簡易檢索 / 詳目顯示

研究生: 陳文璽
Chen, Wen-Hsi
論文名稱: 導電奈米纖維複合RuO2/Graphene應用於超級電容之研製
Development of supercapacitors using conductive nanofibers compounded with RuO2/Graphene
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 124
中文關鍵詞: 超級電容靜電紡絲技術C-MEMSRuO2
英文關鍵詞: Supercapacitor, Electrospinning technology, C-MEMS, RuO2
DOI URL: http://doi.org/10.6345/THE.NTNU.DME.011.2018.E08
論文種類: 學術論文
相關次數: 點閱:100下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超級電容器(Supercapacitors)依其能量儲存機制可分為靜電儲能的電雙層電容器(Electrical double-layers capacitors, EDLC)與電化學儲能的擬電容器 (Pseudocapacitor)兩大類,比起傳統的電容器(陶瓷電容器、鋁質電解電容器、塑膠薄膜電容器、鉭質電容器等),具有更高的比功率(Wg-1)和比電容(Fg-1),並且有很優異的循環壽命與穩定性,故在電動車與消費性電子的應用前景受到注目。然而,目前超級電容器的電極製作,大都只使用平面金屬電極,造成感應電荷的傳輸性與電解液的質傳性受到限制,或者必須使用大量導電高分子(PANi)作為電活性(electroactive)材料,才能達到快速可逆氧化還原反應,獲得高密度儲能的效果。
    因此,本研究為實現低成本全碳3D電極之製作,利用2×2 cm2人造石墨作為基板,並使用黃光微影製程以SU-8厚膜光阻,製作1.8×1.8 cm2之陣列圓柱微結構 (ϕ40 μm、深寬比5、間距 80 μm),接著利用靜電紡絲技術,並以SU-8濃度比例為SU-8:thinner=5:1作為紡絲溶液,製備奈米紡絲纖維 (Nano spinning fiber)。完成後,利用碳-微機電系統(C-MEMS)技術,將上述製備之SU-8圓柱結構與SU-8奈米紡絲纖維,以兩段式升溫方式進行碳化,使SU-8材料轉變成類玻璃碳(Glassy carbon)材料,進而得到導電圓柱結構(Conductive cylindrical structure)與線徑約730 nm碳奈米纖維(Carbon nanofiber),後續再將碳奈米纖維進行均勻破碎,以便製備複合石墨烯(Graphene)、二氧化釕(RuO2) 之漿料。以NMP@PVDF所製備之黏著劑(Binder)作為溶劑,將石墨烯、二氧化釕與破碎之碳奈米纖維進行混合,分別得到單純碳奈米纖維(CF)、碳奈米纖維複合石墨烯(CF/GN)與碳奈米纖維複合石墨烯/RuO2 (CF/GN/RuO2)等三種不同材料摻入的複合纖維漿料。利用滴定技術分別將上述三種複合漿料,滴置於全碳之3D導電圓柱結構電極板中,藉此沉積複合之碳纖維薄膜(Carbon fiber membrane, CFM),最終完成三種不同材料摻入的全碳3D電極板之製作。最後,製備完成之全碳對襯電極(Symmetrical electrodes)封裝成超級電容元件,並利用恆電位儀進行C-V特性曲線(C-V curve)、恆電流充放電曲線(Galvanostatic charge/discharge curve)與電荷轉移阻抗(Rct)等量測分析。量測結果發現CF/GN之電容性能以石墨烯摻入比例20 wt%為較理想、CF/GN/RuO2以RuO2摻入比例30 wt%為較理想。在0.5 A/g的電流密度下,CF、CF/GN與CF/GN/RuO2三種電極之比電容值,分別為62.4 F/g、96.5 F/g與219.2 F/g。CF/GN/RuO2電容元件的比電容值相較於CF/GN電容元件高出2.3倍、比CF之電容元件高出3.5倍,且當電流密度增加至3 A/g,CF/GN/RuO2之電容元件仍擁有54.8%的電容保持率。經過1500次的充放電測試,CF/GN之電容元件循環壽命保持率為62.2%,而CF/GN/RuO2之電容元件,仍擁有85.7%的保持率。由於導電圓柱結構與碳奈米纖維具有優異的導電性與比表面積,摻入石墨烯可提升電極之導電率,進而降低電荷轉移阻抗(Rct),而摻入RuO2可增加電極之電活性,因此提升整體電容的特性。

    Supercapacitors, according to their energy storage mechanism, can be divided into two categories of electric double layer capacitor (EDLC) with electrostatic storage and pseudocapacitor with electrochemical storage. Supercapacitors have received much attention on the applications of electric cars and consumer electronics because they have higher specific power (Wg-1) and specific capacitance (Fg-1), and excellent performance of cycle life and stability as compared with traditional capacitors (ceramic capacitors, aluminum electrolytic capacitors, plastic film capacitors, tantalum capacitors, etc.). However, planar metal electrodes as current collectors are mostly used for the production of supercapacitors, result in restricted transmission of induced charge and mass transfer of the electrolyte. Moreover, the electroactive materials such as conducting polymers (PEDOT:PSS, PANi) must be also used massively to achieve rapid reversible redox reactions and performance of a high-density energy storage.
    Therefore, this study will focus on the low-cost fabrication of 3D electrodes, which will be used to realize supercapacitors. This process uses 2×2 cm2 artificial graphite as the substrate, and uses the lithography process to form a 1.8×1.8 cm2 array cylindrical microstructure (40 μm, aspect ratio 5, pitch 80 μm) with SU-8 thick film photoresist. Nano spinning fiber is prepared by an electrospinning technique using a SU-8 concentration ratio of SU-8 : thinner=5:1 as a spinning solution. SU-8 cylindrical structure and the SU-8 nanospun fiber are carbonized in a two-step heating mode to convert the SU-8 material into a glass-like material (Glassy carbon material). Further, a conductive cylindrical structure and a carbon nanofiber which has a wire diameter about 730 nm are made. Carbon nanofibers are pulverized uniformly to prepare a slurry which are compound graphene and ruthenium dioxide (RuO2). The binder prepared by NMP@PVDF is used as a solvent to compound graphene, ruthenium dioxide and broken carbon nanofibers to obtain carbon nanofiber (CF), carbon nanofiber composite graphene. (CF/GN) and carbon nanofiber composite graphene/RuO2 (CF/GN/RuO2), respectively. The three composite slurries are dropped into the all-carbon 3D conductive cylindrical structure electrode by titration technique respectively. Thereby, a composite carbon fiber membrane (CFM) is deposited, and finally, the production of all-carbon 3D electrodes in which three different materials are completed. The prepared full carbon-based electrodes (Symmetrical electrodes) are packaged into a supercapacitor element and CV curve, galvanostatic charge/discharge curve and charge transfer impedance (Rct) are analyzed using potentiostat measurement. Measurement results show that the capacitance performance of CF/GN is ideal with graphene incorporation ratio of 20 wt%, and CF/GN/RuO2 with RuO2 incorporation ratio of 30 wt%, respectively. The specific capacitance values of CF, CF/GN and CF/GN/RuO2 electrodes are 62.4 F/g, 96.5 F/g and 219.2 F/g respectively in 0.5 A/g current density. Moreover, specific capacitance of CF/GN/RuO2 capacitor is 2.3 times higher than CF/GN capacitor and 3.5 times higher than CF capacitor, besides when the current density is increased to 3 A/g, capacitance retention of CF/GN/RuO2 capacitive component still has 54.8%. After 1500 charge and discharge tests, cycle life retention rate of CF/GN capacitive component is 62.2% and CF/GN/RuO2 capacitive component still has 85.7%, respectively. Because conductive cylindrical structures and carbon nanofiber have excellent electrical conductivity and specific surface area, the incorporation of graphene can increase the conductivity of electrode, thereby reducing charge transfer resistance (Rct), and incorporation of RuO2 can increase the electrical activity of electrode which improve the characteristics of overall supercapacitor.

    總 目 錄 摘要 i Abstract iii 總目錄 v 表目錄 viii 圖目錄 ix 第一章 緒論 1 1.1 前言 1 1.2 SU-8 厚膜光阻簡介 1 1.3 C-MEMS製程簡介 6 1.4 靜電紡絲技術簡介 8 1.5 金屬氧化物簡介 11 1.6 超級電容簡介與應用 13 1.7 研究動機與目的 17 1.8 論文架構 19 第二章 文獻回顧 20 2.1 C-MEMS製程超級電容之應用 20 2.2 靜電紡絲技術 26 2.2.1 靜電紡絲基本原理 27 2.2.2 影響靜電紡絲纖維成形之因素 29 2.2.3 靜電紡絲技術與超級電容之相關應用 36 2.3 超級電容 41 2.3.1 超級電容器之電解液種類及影響 43 2.3.2 超級電容器之電極材料種類 44 2.3.3 超級電容特性及電容值評估 45 2.4 二氧化釕 47 2.4.1 RuO2在超級電容的應用 49 2.5 石墨烯 51 2.5.1 石墨烯在超級電容的應用 54 第三章 實驗設計與規劃 58 3.1 實驗設計 58 3.2 實驗規劃 65 3.3 實驗與檢測設備 74 第四章 實驗結果與討論 80 4.1 導電圓柱結構之製備 80 4.1.1 基板之選擇 80 4.1.2 圓柱結構之製備 83 4.1.3 圓柱結構碳化製程 87 4.2 碳奈米纖維之製備 89 4.2.1 不同SU-8濃度比例製備奈米紡絲纖維之影響 90 4.2.2 操作電壓對奈米紡絲纖維之影響 93 4.2.3 碳化製程對碳奈米纖維之影響 94 4.3 滴定複合碳奈米纖維於電極板之製備 96 4.3.1 圓柱間距對滴定碳奈米纖維之影響 100 4.3.2 不同石墨烯比例製備碳纖維薄膜之影響 100 4.3.3 不同石墨烯/RuO2比例製備導電奈米纖維之影響 103 4.4 超級電容之元件組裝 107 4.5 超級電容之循環伏安性能量測 109 4.5.1 不同電極板結構對超級電容性能之影響 109 4.5.2 不同材料比例摻入對超級電容性能之影響 110 第五章 結論與未來展望 114 5.1 結論 114 5.2 未來展望 115 參考文獻 117

    參考文獻
    1. H. Lorenz et al., "Fabrication of photoplastic high-aspect ratio microparts and micromoldsusing SU-8 UV resist", Microsystem Technologies, vol. 4, pp. 143-146 (1998).
    2. http://www.microchem.com/
    3. 楊啟榮等人, 「SU-8厚膜光阻於微系統UV-LIGA製程的應用」, 科儀新知, vol. 21(5), pp. 46-53 (1998).
    4. C. G. Willson et al., "Chemical amplification in the design of polymers for resist application", Pure and applied chemicstry, pp. 207-219 (1982).
    5. D. W. Johnson, “MCC Technical Report”, Advance Package Seminar (1998).
    6. M. Shaw et al., "Improving the process capability of SU-8", Microsystem Technologies, vol. 10, pp. 01-06 (2003).
    7. http://www.tondig.com/it/projects/.
    8. http://www.htw-germany.com/products.php5?lang=en&nav0=3&nav1=1.
    9. http://www.microchem.com/Appl-MEMs-CMEMS.htm
    10. J. I. Heo et al., "Carbon interdigitated array nanoelectrodes for electrochemical applications", Journal of the Electrochemical Society, vol. 158(3) , pp. 76-80 (2011).
    11. C. L. Li et al., "Electrochemistry and Morphology Evolution of Carbon Micro-net Films for Rechargeable Lithium Ion Batteries", The Journal of Physical Chemistry C, vol. 112(35), pp. 13782-13788 (2008).
    12. W. Chen et al., "Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors", IEEE Transactions on Nanotechnology, vol. 9(6), pp. 734-740 (2010).
    13. H. Xu, et al., "Carbon post-microarrays for glucose sensors", Biosensors and Bioelectronics, vol. 23(11) pp. 1637-1644 (2008).
    14. P. F. Jao et al., "Fabrication of an all SU-8 electrospun nanofiber based supercapacitor", Journal of Micromechanics and Microengineering, vol. 23 pp. 114011-11418 (2013).
    15. C. S. Sharma et al., "Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers", Langmuir, vol. 26(4), pp. 2218–2222 (2010).
    16. https://baike.baidu.com/item/%E9%87%91%E5%B1%9E%E6%B0%A7%E5%8C%96%E7%89%A9
    17. R. R. Bi et al., "Highly dispersed RuO2 nanoparticles on carbon nanotubes: facile synthesis and enhanced supercapacitance performance", The Journal of Physical Chemistry C, vol. 114, pp. 2448–2451 (2010).
    18. http://www.tecategroup.com/ultracapacitors-supercapacitors/ultracapacitor-FAQ.php
    19. R. Kotz and M. Carlen, "Principles and application of electrochemical capacitors", Electrochimica acta, vol. 45, pp. 2483-2498 (2000).
    20. https://en.wikipedia.org/wiki/Supercapacitor
    21. http://www.sneresearch.com/kor/service/report_show.php?id=805
    22. 李俊龍、趙崇翔、林育威、方家振, 「2013超級電容發展現況工業材料」, vol. 323, pp. 51-59 (2013).
    23. M. Beidaghi et al., "Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors", Journal of Power Sources, vol. 196, pp. 2403–2409 (2011).
    24. S. Jiang et al., "Fabrication of a 3D micro/nano dual-scale carbon array and its demonstration as the microelectrodes for supercapacitors", Journal of Micromechanics and Microengineering, vol. 24, pp. 45001-45009 (2014).
    25. G. G. Wallace et al., "Nanobionics: the impact of nanotechnology on implantable medical bionic devices", Nanoscale, vol. 4, pp. 4327-4347 (2012).
    26. A. Formhals, "Artificial thread and method of producing same", U.S. Patent 2,187,306, Application, July, 28 (1937).
    27. A. Formhals, "Method and apparatus for spinning", U.S. Patent 2,160,962, Application, July, 01 (1936).
    28. A. Formhals, "Process and apparatus for preparing artificial threads", U.S. Patent 1,975,504, Application, March, 23 (1934).
    29. G. Taylor, "Disintegration of water drops in an electric field", Proceedings of the royal society A: mathematical, physical and engineering sciences, vol. 280, pp. 383-397 (1964).
    30. S. Blonski et al., "Electrospinning of liquid jets", Mechanics, pp. 15-21, Warsaw, Poland, (2004).
    31. A. Koski et al., "Effect of molecular weight on fibrous PVA produced by electrospinning", Materials Letters, vol. 58, pp. 493-497 (2004).
    32. S. Megelski et al., "Micro- and nanostructured surface morphology on electrospun polymer fibers", Macromolecules, vol. 35, pp. 8456-8466 (2002).
    33. H. Fong et al., "Beaded nanofibers formed during electrospinning", Polymer, vol. 40, pp. 4585-4592 (1999).
    34. D. H. Reneker et al., "Bending instability of electrically charged liquid jets of polymer solutions in electrospinning", Journal of applied physics, vol. 87, pp. 4531-4547 (2000).
    35. K. K. Lee et al., "Mechanical behavior of electrospun fiber mats of poly(vinyl chloride)/polyurethane polyblends", Journal of polymer science: part B: polymer physics, vol. 41, pp. 1256-1262 (2003).
    36. J. K. Steach, J. E. Clark and S. V. Olesik, "Optimization of electrospinning an SU-8 negative photoresist to create patterned carbon nanofibers and nanobeads", Journal of Applied Polymer Science, vol. 118, pp. 405–412 (2010).
    37. L. Wannatong, A. Sirivat and P. Supaphol, "Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene", Polymer International, vol. 53, pp. 1851-1859 (2004).
    38. K. H. Lee et al., "Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats", Journal of polymer science part B: polymer physics, vol. 40, pp. 2259-2268 (2002).
    39. 吳大誠、杜仲良、高緒珊, 「奈米纖維」, 五南書局 (2004).
    40. P. F. Jao et al., "Fabrication of an all SU-8 electrospun nanofiber based supercapacitor", Journal of Micromechanics and Microengineering, vol. 23 pp. 114011-11418 (2013).
    41. Q. Dong, et al., "Ultrasound-assisted preparation of electrospun carbon nanofiber/graphene composite electrode for supercapacitors", Power sources, vol. 243, pp. 350-353 (2013).
    42. X. Liua et al., "Flexible all-fiber electrospun supercapacitor", Journal of Power Sources, vol. 384, pp. 264–269 (2018).
    43. F. Shi, et al., Metal oxide/hydroxide-based materials for supercapacitors", The royal society of chemistry, vol. 4, pp. 41910-41921 (2014).
    44. J. P. Zheng et al., "Hydrous ruthenium oxide as an electrode material for electrochemical capacitors", Journal of the electrochemical society, vol. 142, pp. 2699-2703 (1995).
    45. B. E. Conway, "Electrochemical supercapacitors" Springer science, New York, (1990).
    46. A. J.bard and L.R.Faulkner, "Electrochemical methods, fundamentals and applications", John Wiley & Sons, New York, (1998).
    47. M. Ue, et al., "Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors", Journal of the electrochemical society, vol. 141, pp. 2989-2996 (1994).
    48. 林月微和方家振, 「鋰離子電池用高分子電解質」, 工業材料, vol. 338, 2015.
    49. J. Gamby, et al., "Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors", Journal of power sources, vol. 101, pp. 109-116 (2001).
    50. C. Kim, "Electrochemical characterization of electrospun activated carbon nanofibres as an electrode in supercapacitors", Journal of power sources, vol. 142, pp. 382-388 (2005).
    51. D. Yu and L. Dai, "Self-assembled graphene/carbon nanotube hybrid films for supercapacitors", Journal of physical chemistry letters, vol. 1, pp. 467-470 (2010).
    52. A. Rose et al., "Investigation of cyclic voltammetry of graphene oxide/polyaniline/polyvinylidene fluoride nanofibers prepared via electrospinning", Materials Science in Semiconductor Processing, vol. 31, pp. 281–286 (2015).
    53. E. A. Seddon and K. R. Seddon, "The chemistry of ruthenium", Elsevier science pubilshers b. v., 1984.
    54. W. D. Ryden et al., "Electrical transport properties of IrO2 and RuO2", Physical review b, vol.1, pp. 1494-1500 (1970).
    55. C. W. Allen et al., "Cascade‐driven migration of structural interfaces: A new type of irradiation‐induced phase transformation" Applied physics letters, vol. 50, pp. 1876 (1987).
    56. M. Pa et al., "Highly super capacitive electrodes made of graphene/poly(pyrrole)", Chem. Commun.(Camb), vol. 20, pp. 5753-5755 (2011).
    57. A. A. Bolzan et al., "Structural studies of rutile-type metal dioxides", Acta crystallographic section b, vol. B53, pp.373-380 (1997).
    58. L. A. Bursill et al., "Comparison of lead zirconate titanate thin films on ruthenium oxide and platinum electrodes", American institute of physics, vol. 75, pp. 1521-1525 (1994).
    59. E. L. Krusin et al., "Characterization of reactively sputtered ruthenium dioxide for very large scale integrated metallization", Applied physics letters, vol. 50, pp.1879-1881 (1987).
    60. S. Trassatti and G. Buzzanca, "Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour", Electroanal. Chem., vol. 29, pp. 1-5 (1971).
    61. D. Galizzioli et al., "Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes", Applied electrochemistry, vol. 4, pp.57-67 (1974).
    62. S. H. Choi et al., "Facile synthesis of highly conductive platinum nanofiber mats as conducting core for high rate redox supercapacitor", Electrochemical and solid-state letters, vol. 6, pp. 65-68 (2010).
    63. https://curiosoando.com/que-es-el-grafeno
    64. K. S. Novoselov et al., "Electric field effect in atomically thin carbon films", Science, vol. 306, pp. 666-669 (2004).
    65. http://nobelprize.org/nobel_prizes/physics/laureates/2010/
    66. C. Y. Su, Graphene: The applications in optical electronics and thermal management, SumKen (2013).
    67. C. Lee et al., "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, vol. 321, pp. 385-388 (2008).
    68. R. R. Nair et al., "Fine structure constant defines visual transparency of graphene", Science, vol. 320, pp. 1308-1315 (2008).
    69. H. Wang et al., "Graphene oxide doped polyaniline for supercapacitors", Electrochemistry communications, vol. 11, pp. 1158-1161 (2009).
    70. W. Lv et al., "Low-temperature exfoliated graphenes vacuum-promoted exfoliation and electrochemical energy storage", ACS nano, vol. 3, pp. 3730-3736 (2009).
    71. C. Liu et al., "Graphene-based supercapacitor with an ultrahigh energy density", Nano letters, vol. 10, pp. 4863-4868 (2010).
    72. M. Beidaghi et al., "Electrostatic spray deposition of graphene nanoplatelets for high-power thin-film supercapacitor electrodes", J Solid State Electrochem., vol. 16, pp. 3341-3348 (2012).
    73. A. Rosea et al., "Electrochemical analysis of graphene oxide/polyaniline/polyvinyl alcohol composite nanofibers for supercapacitor applications", Applied Surface Science, vol. 449, pp. 551-557 (2018).
    74. 楊智仲, "厚膜光阻製程應用於靜電驅動旋轉式微致動器", 國立臺灣師範大學機電科技研究所, 碩士論文, pp. 37-57 (2004).
    75. 趙俊傑, "類LIGA製程應用於靜電式微致動器光開關之研製", 國立臺灣師範大學工業教育學系, 碩士論文, pp. 88-94 (2003).
    76. C. Wang et al., "A novel method for the fabrication of high-aspect ratio C-MEMS structures", Journal of Microelectromechanical Systems, vol. 14(2), pp. 348-357 (2005).
    77. D. Zhang and J. Chang, "Patterning of Electrospun Fibers Using Electroconductive Templates", Adv. Mater., vol. 19, pp. 3664-3667 (2007).

    無法下載圖示 本全文未授權公開
    QR CODE