簡易檢索 / 詳目顯示

研究生: 方靖涵
Fang, Ching-Han
論文名稱: 基於 Nvidia OptiX 7 框架下之 Bidirectional Path Tracing分析與探討
Analysis and Discussion of Bidirectional Path Tracing Algorithms on Nvidia OptiX7 Ray Tracing Framework
指導教授: 張鈞法
Chang, Chun-Fa
口試委員: 陳履恆
Chen, Lieu-Hen
葉正聖
Yeh, Jeng-Sheng
張鈞法
Chang, Chun-Fa
口試日期: 2022/07/25
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 31
中文關鍵詞: OptiX蒙地卡羅路徑追蹤雙向路徑追蹤
英文關鍵詞: OptiX, Monte Carlo Path Tracing, Bidirectional Path Tracing
研究方法: 比較研究
DOI URL: http://doi.org/10.6345/NTNU202201466
論文種類: 學術論文
相關次數: 點閱:126下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙向路徑追蹤是一種基於真實世界中的物理現象來繪製高品質影像的演算法。有別於一般的路徑追蹤,雙向路徑追蹤同時考慮到了多種重要性採樣策略來加快繪製速度,但這個演算法仍然要使用大量的運算資源,並不能即時繪製。隨著GPU的進步,GPU不只支援平行運算,還有特別的運算單元來對光線追蹤運算進行硬體加速。本文討論了雙向路徑追蹤的理論以及如何在Nvidia OptiX 7框架上建立Bidirectional Path Tracer。為了比較雙向路徑追蹤與一般的路徑追蹤,本文分別使用兩種演算法,在限定的時間內繪製特定的場景並計算結果與參考圖的平方差。實驗結果顯示,在實驗的設置下,雙向路徑追蹤確實優於一般的路徑追蹤。

    Bidirectional path tracing is a physical base rendering algorithm that generates rays following physical rules to render photorealistic images. Unlike simple path tracing, bidirectional path tracing concerns more than one importance sampling strategies to reduce render time, but this algorithm still cost a lot of computation resources which means it can only be used in offline rendering. Fortunately, GPUs have become more and more powerful today. GPUs support not only parallel computing but hardware acceleration to perform ray tracing operation. In this paper, we discuss how bidirectional path tracing works and build a bidirectional path tracer on Nvidia OptiX 7 framework. In order to compare between bidirectional path tracer and simple path tracer, we render specific scenes by both algorithms in a limit time and calculate squared error. The result shows that the performance of bidirectional path tracing algorithm is better than simple path tracer.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究目標 2 1.3 論文架構 2 第二章 文獻探討 3 2.1 Nvidia Optix 框架 3 2.1.1 Shader Binding Table 5 2.2 Path Tracing 6 2.2.1 Monte Carlo Path Tracing 7 2.2.2 Importance Sampling 9 2.2.3 Multiple Importance Sampling 9 2.3 Bidirectional Path Tracing 10 第三章 方法與步驟 13 3.1 Host 端 14 3.1.1 OBJ Loader 14 3.1.2 初始化 OptiX 14 3.2 Device 端 15 3.2.1 Simple Path Tracer 15 3.2.2 Bidirectional Path Tracer 16 第四章 結果與分析 19 4.1 實驗環境與參數設置 19 4.2 實驗結果與分析 21 4.2.1 運算時間 22 4.2.2 增加 sample 數 24 第五章 結論 29 5.1 結論 29 參考文獻 31

    [1] NVIDIA OptiX 7.5 –Programming Guide, https://raytracingdocs.nvidia.com/optix7/guide/index.html

    [2] Veach, E. (1998). Robust Monte Carlo methods for light transport simulation. Stanford University.

    [3] Lafortune, E. P., AND Willems, Y. D. (1993). Bi-directional path tracing.

    [4] Kollig, T., AND Keller, A. (2002). Efficient bidirectional path tracing by randomized quasi-Monte Carlo integration. In Monte Carlo and Quasi-Monte Carlo Methods
    2000 (pp. 290-305). Springer, Berlin, Heidelberg.

    下載圖示
    QR CODE