簡易檢索 / 詳目顯示

研究生: 廖翊廷
Liao, Yi-Ting
論文名稱: 運用擴增實境輔助幾何概念學習-以國小體積單元為例
Using Augmented Reality to Assist Elementary Students Learning Volume Concepts in Geometry
指導教授: 吳正己
Wu, Cheng-Chih
學位類別: 碩士
Master
系所名稱: 資訊教育研究所
Graduate Institute of Information and Computer Education
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 89
中文關鍵詞: 擴增實境幾何數學學習體積
英文關鍵詞: Augmented Reality, Geometry, Mathematices Learning, Volume
DOI URL: https://doi.org/10.6345/NTNU202204752
論文種類: 學術論文
相關次數: 點閱:248下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為發展一套輔助國小數學體積概念學習的擴增實境系統,並探討此系統對於學生學習之影響。本研究發展的擴增實境輔助系統以平板電腦作為載具,搭配實體積木教具讓學生進行「體積的計算」教學活動,透過教具的排列與挪移,系統會呈現相關的教學資訊於平板電腦上,學生將藉此進行體積計算策略的學習。
    系統評估採準實驗設計,比較使用擴增實境輔助學習系統與未使用該系統之學生,學習態度與學習成就之差異。研究對象為北部地區某一國小五年級學生,隨機抽取兩班級共53人參與實驗教學,學生分為實驗組25人及控制組28人,並透過成就測驗卷、態度問卷與活動觀察記錄,評估學生的學習成效及使用系統情形分析。
    研究結果發現,擴增實境輔助系統有助於提升學生的學習成就,能幫助學生提升學習信心,增進學生學習活動的滿意度。建議未來研究可以針對體積相關的單元發展類似系統;此外,可提升系統操作的直覺性,以及增加系統功能的自由性。

    The purposes of this study were to develop an augmented reality (AR) system to assist elementary school students learning volume concepts in Geometry. Our developed AR system provided additional information on a real composite object, which would then help students calculate the volume of the object. We adopted the Quasi-experiment Research method to evaluate the effectiveness of the system in terms of students’ learning achievement, attitudes toward learning and perceptions on using the system. The participants were 53 fifth-grade students, with 25 students in experimental group using the AR system and 28 students in control group using traditional method. The results revealed that the AR system improved students’ achievement scores and students in the AR group showed more confidence than the control group in learning stratified strategy and were satisfied with the experience of using AR system. We suggest future studies to improve the user interface and functionality of our developed system and to develop similar systems to help students learn a broader range of the volume concepts.

    摘要 I 目錄 IV 表目錄 VI 圖目錄 VII 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第三節 研究範圍與限制 4 第四節 名詞釋義 5 第二章 文獻探討 6 第一節 幾何學習 6 第二節 擴增實境 13 第三節 擴增實境輔助幾何概念學習 17 第三章 研究方法 20 第一節 研究設計 20 第二節 研究對象 21 第三節 研究工具 22 第四節 實驗流程 29 第五節 學習活動設計 32 第六節 資料蒐集與分析 35 第四章 系統規劃與實作 37 第一節 系統規劃 37 第二節 系統實作 45 第五章 結果與討論 56 第一節 學習成就 56 第二節 學習態度 57 第六章 結論與建議 68 第一節 結論 68 第二節 建議 69 參考文獻 72 附錄一、體積計算單元學習單 77 附錄二、體積計算單元學習成就測驗卷 80 附錄三、控制組態度問卷 83 附錄四、實驗組態度問卷 85 附錄五、課堂觀察記錄表 87 附錄六、預試態度問卷 88

    毛銘覬、呂長聰、黃品慈、湯中揚、劉松柏(2010)。創意教具之教學成效研究—以複合形體表面積為例。屏東教大科學教育,32,29-38。
    王學武、蔡佳穎、陳宜均、賴蕙慈(2011)。應用Van Hiele幾何思考層次理論於國小學童體積概念數位教材開發之研究。國民教育,51(6),90-99。
    左台益(2002)。van Hiele模式之國中幾何教材設計。中等教育,53(3),44-53。
    林芳姬、姚如芬(2005)。積木怎麼不見了-體積空間能力的教學。科學教育研究與發展季刊,40,35-47。
    林為光(2011)。不同虛擬實境多媒體設計輔助對國小學童體積概念學習效益之研究。國立台中教育大學數位內容科技學系碩士論論文。
    吳瑞源、吳慧敏(2008)。動畫教材之學習者控制播放模式與多媒體組合形式對學習成效與學習時間影響之研究。師大學報:科學教育類,53(1),1-26。
    黃幸美(2015)。體積電子教材設計與教學試驗─小學五年級。教科書研究,8(2),73-106。
    黃幸美(2015)。整合三維空間幾何概念與體積的數位教材與教學試驗。科學教育學刊,23(1),53-82。
    曹雅玲、陳穎瑤、曾怡嘉(2008)。國小學童的空間能力之相關研究。台灣數學教師電子期刊,15,18-40。
    陳鴻綸、曹雅玲(2005)。國小學童在幾何問題的解題表現研究—長方體的體積和表面積為例。國教新知,52(4),65-78。
    陳眉期(2011)。擴增實境輔助立體幾何概念學習系統之使用性暨學習效益評估。國立台南大學碩士論文。
    教育部(2008)。國民中小學九年一貫課程綱要數學學習領域綱要。臺北:教育部。
    張碧芝、吳昭容(2009)。影響六年級學生立方體計數表現的因素─空間定位與視覺化的角色。教育心理學報,41(1),125-146。
    楊凱翔、葉淑珍、譚寧君(2014)。建立立體心像教學活動之國小體積課程設計本位研究。國立臺灣科技大學人文社會學報,10(3),225-252。
    劉好(2000)。平面圖形教材的處理。國民小學數學科新課程概說(高年級)。台灣省國民學校教師研習會,194-213。
    譚寧君(1996)。面積與體積的教材分析。國民小學數學科新課程概說(中年級)。台灣省國民學校教師研習會,175-192。
    Azuma, R. T. (1997). A survey of augmented reality. Presence-Teleoperators and
    Virtual Environments, 6(4), 355-385.
    Baki, A., Kosa, T., & Guven, B. (2011). A comparative study of the effects of using dynamic geometry software and physical manipulatives on the spatial visualization skills of pre-service mathematics teachers. British Journal of Educational Technology, 42(2), 291-310.
    Battista, M. T., & Clements, D. H. (1998). Finding the number of cubes in rectangular cube building. Teaching Children Mathematics, 4(5), 258-264.
    Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12.
    Clements, D., & Battista, M. (1992). Geometry and spatial reasoning. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning, 420–464. New York: Macmillan Publishing Company.
    Clements, D. H. (2003). Teaching and learning geometry. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics, 151-178. Reston, VA: National Council of Teachers of Mathematics.
    Coimbra, M. T., Cardoso, T., & Mateus, A. (2015). Augmented reality: An enhancer for higher education students in math's learning?. Procedia Computer Science, 67, 332-339.
    Cuendet, S., Bonnard, Q., Wang, S., & Lenh, S. D. (2013). Designing augmented reality for the classroom. Computers & Education, 68, 557-569.
    Dünser, A., Steinbügl, K., Kaufmann, H., &Glück, J. (2006). Virtual and augmented reality as spatial ability training tools. In Proceedings of the 7th ACM SIGCHI New Zealand chapter's international conference on Computer-human interaction: design centered HCI, 125-132.
    Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana& V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century, 37-52. Dordrecht: Kluwer Academic Publishers.
    Hoffer, A. (1983). Van Hiele-based research. Acquisition of mathematics concepts and processes, 205-227.
    Klopfer, E., & Squire, K. (2008). Environmental detectives: The development of an augmented reality platform for environmental simulations. Educational Technology Research and Development, 56(2), 203–228.
    Kose, U., Koc, D., & Yucesoy, S. A. (2013). An augmented reality based mobile software to support learning experiences in computer science courses. Procedia Computer Science, 25, 370-374.
    Lee, K. (2012). The future of learning and training in augmented reality. InSight: A Journal of Scholarly Teaching, 7, 31-42.
    Li, Q., & Ma, X. (2010). A meta-analysis of the effects of computer technology on school students’ mathematics learning. Educational Psychology Review, 22, 215-243.
    Meža, S., Turk, Ž.,& Dolenc, M. (2015). Measuring the potential of augmented reality in civil engineering. Advances in Engineering Software, 90, 1-10.
    Milgram, P., Takemura, H., Utsumi, A., &Kishino, F. (1994). Augmented reality: A class of displays on the reality-virtuality continuum. Photonics for Industrial Applications, 282-292. International Society for Optics and Photonics.
    National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston, VA: NCTM.
    Reimer, K., & Moyer, P. S. (2005). Third graders learn about fractions using virtual manipulatives: A classroom study. Journal of Computers in Mathematics and Science Teaching, 24(1), 5-25.
    Tatli, Z., & Ayas, A. (2010).Virtual laboratory applications in chemistry education. Procedia-Social and Behavioral Sciences, 9, 938-942.
    Van Hiele, P. M. (1986).Structure and Insight: A theory of Mathematics education. Orlando: Academic Press.
    Van den Heuvel-Panhuizen, M., & Buys, K. (2008). Young children learn measurement and geometry: A learning-teaching trajectory with intermediate attainment targets for the lower grades in primary school. Rotterdam, The Netherlands: Sense.
    Wen, R., Tay, W. L., Nguyen, B. P., Chng, C. B., & Chui, C. K. (2014). Hand gesture guided robot-assisted surgery based on a direct augmented reality interface. Computer methods and programs in biomedicine, 116(2), 68-80.
    Yu, D., Jin, J. S., Luo, S., Lai, W., & Huang, Q. (2010). A useful visualization technique: A literature review for augmented reality and its application, limitation & future direction. Visual Information Communication, 311-337.
    Zarraonandia, T., Aedo, I., Díaz, P., & Montero, A. (2013). An augmented lecture feedback system to support leaner and teacher communication. British Journal of Educational Technology, 44(4), 616-628.

    下載圖示
    QR CODE