://doi.org/10.1116/1.5141079.
    (256) Pielsticker, L.; Nicholls, R.; Beeg, S.; Hartwig, C.; Klihm, G.; Schlögl, R.; Tougaard, S.; Greiner, M. Inelastic Electron Scattering by the Gas Phase in near Ambient Pressure XPS Measurements. Surf. Interface Anal. 2021, 53 (7), 605–617. https://doi.org/10.1002/sia.6947.
    (257) Steiner, P.; Reiter, F. J.; Höchst, H.; Hüfner, S. The KLL Auger Spectra of Na and Mg Metal and Their Plasmon Structure. Phys. Status Solidi 1978, 90 (1), 45–51. https://doi.org/10.1002/pssb.2220900104.
    (258) Grant, J. T.; Hooker, M. P. Oxygen KLL Auger Spectra from O2 and CO Adsorbed on Ni. Solid State Commun. 1976, 19 (2), 111–113. https://doi.org/10.1016/0038-1098(76)90446-4.
    (259) Mikhlin, Y. X-Ray Photoelectron Spectroscopy in Mineral Processing Studies. Appl. Sci. 2020, 10 (15), 17–24. https://doi.org/10.3390/app10155138.
    (260) Zhang, C.; Wang, Z.; Bhoyate, S.; Morey, T.; Neria, B.; Vasiraju, V.; Gupta, G.; Palchoudhury, S.; Kahol, P.; Mishra, S.; Perez, F.; Gupta, R. MoS2 Decorated Carbon Nanofibers as Efficient and Durable Electrocatalyst for Hydrogen Evolution Reaction. C 2017, 3 (4), 33. https://doi.org/10.3390/c3040033.
    (261) Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin Probe Force Microscopy and Its Application. Surf. Sci. Rep. 2011, 66 (1), 1–27. https://doi.org/10.1016/j.surfrep.2010.10.001.
    (262) Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A. Resolution and Contrast in Kelvin Probe Force Microscopy. J. Appl. Phys. 1998, 84 (3), 1168–1173. https://doi.org/10.1063/1.368181.
    (263) Geng, J.; Zhang, H.; Meng, X.; Gao, H.; Rong, W.; Xie, H. Three-Dimensional Kelvin Probe Force Microscopy. ACS Appl. Mater. Interfaces 2022, 14 (28), 32719–32728. https://doi.org/10.1021/acsami.2c07645.
    (264) Chen, C. J. Introduction to Scanning Tunneling Microscopy; Oxford University Press, 2016.
    (265) Doyen, G.; Koetter, E.; Vigneron, J. P.; Scheffler, M. Theory of Scanning Tunneling Microscopy. Appl. Phys. A Solids Surfaces 1990, 51 (4), 281–288. https://doi.org/10.1007/BF00324308.
    (266) Binnig, G.; Rohrer, H. Scanning Tunneling Microscopy. IBM J. Res. Dev. 1986, 30 (4), 355–369. https://doi.org/10.2320/materia1962.25.821.
    (267) Choudhary, K.; Garrity, K. F.; Camp, C.; Kalinin, S. V.; Vasudevan, R.; Ziatdinov, M.; Tavazza, F. Computational Scanning Tunneling Microscope Image Database. Sci. Data 2021, 8 (1), 1–9. https://doi.org/10.1038/s41597-021-00824-y.
    (268) Jia, J.; Jia, J.; Yang, W.; Yang, W.; Xue, Q.; Xue, Q. Scanning Tunneling Microscopy. 1986.
    (269) Wang, Z. L. Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies. J. Phys. Chem. B 2000, 104 (6), 1153–1175. https://doi.org/10.1021/jp993593c.
    (270) Fultz, B.; Howe, I. M. Transmission Electron Microscopy and Diffractometry of Materials; Springer-Verlag, 2001. https://doi.org/10.1007/978-3-642-56680-6.
    (271) Kim, H. W.; Yoon, H. W.; Yoon, S.; Yoo, B. M.; Ahn, B. K.; Cho, Y. H.; Shin, H. J.; Yang, H.; Paik, U.; Kwon, S. Selective Gas Transport Through Few-Layered Graphene and GrapheneOxide Membranes. Science (80-. ). 2013, 342 (October), 91–95.
    (272) Starodub, E.; Bartelt, N. C.; McCarty, K. F. Chemistry under Cover: Tuning Metal-Graphene Interaction by Reactive Intercalation. J. Phys. Chem. C 2010, 114 (11), 5134–5140. https://doi.org/10.1021/jp912139e.
    (273) Hsu, C. C.; Chiu, H. C.; Mudinepalli, V. R.; Chen, Y. C.; Chang, P. C.; Wu, C. Te; Yen, H. W.; Lin, W. C. Modulation of Magnetic Anisotropy through Self-Assembled Surface Nanoclusters: Evolution of Morphology and Magnetism in Co–Pd Alloy Films. Appl. Surf. Sci. 2017, 416, 133–143. https://doi.org/10.1016/j.apsusc.2017.04.191.
    (274) Chi, C. S.; Wang, B. Y.; Pong, W. F.; Ho, T. Y.; Tsai, C. J.; Lo, F. Y.; Chern, M. Y.; Lin, W. C. Uniaxial Magnetic Anisotropy in Pd/Fe Bilayers on Al 2O 3 (0001) Induced by Oblique Deposition. J. Appl. Phys. 2012, 111 (12). https://doi.org/10.1063/1.4730632.
    (275) Lin, W. C.; Huang, Y. Y.; Ho, T. Y.; Wang, C. H. Stable Canted Magnetization in Co Thin Films on Highly Oriented Pyrolytic Graphite Induced by Template Defects. Appl. Phys. Lett. 2011, 99 (17). https://doi.org/10.1063/1.3657491.
    (276) Lin, W. C.; Lo, F. Y.; Huang, Y. Y.; Wang, C. H.; Chern, M. Y. Canted Magnetization in Fe Thin Films on Highly Oriented Pyrolytic Graphite. J. Appl. Phys. 2011, 110 (8). https://doi.org/10.1063/1.3654141.
    (277) Nine, M. J.; Cole, M. A.; Tran, D. N. H.; Losic, D. Graphene: A Multipurpose Material for Protective Coatings. J. Mater. Chem. A 2015, 3 (24), 12580–12602. https://doi.org/10.1039/c5ta01010a.
    (278) Bhattacharjee, S.; Joshi, R.; Chughtai, A. A.; Macintyre, C. R. Graphene Modified Multifunctional Personal Protective Clothing. Adv. Mater. Interfaces 2019, 6 (21), 1–27. https://doi.org/10.1002/admi.201900622.
    (279) Lee, J.; Berman, D. Inhibitor or Promoter: Insights on the Corrosion Evolution in a Graphene Protected Surface. Carbon N. Y. 2018, 126, 225–231. https://doi.org/10.1016/j.carbon.2017.10.022.
    (280) Singh Raman, R. K.; Tiwari, A. Graphene: The Thinnest Known Coating for Corrosion Protection. Jom 2014, 66 (4), 637–642. https://doi.org/10.1007/s11837-014-0921-3.
    (281) Qiu, Y.; Wang, Z.; Owens, A. C. E.; Kulaots, I.; Chen, Y.; Kane, A. B.; Hurt, R. H. Antioxidant Chemistry of Graphene-Based Materials and Its Role in Oxidation Protection Technology. Nanoscale 2014, 6 (20), 11744–11755. https://doi.org/10.1039/c4nr03275f.
    (282) Chen, Y.; Bai, T.; Dong, N.; Fan, F.; Zhang, S.; Zhuang, X.; Sun, J.; Zhang, B.; Zhang, X.; Wang, J.; Blau, W. J. Graphene and Its Derivatives for Laser Protection. Prog. Mater. Sci. 2016, 84, 118–157. https://doi.org/10.1016/j.pmatsci.2016.09.003.
    (283) Klemenz, A.; Pastewka, L.; Balakrishna, S. G.; Caron, A.; Bennewitz, R.; Moseler, M. Atomic Scale Mechanisms of Friction Reduction and Wear Protection by Graphene. Nano Lett. 2014, 14 (12), 7145–7152. https://doi.org/10.1021/nl5037403.
    (284) Park, Y.; Kwon, W.; Ahn, J. H.; Lee, E.; Lee, J. W.; Ham, T. J. Graphene: Strong yet Lightweight Row Hammer Protection. Proc. Annu. Int. Symp. Microarchitecture, MICRO 2020, 2020-Octob, 1–13. https://doi.org/10.1109/MICRO50266.2020.00014.
    (285) Vasić, B.; Matković, A.; Ralević, U.; Belić, M.; Gajić, R. Nanoscale Wear of Graphene and Wear Protection by Graphene. Carbon N. Y. 2017, 120, 137–144. https://doi.org/10.1016/j.carbon.2017.05.036.
    (286) Naganuma, H.; Zatko, V.; Galbiati, M.; Godel, F.; Sander, A.; Carrétéro, C.; Bezencenet, O.; Reyren, N.; Martin, M. B.; Dlubak, B.; Seneor, P. A Perpendicular Graphene/Ferromagnet Electrode for Spintronics. Appl. Phys. Lett. 2020, 116 (17). https://doi.org/10.1063/1.5143567.
    (287) Topsakal, M.; Aahin, H.; Ciraci, S. Graphene Coatings: An Efficient Protection from Oxidation. Phys. Rev. B - Condens. Matter Mater. Phys. 2012, 85 (15), 1–7. https://doi.org/10.1103/PhysRevB.85.155445.
    (288) Kyhl, L.; Balog, R.; Cassidy, A.; Jørgensen, J.; Grubisic-Čabo, A.; Trotochaud, L.; Bluhm, H.; Hornekær, L. Enhancing Graphene Protective Coatings by Hydrogen-Induced Chemical Bond Formation. ACS Appl. Nano Mater. 2018, 1 (9), 4509–4515. https://doi.org/10.1021/acsanm.8b00610.
    (289) Wofford, J. M.; Nie, S.; McCarty, K. F.; Bartelt, N. C.; Dubon, O. D. Graphene Islands on Cu Foils: The Interplay between Shape, Orientation, and Defects. Nano Lett. 2010, 10 (12), 4890–4896. https://doi.org/10.1021/nl102788f.
    (290) Carlsson, J. O.; Martin, P. M. Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Lett. 2009, 314–363. https://doi.org/10.1016/B978-0-8155-2031-3.00007-7.
    (291) Loginova, E.; Nie, S.; Thürmer, K.; Bartelt, N. C.; McCarty, K. F. Defects of Graphene on Ir(111): Rotational Domains and Ridges. Phys. Rev. B - Condens. Matter Mater. Phys. 2009, 80 (8), 1–8. https://doi.org/10.1103/PhysRevB.80.085430.
    (292) Vlaic, S.; Kimouche, A.; Coraux, J.; Santos, B.; Locatelli, A.; Rougemaille, N. Cobalt Intercalation at the Graphene/Iridium(111) Interface: Influence of Rotational Domains, Wrinkles, and Atomic Steps. Appl. Phys. Lett. 2014, 104 (10). https://doi.org/10.1063/1.4868119.
    (293) Starodub, E.; Bartelt, N. C.; McCarty, K. F. Oxidation of Graphene on Metals. J. Phys. Chem. C 2010, 114 (11), 5134–5140. https://doi.org/10.1021/jp912139e.
    (294) Vlaic, S.; Rougemaille, N.; Artaud, A.; Renard, V.; Huder, L.; Rouvière, J. L.; Kimouche, A.; Santos, B.; Locatelli, A.; Guisset, V.; David, P.; Chapelier, C.; Magaud, L.; Canals, B.; Coraux, J. Graphene as a Mechanically Active, Deformable Two-Dimensional Surfactant. J. Phys. Chem. Lett. 2018, 9 (10), 2523–2531. https://doi.org/10.1021/acs.jpclett.8b00586.
    (295) Rougemaille, N.; Ndiaye, A. T.; Coraux, J.; Vo-Van, C.; Fruchart, O.; Schmid, A. K. Perpendicular Magnetic Anisotropy of Cobalt Films Intercalated under Graphene. Appl. Phys. Lett. 2012, 101 (14). https://doi.org/10.1063/1.4749818.
    (296) Carlomagno, I.; Drnec, J.; Scaparro, A. M.; Cicia, S.; Mobilio, S.; Felici, R.; Meneghini, C. Effectiveness of Co Intercalation between Graphene and Ir(1 1 1). Chem. Phys. Lett. 2018, 697, 7–11. https://doi.org/10.1016/j.cplett.2018.02.054.
    (297) Hashimoto, S.; Ochiai, Y.; Aso, K. Perpendicular Magnetic Anisotropy in Sputtered Copd Alloy Films. Jpn. J. Appl. Phys. 1989, 28 (9 R), 1596–1599. https://doi.org/10.1143/JJAP.28.1596.
    (298) Rushforth, A. W.; De Ranieri, E.; Zemen, J.; Wunderlich, J.; Edmonds, K. W.; King, C. S.; Ahmad, E.; Campion, R. P.; Foxon, C. T.; Gallagher, B. L.; Výborný, K.; Kučera, J.; Jungwirth, T. Voltage Control of Magnetocrystalline Anisotropy in Ferromagnetic- Semiconductor-Piezoelectric Hybrid Structures. Phys. Rev. B - Condens. Matter Mater. Phys. 2008, 78 (8), 1–5. https://doi.org/10.1103/PhysRevB.78.085314.
    (299) Kim, J. H.; Ryu, K. S.; Jeong, J. W.; Shin, S. C. Large Converse Magnetoelectric Coupling Effect at Room Temperature in CoPd/PMN-PT (001) Heterostructure. Appl. Phys. Lett. 2010, 97 (25), 23–26. https://doi.org/10.1063/1.3531648.
    (300) Qiu, X. P.; Shin, Y. J.; Niu, J.; Kulothungasagaran, N.; Kalon, G.; Qiu, C.; Yu, T.; Yang, H. Disorder-Free Sputtering Method on Graphene. AIP Adv. 2012, 2 (3). https://doi.org/10.1063/1.4739783.
    (301) Chen, C. T.; Casu, E. A.; Gajek, M.; Raoux, S. Low-Damage High-Throughput Grazing-Angle Sputter Deposition on Graphene. Appl. Phys. Lett. 2013, 103 (3). https://doi.org/10.1063/1.4813911.
    (302) Li, B.; Pan, G.; Jamil, N. Y.; Al Taan, L.; Awan, S.; Avent, N. Shielding Technique for Deposition of Au Electrical Contacts on Graphene by Sputtering. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2015, 33 (3), 030601. https://doi.org/10.1116/1.4916589.
    (303) Ahlberg, P.; Jeong, S. H.; Jiao, M.; Wu, Z.; Jansson, U.; Zhang, S. L.; Zhang, Z. Bin. Graphene as a Diffusion Barrier in Galinstan-Solid Metal Contacts. IEEE Trans. Electron Devices 2014, 61 (8), 2996–3000. https://doi.org/10.1109/TED.2014.2331893.
    (304) Lin, Z.; Zhao, Y.; Zhou, C.; Zhong, R.; Wang, X.; Tsang, Y. H.; Chai, Y. Controllable Growth of Large-Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. Sci. Rep. 2015, 5 (November), 1–10. https://doi.org/10.1038/srep18596.
    (305) Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. Te; Chang, K. Di; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J.; Lin, T. W. Synthesis of Large-Area MoS2 Atomic Layers with Chemical Vapor Deposition. Adv. Mater. 2012, 24 (17), 2320–2325. https://doi.org/10.1002/adma.201104798.
    (306) Liu, C. M.; Hsu, C. C.; Lin, W. C. Hydrogenation Effect on Magnetic Single Domains of High-Temperature-Deposited Uniform CoxPd1−x/MoS2 Flakes. J. Magn. Magn. Mater. 2021, 531 (December 2020), 167911. https://doi.org/10.1016/j.jmmm.2021.167911.
    (307) Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695–2700. https://doi.org/10.1021/nn1003937.
    (308) Gong, C.; Huang, C.; Miller, J.; Cheng, L.; Hao, Y.; Cobden, D.; Kim, J.; Ruoff, R. S.; Wallace, R. M.; Cho, K.; Xu, X.; Chabal, Y. J. Metal Contacts on Physical Vapor Deposited Monolayer MoS2. ACS Nano 2013, 7 (12), 11350–11357. https://doi.org/10.1021/nn4052138.
    (309) Bhanu, U.; Islam, M. R.; Tetard, L.; Khondaker, S. I. Photoluminescence Quenching in Gold-MoS 2 Hybrid Nanoflakes. Sci. Rep. 2014, 4, 1–5. https://doi.org/10.1038/srep05575.
    (310) Tang, W.; Fu, M.; Chen, J.; Sun, B.; Ke, C.; Wu, Y.; Li, X.; Zhang, C.; Wu, Z.; Kang, J. Identically Sized Co Quantum Dots on Monolayer WS2 Featuring Ohmic Contact. Phys. Rev. Appl. 2020, 13 (2), 1–6. https://doi.org/10.1103/PhysRevApplied.13.024003.
    (311) Luo, M. F.; Shiu, H. W.; Ten, M. H.; Sartale, S. D.; Chiang, C. I.; Lin, Y. C.; Hsu, Y. J. Growth and Electronic Properties of Au Nanoclusters on Thin-Film Al2O3/NiAl(1 0 0) Studied by Scanning Tunnelling Microscopy and Photoelectron Spectroscopy with Synchrotron Radiation. Surf. Sci. 2008, 602 (1), 241–248. https://doi.org/10.1016/j.susc.2007.10.021.
    (312) Lin, W.; Park, D.; Woo, S.; Lee, B.; Cho, Y. Development of Permeability Test Method for Porous Concrete Block Pavement Materials Considering Clogging. Constr. Build. Mater. 2016, 118, 20–26. https://doi.org/10.1016/j.conbuildmat.2016.03.107.
    (313) Chi, C. S.; Wang, B. Y.; Pong, W. F.; Ho, T. Y.; Tsai, C. J.; Lo, F. Y.; Chern, M. Y.; Lin, W. C. Uniaxial Magnetic Anisotropy in Pd/Fe Bilayers on Al2O3 (0001) Induced by Oblique Deposition. J. Appl. Phys. 2012, 111 (12). https://doi.org/10.1063/1.4730632.
    (314) Chang, C. H. T.; Kuo, W. H.; Chang, Y. C.; Tsay, J. S.; Yau, S. L. Tuning Coercive Force by Adjusting Electric Potential in Solution Processed Co/Pt(111) and the Mechanism Involved. Sci. Rep. 2017, 7 (October 2016), 1–10. https://doi.org/10.1038/srep43700.
    (315) Suleiman, M.; Jisrawi, N. M.; Dankert, O.; Reetz, M. T.; Bähtz, C.; Kirchheim, R.; Pundt, A. Phase Transition and Lattice Expansion during Hydrogen Loading of Nanometer Sized Palladium Clusters. J. Alloys Compd. 2003, 356–357, 644–648. https://doi.org/10.1016/S0925-8388(02)01286-0.
    (316) Chang, P. C.; Chuang, T. H.; Wei, D. H.; Lin, W. C. Thermally Modulated Hydrogenation in FexPd1-x Alloy Films: Temperature-Driven Peculiar Variation of Magnetism. Appl. Phys. Lett. 2020, 116 (10). https://doi.org/10.1063/1.5142625.
    (317) Qiu, B.; Zhao, X.; Hu, G.; Yu, W.; Ren, J.; Yuan, X. Optical Properties of Graphene/MoS2 Heterostructure: First Principles Calculations. Nanomaterials 2018, 8 (11), 1–10. https://doi.org/10.3390/nano8110962.
    (318) Tran Khac, B. C.; DelRio, F. W.; Chung, K. H. Interfacial Strength and Surface Damage Characteristics of Atomically Thin H-BN, MoS2, and Graphene. ACS Appl. Mater. Interfaces 2018, 10 (10), 9164–9177. https://doi.org/10.1021/acsami.8b00001.
    (319) Morozov, O.; Postnikov, A. Mechanical Strength Study of SiO2 Isolation Blocks Merged in Silicon Substrate. J. Micromechanics Microengineering 2015, 25 (1), 15014. https://doi.org/10.1088/0960-1317/25/1/015014.
    (320) Larentis, S.; Tolsma, J. R.; Fallahazad, B.; Dillen, D. C.; Kim, K.; Macdonald, A. H.; Tutuc, E. Band Offset and Negative Compressibility in Graphene-MoS2 Heterostructures. Nano Lett. 2014, 14 (4), 2039–2045. https://doi.org/10.1021/nl500212s.
    (321) Rao, R.; Islam, A. E.; Singh, S.; Berry, R.; Kawakami, R. K.; Maruyama, B.; Katoch, J. PHYSICAL REVIEW B 99 , 195401 ( 2019 ) Spectroscopic Evaluation of Charge-Transfer Doping and Strain in Graphene / MoS 2 Heterostructures. Phys. Rev. B 2019, 99 (19), 195401. https://doi.org/10.1103/PhysRevB.99.195401.
    (322) Baik, S. S.; Im, S.; Choi, H. J. Work Function Tuning in Two-Dimensional MoS 2 Field-Effect-Transistors with Graphene and Titanium Source-Drain Contacts. Sci. Rep. 2017, 7 (March), 1–8. https://doi.org/10.1038/srep45546.
    (323) Yu, L.; Lee, Y. H.; Ling, X.; Santos, E. J. G.; Shin, Y. C.; Lin, Y.; Dubey, M.; Kaxiras, E.; Kong, J.; Wang, H.; Palacios, T. Graphene/MoS2 Hybrid Technology for Large-Scale Two-Dimensional Electronics. Nano Lett. 2014, 14 (6), 3055–3063. https://doi.org/10.1021/nl404795z.
    (324) Hieu, N. N.; Phuc, H. V.; Ilyasov, V. V; Chien, N. D.; Poklonski, N. A.; Hieu, N. Van; Nguyen, C. V. Interfaces First-Principles Study of the Structural and Electronic Properties of Graphene / MoS 2 Interfaces. 2017, 104301. https://doi.org/10.1063/1.5001558.
    (325) Liu, B.; Wu, L. J.; Zhao, Y. Q.; Wang, L. Z.; Cai, M. Q. First-Principles Investigation of the Schottky Contact for the Two-Dimensional MoS2 and Graphene Heterostructure. RSC Adv. 2016, 6 (65), 60271–60276. https://doi.org/10.1039/c6ra12812b.
    (326) Sun, X.; Zhang, B.; Li, Y.; Luo, X.; Li, G.; Chen, Y.; Zhang, C.; He, J. Tunable Ultrafast Nonlinear Optical Properties of Graphene/MoS2 van Der Waals Heterostructures and Their Application in Solid-State Bulk Lasers. ACS Nano 2018, 12 (11), 11376–11385. https://doi.org/10.1021/acsnano.8b06236.
    (327) Gao, S.; Wang, Z.; Wang, H.; Meng, F.; Wang, P.; Chen, S.; Zeng, Y.; Zhao, J.; Hu, H.; Cao, R.; Xu, Z.; Guo, Z.; Zhang, H. Graphene/MoS2/Graphene Vertical Heterostructure-Based Broadband Photodetector with High Performance. Adv. Mater. Interfaces 2021, 8 (3), 1–6. https://doi.org/10.1002/admi.202001730.
    (328) Kwon, K. C.; Choi, K. S.; Kim, S. Y. Increased Work Function in Few-Layer Graphene Sheets via Metal Chloride Doping. Adv. Funct. Mater. 2012, 22 (22), 4724–4731. https://doi.org/10.1002/adfm.201200997.
    (329) Na, M.; Rhee, S. W. Electronic Characterization of Al/PMMA[Poly(Methyl Methacrylate)]/p-Si and Al/CEP(Cyanoethyl Pullulan)/p-Si Structures. Org. Electron. 2006, 7 (4), 205–212. https://doi.org/10.1016/j.orgel.2006.02.003.
    (330) Lindvall, N.; Kalabukhov, A.; Yurgens, A. Cleaning Graphene Using Atomic Force Microscope. J. Appl. Phys. 2012, 111 (6). https://doi.org/10.1063/1.3695451.
    (331) Farmer, D. B.; Roksana, G. M.; Perebeinos, V.; Lin, Y. M.; Tuievski, G. S.; Tsang, J. C.; Avouris, P. Chemical Doping and Electron-Hole Conduction Asymmetry in Graphene Devices. Nano Lett. 2009, 9 (1), 388–392. https://doi.org/10.1021/nl803214a.
    (332) Zheng, J.; Li, E.; Ma, D.; Cui, Z.; Peng, T.; Wang, X. Effect on Schottky Barrier of Graphene/WS2 Heterostructure With Vertical Electric Field and Biaxial Strain. Phys. Status Solidi Basic Res. 2019, 256 (10), 1–7. https://doi.org/10.1002/pssb.201900161.
    (333) Fang, Q.; Li, M.; Zhao, X.; Yuan, L.; Wang, B.; Xia, C.; Ma, F. Van Der Waals Graphene/MoS2heterostructures: Tuning the Electronic Properties and Schottky Barrier by Applying a Biaxial Strain. Mater. Adv. 2022, 3 (1), 624–631. https://doi.org/10.1039/d1ma00806d.
    (334) Berman, D.; Erdemir, A.; Sumant, A. V. Graphene: A New Emerging Lubricant. Mater. Today 2014, 17 (1), 31–42. https://doi.org/10.1016/j.mattod.2013.12.003.
    (335) Liu, P.; Zhang, Y. W. A Theoretical Analysis of Frictional and Defect Characteristics of Graphene Probed by a Capped Single-Walled Carbon Nanotube. Carbon N. Y. 2011, 49 (11), 3687–3697. https://doi.org/10.1016/j.carbon.2011.05.004.
    (336) Rao, R.; Islam, A. E.; Singh, S.; Berry, R.; Kawakami, R. K.; Maruyama, B.; Katoch, J. Spectroscopic Evaluation of Charge-Transfer Doping and Strain in Graphene/ MoS2 Heterostructures. Phys. Rev. B 2019, 99 (19), 195401. https://doi.org/10.1103/PhysRevB.99.195401.
    (337) Samuels, A. J.; Carey, J. D. Molecular Doping and Band-Gap Opening of Bilayer Graphene. ACS Nano 2013, 7 (3), 2790–2799. https://doi.org/10.1021/nn400340q.
    (338) Zhou, H.; Yu, W. J.; Liu, L.; Cheng, R.; Chen, Y.; Huang, X.; Liu, Y.; Wang, Y.; Huang, Y.; Duan, X. Chemical Vapour Deposition Growth of Large Single Crystals of Monolayer and Bilayer Graphene. Nat. Commun. 2013, 4, 4–11. https://doi.org/10.1038/ncomms3096.
    (339) Jin, C.; Rasmussen, F. A.; Thygesen, K. S. Tuning the Schottky Barrier at the Graphene/MoS2 Interface by Electron Doping: Density Functional Theory and Many-Body Calculations. Journal of Physical Chemistry C. 2015, pp 19928–19933. https://doi.org/10.1021/acs.jpcc.5b05580.
    (340) Zhumagulov, Y. V.; Vagov, A.; Gulevich, D. R.; Faria Junior, P. E.; Perebeinos, V. Trion Induced Photoluminescence of a Doped MoS2monolayer. J. Chem. Phys. 2020, 153 (4). https://doi.org/10.1063/5.0012971.
    (341) Kim, Y.; Jhon, Y. I.; Park, J.; Kim, C.; Lee, S.; Jhon, Y. M. Plasma Functionalization for Cyclic Transition between Neutral and Charged Excitons in Monolayer MoS2. Sci. Rep. 2016, 6 (February), 1–10. https://doi.org/10.1038/srep21405.
    (342) Kaniyoor, A.; Ramaprabhu, S. A Raman Spectroscopic Investigation of Graphite Oxide Derived Graphene. AIP Adv. 2012, 2 (3). https://doi.org/10.1063/1.4756995.
    (343) Li, Z.; Deng, L.; Kinloch, I. A.; Young, R. J. Raman Spectroscopy of Carbon Materials and Their Composites: Graphene, Nanotubes and Fibres. Prog. Mater. Sci. 2023, 135 (February), 101089. https://doi.org/10.1016/j.pmatsci.2023.101089.
    (344) Claramunt, S.; Varea, A.; López-Díaz, D.; Velázquez, M. M.; Cornet, A.; Cirera, A. The Importance of Interbands on the Interpretation of the Raman Spectrum of Graphene Oxide. J. Phys. Chem. C 2015, 119 (18), 10123–10129. https://doi.org/10.1021/acs.jpcc.5b01590.
    (345) Ma, B.; Rodriguez, R. D.; Ruban, A.; Pavlov, S.; Sheremet, E. The Correlation between Electrical Conductivity and Second-Order Raman Modes of Laser-Reduced Graphene Oxide. Phys. Chem. Chem. Phys. 2019, 21 (19), 10125–10134. https://doi.org/10.1039/c9cp00093c.
    (346) Syari’Ati, A.; Kumar, S.; Zahid, A.; Ali El Yumin, A.; Ye, J.; Rudolf, P. Photoemission Spectroscopy Study of Structural Defects in Molybdenum Disulfide (MoS2) Grown by Chemical Vapor Deposition (CVD). Chem. Commun. 2019, 55 (70), 10384–10387. https://doi.org/10.1039/c9cc01577a.
    (347) Li, B.; Jiang, L.; Li, X.; Ran, P.; Zuo, P.; Wang, A.; Qu, L.; Zhao, Y.; Cheng, Z.; Lu, Y. Preparation of Monolayer MoS2 Quantum Dots Using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Sci. Rep. 2017, 7 (1), 1–12. https://doi.org/10.1038/s41598-017-10632-3.
    (348) Yu, X.; Deng, W.; Chen, X. Macroscopic Superlubricity Enabled by the Tribopair of Nc-Ag/MoS2 and Hydrogenated Graphitic-like Carbon Films under High Contact Stress. Appl. Surf. Sci. 2023, 611 (October 2022). https://doi.org/10.1016/j.apsusc.2022.155814.
    (349) Arellano Arreola, V. M.; Salazar, M. F.; Zhang, T.; Wang, K.; Barajas Aguilar, A. H.; Chandra Sekhar Reddy, K.; Strupiechonski, E.; Terrones, M.; de Luna Bugallo, A. Direct Growth of Monolayer 1T–2H MoS2 Heterostructures Using KCl-Assisted CVD Process. 2D Mater. 2021, 8 (2). https://doi.org/10.1088/2053-1583/abe739.
    (350) Kumar, R.; Goel, N.; Mishra, M.; Gupta, G.; Fanetti, M.; Valant, M.; Kumar, M. Growth of MoS2–MoO3 Hybrid Microflowers via Controlled Vapor Transport Process for Efficient Gas Sensing at Room Temperature. Adv. Mater. Interfaces 2018, 5 (10), 1–9. https://doi.org/10.1002/admi.201800071.
    (351) Yang, Z.; Dai, Y.; Wang, S.; Cheng, H.; Yu, J. In Situ Incorporation of a S, N Doped Carbon/Sulfur Composite for Lithium Sulfur Batteries. RSC Adv. 2015, 5 (95), 78017–78025. https://doi.org/10.1039/c5ra15360c.
    (352) Ai, W.; Luo, Z.; Jiang, J.; Zhu, J.; Du, Z.; Fan, Z.; Xie, L.; Zhang, H.; Huang, W.; Yu, T. Nitrogen and Sulfur Codoped Graphene: Multifunctional Electrode Materials for High-Performance LI-Ion Batteries and Oxygen Reduction Reaction. Adv. Mater. 2014, 26 (35), 6186–6192. https://doi.org/10.1002/adma.201401427.
    (353) Garcia-Basabe, Y.; Peixoto, G. F.; Grasseschi, D.; Romani, E. C.; Vicentin, F. C.; Villegas, C. E. P.; Rocha, A. R.; Larrude, D. G. Phase Transition and Electronic Structure Investigation of MoS2-Reduced Graphene Oxide Nanocomposite Decorated with Au Nanoparticles. Nanotechnology 2019, 30 (47). https://doi.org/10.1088/1361-6528/ab3c91.
    (354) Tian, Y.; Wei, Z.; Wang, X.; Peng, S.; Zhang, X.; Liu, W. ming. Plasma-Etched, S-Doped Graphene for Effective Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2017, 42 (7), 4184–4192. https://doi.org/10.1016/j.ijhydene.2016.09.142.
    (355) Rabchinskii, M. K.; Ryzhkov, S. A.; Kirilenko, D. A.; Ulin, N. V.; Baidakova, M. V.; Shnitov, V. V.; Pavlov, S. I.; Chumakov, R. G.; Stolyarova, D. Y.; Besedina, N. A.; Shvidchenko, A. V.; Potorochin, D. V.; Roth, F.; Smirnov, D. A.; Gudkov, M. V.; Brzhezinskaya, M.; Lebedev, O. I.; Melnikov, V. P.; Brunkov, P. N. From Graphene Oxide towards Aminated Graphene: Facile Synthesis, Its Structure and Electronic Properties. Sci. Rep. 2020, 10 (1), 1–12. https://doi.org/10.1038/s41598-020-63935-3.
    (356) Gammelgaard, L.; Caridad, J. M.; Cagliani, A.; MacKenzie, D. M. A.; Petersen, D. H.; Booth, T. J.; Bøggild, P. Graphene Transport Properties upon Exposure to PMMA Processing and Heat Treatments. 2D Mater. 2014, 1 (3). https://doi.org/10.1088/2053-1583/1/3/035005.
    (357) Hong, J.; Park, M. K.; Lee, E. J.; Lee, D.; Hwang, D. S.; Ryu, S. Origin of New Broad Raman D and G Peaks in Annealed Graphene. Sci. Rep. 2013, 3, 1–5. https://doi.org/10.1038/srep02700.
    (358) Ryu, S.; Han, M. Y.; Maultzsch, J.; Heinz, T. F.; Kim, P.; Steigerwald, M. L.; Brus, L. E. Reversible Basal Plane Hydrogenation of Graphene. Nano Lett. 2008, 8 (12), 4597–4602. https://doi.org/10.1021/nl802940s.
    (359) Pei, C.; Li, X.; Fan, H.; Wang, J.; You, H.; Yang, P.; Wei, C.; Wang, S.; Shen, X.; Li, H. Morphological and Spectroscopic Characterizations of Monolayer and Few-Layer MoS2and WSe2Nanosheets under Oxygen Plasma Treatment with Different Excitation Power: Implications for Modulating Electronic Properties. ACS Appl. Nano Mater. 2020, 3 (5), 4218–4230. https://doi.org/10.1021/acsanm.0c00406.
    (360) Li, Z.; Wang, Y.; Kozbial, A.; Shenoy, G.; Zhou, F.; McGinley, R.; Ireland, P.; Morganstein, B.; Kunkel, A.; Surwade, S. P.; Li, L.; Liu, H. Effect of Airborne Contaminants on the Wettability of Supported Graphene and Graphite. Nat. Mater. 2013, 12 (10), 925–931. https://doi.org/10.1038/nmat3709.
    (361) Wang, Y.; Yamada, N.; Xu, J.; Zhang, J.; Chen, Q.; Ootani, Y.; Higuchi, Y.; Ozawa, N.; Bouchet, M. I. D. B.; Martin, J. M.; Mori, S.; Adachi, K.; Kubo, M. Triboemission of Hydrocarbon Molecules from Diamond-like Carbon Friction Interface Induces Atomic-Scale Wear. Sci. Adv. 2019, 5 (11), 1–10. https://doi.org/10.1126/sciadv.aax9301.
    (362) Han, X.; Tong, X.; Liu, X.; Chen, A.; Wen, X.; Yang, N.; Guo, X. Y. Hydrogen Evolution Reaction on Hybrid Catalysts of Vertical MoS2 Nanosheets and Hydrogenated Graphene. ACS Catal. 2018, 8 (3), 1828–1836. https://doi.org/10.1021/acscatal.7b03316.
    (363) Vecera, P.; Chacón-Torres, J. C.; Pichler, T.; Reich, S.; Soni, H. R.; Görling, A.; Edelthalhammer, K.; Peterlik, H.; Hauke, F.; Hirsch, A. Precise Determination of Graphene Functionalization by in Situ Raman Spectroscopy. Nat. Commun. 2017, 8 (May). https://doi.org/10.1038/ncomms15192.
    (364) Gürsu, H.; Güner, Y.; Dermenci, K. B.; Gençten, M.; Savaci, U.; Turan, S.; Şahin, Y. A Novel Green and One-Step Electrochemical Method for Production of Sulfur-Doped Graphene Powders and Their Performance as an Anode in Li-Ion Battery. Ionics (Kiel). 2020, 26 (10), 4909–4919. https://doi.org/10.1007/s11581-020-03671-w.

    無法下載圖示 電子全文延後公開
    2028/08/09
    QR CODE