簡易檢索 / 詳目顯示

研究生: 陳暐翔
Wei-Hsiang Chen
論文名稱: 鐵超薄薄膜在銥(111)上之表面結構與磁學性質研究
Surface structure and related magnetic properties of Fe/Ir(111) ultrathin films
指導教授: 蔡志申
Tsay, Jyh-Shen
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 107
中文關鍵詞: alloyiridiumFcc-FeAuger electron spectroscopymagneto-optic Kerr effect
論文種類: 學術論文
相關次數: 點閱:63下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Magnetic properties and surface structure of ultrathin Fe/Ir(111) films have been investigated using the surface magneto-optic Kerr effect and low-energy electron diffraction. Layer-by-layer growth of Fe/Ir(111) is observed for the first three monolayers at room temperature. For Fe thinner than three monolayers, pseudomorphic growth of Fe films is observed. The layer distance is close to that of
    fcc(111) Fe. For Fe thicker than three monolayers, the surface structure can be identified to be related to the bcc(110) arrangement of Fe atoms in Kurdjumov-Sachs orientation. As the Fe thickness increases, the linear increase of the Kerr intensity is observed. The Kerr intensity comes from the bcc-Fe and a thin magnetic dead layer is observed at the interface.
    The magnetic properties and surface structure of ultrathin Fe/Ir(111) films after high temperature annealing treatment have also been investigated. The Fe atoms diffuse into the Ir(111) substrate to be a FexIr1-x alloy as annealing temperature increases. For annealing temperature between 750 K and 800 K, there is a blocking of the interdiffusion behavior for Fe atoms into the Ir(111) substrate and the existence of the specific concentration of Fe of the FexIr1-x interface alloy which shows a stable state at this annealing temperature region. Combining the experimental results of Auger analysis, LEED patterns and the theoretical calculations, one can conclude that the specific concentration of Fe of the FexIr1-x interface alloy at the stable state is Fe0.5Ir0.5 as annealing temperature between 750 K and 800 K. For 5~9 ML Fe/Ir(111) films, a layered structure of Fe/FexIr1-x/Ir(111) could be obtained after high temperature annealing treatment. The surface of this layered structure becomes flatter after the high temperature annealing treatment. The structure of the top Fe films can be identified to be related to the bcc(110) arrangement of Fe atoms in Kurdjumov-Sachs orientation, however, strained by the underneath Fe0.5Ir0.5 interface alloy since this interface alloy is also strained by Ir(111) substrate which leads to the change of the lattice parameter of the unit cell of Fe bcc(110) at the surface from 0.248 nm to 0.272 nm. The surface structure transition between the KS orientation to strained KS orientation for 5~9 ML Fe/Ir(111) at annealing temperature from 300 K to 700 K have also been investigated. For annealing temperature less than 550 K, the KS orientation shows low periodicity. The periodicity of this KS orientation gets better as annealing temperature increases and become stable as annealing temperature larger than 700 K. Finally, the structural, compositional and magnetic phase diagram of Fe/Ir(111) is constructed. For Fe film thinner than 3 ML at annealing temperature between 300 K and 900 K, no Kerr intensity is observed due to the fcc arrangement of Fe films and FexIr1-x alloy. For Fe films thicker than 3 ML, Kerr intensity could be observed owing to the bcc arrangement of Fe films. The coercivity and saturation magnetization enhanced abruptly (higher than Fe/Pt(111) system) after the high temperature annealing treatment which is because of the compositional and structural change of this system.

    Abstract.................................................1 Chapter 1 Introduction..................................3 Chapter 2 Fundamental concepts..........................7 2-1 Why is UHV necessary?.............................7 2-2 Growth mode and surface structure.................8 2-2-1 Growth modes.................................8 2-2-2 How to monitor the growth modes?.............9 2-2-3 Surface free energy and lattice mismatch....10 2-2-4 Binary phase diagram of Fe-Ir and Ag-Ir.....12 2-3 Surface magnetism................................13 Chapter 3 Experimental.................................18 3-1 Sample preparation...............................18 3-2 Analyzing instruments............................19 3-2-1 Auger electron spectroscopy (AES)...........19 3-2-2 Low-energy electron diffraction (LEED)......22 3-2-3 Surface magneto-optic Kerr effect (SMOKE)...24 3-2-4 Scanning tunneling microscopy (STM).........28 Chapter 4 Results and discussion.......................32 4-1 The surface structure and magnetic properties of Fe/Ir(111) ultrathin films at room temperature..........32 4-1-1 The growth mode of Fe/Ir(111) ultrathin films.32 4-1-2 The surface structure of Fe/Ir(111) ultrathin films...................................................33 4-1-3 Magnetic properties of Fe/Ir(111) ultrathin films...................................................38 4-1-4 The comparison between Fe/Pt(111) and Fe/Ir(111) ultrathin films...................................40 4-2 The surface structure and magnetic properties of Fe/Ir(111) ultrathin films at elevated temperatures.....44 4-2-1 Annealing effects for surface composition and structure of 3 ML Fe/Ir(111) ultrathin films............44 4-2-2 Annealing effects for magnetic property of 3 ML Fe/Ir(111) ultrathin films..............................54 4-2-3 Annealing effects for surface composition and structure of 5 ML Fe/Ir(111) ultrathin films..........57 4-2-4 Annealing effects for magnetic properties of 5 ML Fe/Ir(111) ultrathin films...........................72 4-3 The formation of a surface alloy for Ag/Ir(111) ultrathin films.........................................78 4-3-1 The growth mode of Ag/Ir(111) ultrathin films.78 4-3-2 Annealing effects for surface composition and structure of 1 ML Ag/Ir(111) ultrathin films............79 Chapter 5 The research project for magnetic anisotropy through interfaces and interlines.......................93 5-1 Introduction.....................................93 5-2 Results and discussion...........................96 5-2-1 The diffusion behavior of Co islands on Pt(111)...................................................96 5-2-2 The diffusion behavior of Rh islands on Pt(111)..................................................101 5-3 Conclusion......................................103 Conclusion.............................................106

    [1.1] C. L. Lin, A.W. Wu, Y. C.Wang, Y. C. Tseng, and J. S. Tsay, “Modification in electrochemical growth of Ni thin film on Cu(100) surface and the change in magnetic properties,” Phys. Chem. Chem. Phys., vol. 15, no. 7, pp. 2360–2367, Jan. 2013.
    [1.2] J. Brona, R. Wasielewski, and A. Ciszewski, “Ultrathin films of Cu on Ru(1010): Flat bilayers and mesa islands,” Appl. Surf. Sci., vol. 258, no. 24, pp. 9623–9628, Oct. 2012.
    [1.3] K. Leistner, N. Lange, J. Haenisch, S. Oswald, F. Scheiba, S. Faehler, H. Schloerb, and L. Schultz, “Electrode processes and in situ magnetic measurements of FePt films in a LiPF6 based electrolyte,” Electrochimica Acta, vol. 81, pp. 330–337, Oct. 2012.
    [1.4] J. Geshev, A. Guendel, I. Zaharieva, and J. E. Schmidt, “Edge atoms effects on the perpendicular anisotropy of ultrathin magnetic layers,” Appl. Phys. Lett., vol. 101, no. 13, p. 132407, Sep. 2012.
    [1.5] D. Boettcher, A. Ernst, and J. Henk, “Noncollinear magnetism in ultrathin films with strong spin-orbit coupling from Ab initio,” J. Nanosci. Nanotechnol., vol. 12, no. 9, pp. 7516–7519, Sep. 2012.
    [1.6] G. Bian, L. X. Zhang, Y. Liu, T. Miller, and T. C. Chiang, “Illuminating the surface spin texture of the giant-rashba quantum-well system Bi/Ag(111) by circularly polarized photoemission,” Phys. Rev. Lett., vol. 108, no. 18, p. 186403, May 2012.
    [1.7] Y. J. Chen, C. C. Chang, H. Y. Ho, and J. S. Tsay, “Effects of interfacial structure on the magnetic properties of ultrathin Fe/Pt(111) films with Ag buffer layer,” Thin Solid Films, vol. 519, no. 23, pp. 8343–8346, Sep. 2011.
    [1.8] K. R. Elder, G. Rossi, P. Kanerva, F. Sanches, S. C. Ying, E. Granato, C. V. Achim, and T. Ala-Nissila, “Patterning of heteroepitaxial overlayers from nano to micron scales,” Phys. Rev. Lett., vol. 108, no. 21, p. 226102, May 2012.
    [1.9] A.Meyer, J. I. Flege, R. E. Rettew, S.D.Senanayake, T. Schmidt, F.M. Alamgir, and J. Falta, “Ultrathin silver films on Ni(111),” Phys. Rev. B, vol. 82, no. 8, p. 085424, Aug. 2010.
    [1.10] D. C. Fu, P. P. Huang, and U. Bach, “Platinum coated counter electrodes for dye-sensitized solar cells fabricated by pulsed electrodeposition- correlation of nanostructure, catalytic activity and optical properties,” Electrochimica Acta, vol. 77, pp. 121–127, Aug. 2012.
    [1.11] R. F. Zhang, J. Wang, I. J. Beyerlein, A. Misra, and T. C. Germann, “Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces,” ACTA Mater., vol. 60, no. 6–7, pp. 2855–2865, Apr. 2012.
    [1.12] S. Yamaguchi, K. Morimoto, J. Fukuda, and H. Suzuki, “Electrowetting- based pH- and biomolecule-responsive valves and pH filters,”Biosens. Bioelectron., vol. 24, no. 7, pp. 2171–2176, Mar. 2009.
    [1.13] B. A. Hamad, J. M. Khalifeh, and C. Demangeat, “Spin polarization of Fe monolayers on Ir substrates,” Surf. Sci., vol. 525, no. 1–3, pp. 100–106, Feb. 2003.
    [1.14] D. Spišáka and J. Hafner, “Reconstruction and de-reconstruction of the Ir(100) surface and ultrathin Fe/Ir(100) films,” Surf. Sci, vol. 546, no. 1, pp. 27–38, Nov. 2003.
    [1.15] K. von Bergmann, S. Heinze, M. Bode, G. Bihlmayer, S. Blügel, and R. Wiesendanger, “Complex magnetism of the Fe monolayer on Ir(111),” New J. Phys., vol. 9, p. 396, Oct. 2007.
    [1.16] K. Louzazna and A. Haroun, “Magnetic and electronic properties of strained fcc Fe on Ir(001),” Thin Solid Films, vol. 374, no. 1, pp. 114–118, Oct. 2000.
    [1.17] T.Y. Fu, Y.R. Tzeng, and T.T. Tsong, “Self-diffusion and dynamic behavior of atoms at step edges of iridium surfaces,” Phys. Rev. B 54 (1996) 5932.
    [1.18] T.Y. Fu and T.T. Tsong, “The Role of the Lattice Step in Epitaxial Growth,” Mater. Res. Soc. Symp. Proc. 570 (1999) 33.
    [1.19] H.S. Kuo, I.S. Hwang, T.Y. Fu, Y.S. Hwang, Y.H. Lu, C.Y. Lin, J.L. Hou, and T.T. Tsong, “A single-atom sharp iridium tip as an emitter of gas field ion sources,” Nanotechnology 20 (2009) 335701.
    [1.20] G. Antczak, T.E. Madey, M. Blaszczyszyn, and R. Blaszczyszyn, “Faceting of Pt-covered W, Pt-covered Ir, and Pd-covered Mo field emitter tips,” Vacuum 63 (2001) 43.
    [1.21] G.A. Somorjai, “Chemistry in Two Dimensions Surfaces,” Cornell University Press, London, 1981.
    [1.22] A. Christensen, A.V. Ruban, P. Stoltze, K.W. Jacobsen, H.L. Skriver, J.K. Nørskov, and F. Besenbacher, “Phase diagrams for surface alloys,” Phys. Rev. B 56 (1997) 5822.
    [1.23] W.G. Moffatt, “The Handbook of Binary Phase Diagram,” Genium Press, New York, 1990.
    [1.24] N.R. Gall', E.V. Rut'kov, and A.Y. Tontegode, “Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution,” Phys. Solid State 46 (2004) 371.

    [2.1] G. Etrl and J. Küppers, Low Energy Electrons and Surface Chemistry.
    Weinheim, Germany: VCH, 1985.
    [2.2] C. Argile and G. E. Rhead, ” Adsorption of potassium on Cu(100) and coadsorption with oxygen: A study by AES, work function and secondary emission changes”, Surf. Sci. Rep. 10, 277 (1989).
    [2.3] T. E. Gallon, “A simple model for the dependence of Auger intensities on specimen thickness”, Surf. Sci. 17, 486 (1969).
    [2.4] R. Franchy, “Growth of thin, crystalline oxide, nitride and oxynitride films on metal and metal alloy surfaces”, Surf. Sci, Rep. 38, 195 (2000).
    [2.5] D. K. Flynn, W. Wang, S. L. Chang, M. C. Tringides, and P. A. Thiel, “Use of LEED intensity oscillations in monitoring thin film growth”, Langmuir 4, 1096 (1988).
    [2.6] C. S. Shern, D. U. Chang, K. D. Shyu, J. S. Tsay, and T. Y. Fu, “Initial growth of a silver thin film on a Pt(110)−(1 × 2) surface”, Surf. Sci. 318, 262 (1994)
    [2.7] F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metal, North-Holland, Amsterdam (1988).
    [2.8] J.F. o Hanlon, “A User’s Guide to Vaccum Technology,” John Wiley & Sons, Inc., New York (1989).
    [2.9] D. Jiles, Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London, 1991.
    [2.10] M. T. Johnson, P. J. H. Bloemen, F. J. A. den Broeder, and J. J. de Vries, “Magnetic anisotropy in metallic multilayers”, Rep. Prog. Phys. 59, 1409 (1996).

    [3.1] G. Etrl and J. Küppers, Low Energy Electrons and Surface Chemistry.
    Weinheim, Germany: VCH, 1985.
    [3.2] J. C. Helmert and N. H. Weichert, Appl. Phys. Lett. 13, 266 (1968).
    [3.3] H.Y. Ho, Doctoral dissertation, “Comparative studies in structural and magnetic properties between Ni/Co/Pt(111) and Co/Ni/Pt(111).” National Taiwan Normal University, College of Science, 2006.
    [3.4] J. Kerr, Rept. Brit. Assoc. Adv. Sci (1876), p.40
    [3.5] S. D. Bader, E. R. Moog, and P. Grunberg, “Magnetic hysteresis of epitaxially-deposited iron in the monolayer range: A Kerr effect experiment in surface magnetism,” J. Magn. Magn. Mater. 53, L295 (1986).
    [3.6] Z. Q. Qiu, J. Pearson, and S. D. Bader,”Oscillatory interlayer magnetic coupling of wedged Co/Cu/Co sandwiches grown on Cu(100) by molecular beam epitaxy,” Phys. Rev. B 45, 7211 (1992).
    [3.7] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, “Correlation between Quantized Electronic States and Oscillatory Thickness Relaxations of 2D Pb Islands on Si(111)-(7 x 7) Surfaces,” Phys. Rev. Lett 86, 5116 (2001)

    [4.1] G. Etrl and J. Küppers, Low Energy Electrons and Surface Chemistry. Weinheim, Germany: VCH, 1985.
    [4.2] D. Briggs and M.P. Seah, ‘Practical Surface Analysis 2nd’, John Wiley & Sons, Chichester (1990).
    [4.3] Y. J. Chen, C. C. Chang, H. Y. Ho, and J. S. Tsay, “Effects of interfacial structure on the magnetic properties of ultrathin Fe/Pt(111) films with Ag buffer layer,” Thin Solid Films, vol. 519, no. 23, pp. 8343–8346, Sep. 2011.
    [4.4] R. F. Zhang, J. Wang, I. J. Beyerlein, A. Misra, and T. C. Germann, “Atomic-scale study of nucleation of dislocations from fcc-bcc interfaces,” ACTA Mater., vol. 60, no. 6–7, pp. 2855–2865, Apr. 2012.
    [4.5] S. Andrieu, M. Piecuch, and J. F. Bobo, “Fe growth on (0001) HCP RU and (111) FCC IR - consequences for structural and magnetic-properties,” Phys. Rev. B, vol. 46, no. 8, pp. 4909–4916, Aug. 1992.
    [4.6] M. Henzler, “Growth of epitaxial monolayers,” Surf. Sci., vol. 357, no. 1–3, pp. 809–819, Jun. 1996.
    [4.7] J. S. Tsay and C. S. Shern, “Structure evolution for annealing Co ultrathin films on Pt(111),” Surf. Sci., vol. 396, no. 1–3, pp. 313–318, Jan. 1998.
    [4.8] C. L. Lin, A.W. Wu, Y. C.Wang, Y. C. Tseng, and J. S. Tsay, “Modification in electrochemical growth of Ni thin film on Cu(100) surface and the change in magnetic properties,” Phys. Chem. Chem. Phys., vol. 15, no. 7, pp. 2360–2367, Jan. 2013.
    [4.9] M. T. Lin, J. Shen,W. Kuch, H. Jenniches,M. Klaua, C.M. Schneider, and J. Kirschner, “Growth, morphology, and crystalline structure of ultrathin Fe films on Cu Au(100),” Surf. Sci, vol. 410, no. 2–3, pp. 290–311, Aug. 1998.
    [4.10] V. L. Moruzzi, P. M. Marcus, K. Schwarz, and P. Mohn, “Ferromagnetic phases of bcc and fcc Fe, Co, and Ni,” Phys. Rev. B, vol. 34, no. 3, pp. 1784–1791, Aug. 1986.
    [4.11] S. Andrieu, J. F. Bobo, J. Hubsch, and M. Piecuch, “Magnetic-properties of body-centered tetragona iron iridium superlattices,” J. Magn. Magn. Mater, vol. 126, no. 1–3, pp. 349–351, Sep. 1993.
    [4.12] S. Andrieu, J. Hubsch, E. Snoeck, H. Fischer, and M. Piecuch, “Magnetism of BCT Fe in (100) FeIr superlattices,” J. Magn. Magn. Mater, vol. 148, no. 1–2, pp. 6–8, Jul. 1995.
    [4.13] K. Louzazna and A. Haroun, “Magnetic and electronic properties of strained fcc Fe on Ir(001),” Thin Solid Films, vol. 374, no. 1, pp. 114–118, Oct. 2000.
    [4.14] K. von Bergmann, S. Heinze, M. Bode, G. Bihlmayer, S. Blügel, and R. Wiesendanger, “Complex magnetism of the Fe monolayer on Ir(111),” New J. Phys., vol. 9, p. 396, Oct. 2007.

    [4.15] J. S. Tsay, C. S. Yang, Y. D. Yao, Y. Liou, and S. F. Lee, “Magnetic properties of ultrathin Co/Si(111) films,” Jpn. J. Appl. Phys, vol. 37, no. 11, pp. 5976–5979, Nov. 1998.
    [4.16] C. Chuang, W. Y. Chang, W. H. Chen, J. S. Tsay, W. B. Su, H. W. Chang, and Y. D. Yao, “Thickness dependent reactivity and coercivity for ultrathin Co/Si(111) films,” Thin Solid Films, vol. 519, no. 23, pp. 8371–8374, Sep. 2011.
    [4.17] W. H. Chen, P. C. Jiang, C. Y. Hsieh, and J. S. Tsay, "Structure related magnetic dead layer for ultrathin Fe/Ir(111) films," IEEE Trans. Magn. 50(1), 2000304, 2014.
    [4.18] B. Wang, D. C. Berry, Y. Chiari, and K. Barmak, “Experimental measurements of the heats of formation of Fe3Pt, FePt, and FePt3 using differential scanning calorimetry,” J. Appl. Phys, vol. 110, 013903 (2011)
    [4.19] F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, Cohesion in Metal, North-Holland, Amsterdam (1988).
    [4.20] C.S. Shern, J.S. Tsay, S.L. Chen, and Y.E. Wu, “Effect of annealing of Ag ultrathin films on Co/Pt(111) surface,” J. Appl. Phys. 85 (1999) 228.
    [4.21] G.A. Somorjai, “Chemistry in Two Dimensions Surfaces,” Cornell University Press, London, 1981.
    [4.22] J.S. Tsay, Y.D. Yao, and C.S. Shern, “Dynamic study of a surface-confined alloy in an ultrathin Ag/Pt(111) film,” Phys. Rev. B 58 (1998) 3609.
    [4.23] D. Jiles, Introduction to Magnetism and Magnetic Materials. Chapman & Hall, London, 1991.
    [4.24] Y.J. Chen, H.Y. Ho, C.C. Tseng, and C.S. Shern. “Growth and magnetic properties of ultrathin Fe films on Pt(111),” Surf. Sci., vol.601, 4334 (2007)
    [4.25] Y.L. He, J.K. Zuo, G.C. Wang, J.J. Low, “Diffusion of Rh overlayers grown on a Pt(110) surface,” Surf. Sci. 255 (1991) 269.
    [4.26] J. Honolka, T.Y. Lee, K. Kuhnke, A. Enders, R. Skomski, S. Bornemann, S. Mankovsky, J. Mina´r, J. Staunton, H. Ebert, M. Hessler, K. Fauth, G. Schu¨tz, A. Buchsbaum, M. Schmid, P. Varga, and K. Kern, “Magnetism of FePt surface alloys,” Phys. Rev. Lett. 102 (2009) 067207.
    [4.27] Eric E. Fullerton, J.S. Jiang, M. Grimsditch, C.H. Sowers, and S.D. Bader, “Exchange-spring behavior in epitaxial hard/soft magnetic bilayers,” Phys. Rev. B 58, (1998) 12193.
    [4.28] M. Henzler, “Growth of epitaxial monolayers,” Surf. Sci. 357–358 (1996) 809.
    [4.29] G. Jnawali, H. Hattab, C.A. Bobisch, A. Bernhart, E. Zubkov, R. Moeller, and M.H.V. Hoegen, “Homoepitaxial growth of Bi(111),” Phys. Rev. B 78 (2008) 035321.
    [4.30] A. Christensen, A.V. Ruban, P. Stoltze, K.W. Jacobsen, H.L. Skriver, J.K. Nørskov, and F. Besenbacher, “Phase diagrams for surface alloys,” Phys. Rev. B 56 (1997) 5822.
    [4.31] W.G. Moffatt, “The Handbook of Binary Phase Diagram,” Genium Press, New York, 1990.
    [4.32] N.R. Gall', E.V. Rut'kov, and A.Y. Tontegode, “Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution,” Phys. Solid State 46 (2004) 371.
    [4.33] C.S. Shern, J.S. Tsay, S.L. Chen, and Y.E. Wu, “Effect of annealing of Ag ultrathin films on Co/Pt(111) surface,” J. Appl. Phys. 85 (1999) 228.
    [4.34] T.Y. Fu, Y.R. Tzeng, and T.T. Tsong, “Self-diffusion and dynamic behavior of atoms at step edges of iridium surfaces,” Phys. Rev. B 54 (1996) 5932.
    [4.35] T.Y. Fu and T.T. Tsong, Mater. Res. Soc. Symp. Proc. 570 (1999) 33.
    [4.36] T.E. Madey, J. Guan, C.H. Nien, C.Z. Dong, H.S. Tao, and R.A. Campbell, “Faceting induced by ultrathin films on W(111) and Mo(111): Structure, reactivity, and electronic properties,” Surf. Rev. Lett. 3 (1996) 1315.
    [4.37] T.Y. Fu, Y.C. Lin, H.S. Kuo, I.S. Hwang, and T.T. Tsong, “Study of two types of Ir or Rh covered single atom pyramidal W tips,” Surf. Sci. 601 (2007) 3992.

    [5.1] Stengel, M., Vanderbilt, D., and Spaldin, N. A., “Enhancement of ferroelectricity at metal-oxide interfaces,” Nat. Mater. 8, 392–397 (2009).
    [5.2] Hsieh, D. et al., “A tunable topological insulator in the spin helical dirac transport regime,” Nature 460, 1101–1105 (2009).
    [5.3] Reyren, N. et al., “Superconducting interfaces between insulating oxides,” Science 317, 1196–1199 (2007).
    [5.4] Gozar, A. et al., “High-temperature interface superconductivity between metallic and insulating copper oxides,” Nature 455, 782–785 (2008).
    [5.5] Nogue´s, J. and Schuller, I. K., “Exchange bias,” J. Magn. Magn. Mater. 192, 203–232 (1999).
    [5.6] Kuch, W. et al., “Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness,” Nat. Mater. 5, 128–133 (2006).
    [5.7] He, X. et al., “Robust isothermal electric control of exchange bias at room temperature,” Nat. Mater. 9, 579–585 (2010).
    [5.8] Miron, I. M. et al., “Current-driven spin torque induced by the rashba effect in a ferromagnetic metal layer,” Nat. Mater. 9, 230–234 (2010).
    [5.9] Miron, I. M. et al., “Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection,” Nature 476, 189–193 (2011).
    [5.10] Carcia, P. F., Meinhaldt, A. D. and Suna, A., “Perpendicular magnetic anisotropy in Pd/Co thin film layered structures,” Appl. Phys. Lett. 47, 178–180 (1985).
    [5.11] Engel, B., England, C. D., Van Leewen, R. A., Wiedmann, M. H. and Falco, C. M., “Interface magnetic anisotropy in epitaxial superlattices,” Phys. Rev. Lett. 67, 1910–1913 (1991).
    [5.12] Dorantes-Da´vila, J., Dreysse´, H. and Pastor, G. M., “Magnetic anisotropy of transition-metal interfaces from a local perspective: Reorientation transitions and spin-canted phases in Pd capped Co films on Pd(111),” Phys. Rev. Lett. 91, 197206 (2003).
    [5.13] Albrecht, M. et al., “Magnetic multilayers on nanospheres,” Nat. Mater. 4, 203–206 (2005).
    [5.14] Mun˜oz-Navia, M. et al., “Tailoring the magnetic anisotropy in CoRh nanoalloys,” Appl. Phys. Lett. 95, 233107 (2009)
    [5.15] Barcaro, G., Sementa, L., Negreiros, F. R., Ferrando, R., and Fortunelli, A., “Interface effects on the magnetism of CoPt-supported nanostructures,” Nano Lett. 11, 5542–5547 (2011).
    [5.16] Nahas, Y. et al., “Dominant role of the epitaxial strain in the magnetism of core-shell Co/Au self-organized nanodots,” Phys. Rev. Lett. 103, 067202 (2009).
    [5.17] S. Ouazi, S. Vlaic, S. Rusponi, G. Moulas, P. Buluschek, K. Halleux, S. Bornemann, S. Mankovsky, J. Minar, J.B. Staunton, H. Ebert, and H. Brune, “Atomic-scale engineering of magnetic anisotropy of nanostructures through interfaces and interlines,” Nat. Mater. 3, 1313 (2012).

    無法下載圖示 本全文未授權公開
    QR CODE