研究生: |
柯惠親 |
---|---|
論文名稱: |
西赤道太平洋所羅門海ODP 1115B岩芯之氧碳同位素地層記錄 Oxygen and Carbon Isotope Stratigraphic Records of ODP Hole 1115B from Solomon Sea, Western Equatorial Pacific |
指導教授: |
米泓生
Mii, Horng-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 85 |
中文關鍵詞: | ODP 1115岩芯 、西太平洋 、有孔蟲 、氧碳同位素 、第四紀 |
英文關鍵詞: | ODP 1115, Western Pacific, Foraminifera, Oxygen and carbon isotope, Quaternary |
論文種類: | 學術論文 |
相關次數: | 點閱:138 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
西太平洋暖池為全球重要的熱量及水氣來源,為了解西太平洋暖池較長時間尺度的變化,本研究選擇ODP180航次於西太平洋暖池南緣所羅門海域鑽取的1115B岩芯進行浮游性有孔蟲Globigerinoides sacculifer氧碳同位素分析,建立本區域2.2百萬年以來之古海洋記錄。本岩芯有孔蟲氧同位素記錄反覆出現冰期-間冰期的震盪變化,與Shackleton 等人(1990)發表ODP677底棲有孔蟲氧同位素相似,顯示其氧同位素值的變化主要受冰川消長控制。依據氧同位素值比對,輔以生物地層、古地磁反轉事件,以及亞澳微雷公墨出現層位作為年代參考點,建立了西赤道太平洋2.2百萬年以來氧同素地層第1階至第81階的記錄以及本岩芯之年代模式。岩芯的平均沉積速率為5.8cm/kyr,且呈現沉積速率減緩但碳酸鈣比例增加的趨勢,可能與Woodlark Basin的張裂活動所伴隨的海水深度逐漸增加有關。
本岩芯氧同位素年代地層從100kyr週期所過濾出來之濾波則顯現出隨時間變化而有不同之強度,從一百萬年左右開始,氧同位素的100kyr週期成為主要控制週期,且在五十萬年之後到現代,100kyr週期更加明顯,與前人所提到的MPR及MBE事件的特徵吻合,顯示本岩芯適合作為研究此兩事件的材料。
在本岩芯中觀測到δ13C數值自氧同位素第13階的極大值1.5‰下降至第12階的0.4‰,早於氧同位素地層第11階與12階之間的MBE事件的現象,與Wang等人(2003)於南海岩芯中觀測到結果相似,顯示全球碳儲存庫的擾動可能扮演全球氣候變遷的關鍵因素。但本岩芯碳同位素呈現的變化量,與Wang等人(2003)於南海觀測到的變化量並不完全相同,表示碳同位素記錄具有區域性的差異。
本岩芯與ODP806岩芯浮游有孔蟲G. sacculifer氧同位素差值自2.2Ma到1.7Ma逐漸減少,自1.7Ma到現代則相對平穩振盪,推測1.7Ma之後,暖池在垂直水體已發展成現代的模式。而本岩芯的氧同位素與岩芯ODP806氧同位素差值呈現明顯地軸傾斜角變化41ky,可能因地軸頃角較小時,南半球中緯度海環環流增強,導致暖水水團疊加至暖池地區,使暖池範圍變大。本研究之浮游有孔蟲氧同位素記錄與全球冰川體積發展有良好的對應,與暖池核心的岩芯ODP806浮游有孔蟲G. sacculifer氧同位素比較顯示水文狀況較暖池中心不穩定,暗示暖池南緣自上次冰期以來鹽度增加,而此效應可能來自蒸發量的增加或因ITCZ偏移所造成的降雨量減少。
We have performed 477 isotopic analyses on surface-dwelling foraminifers Globigerinoides sacculifer of Holes 1115B (9º11.382’S, 151º34.437’E;water depth 1149m) drilled from Solomon Sea during ODP Leg 180. 13C values range from 0.33‰ to 2.29‰ and 18O values range from -2.44‰ to -0.05‰. The chronology is based on correlation of the oxygen isotope record to ODP677, the magnetic stratigraphy, the last and first appearance datum of selected fossils, the age of the Australasian microtektite (793ka), and radioactive isotope dating. We have identified 81 marine oxygen isotope stages and have constructed a refined age model covering last 2.2 million years for equatorial western Pacific. The periodicities of eccentricity, obliquity, and precession are observed. The average sedimentation rate is 5.8 cm/kyr. Carbonate contents increase with decreasing sedimentation rates from 2.2 Ma to present. Changes in carbonate contents and sedimentation rates may be related the rifting of Woodlark Basin and associated increasing of water depth.
Both Mid-Brunhes Event and Mid-Pleistocene Revolution preceded by 1.1‰ decrease in 13C values are observed. This is consistent with previous study for South China Sea and may indicate that change in global carbon reservoir size was the major cause of the Pleistocene climatic transitions. However, the magnitude of the change in 13C values is different and may indicate the regional variability in carbon isotope.
Difference in 18O values between ODP 1115B (close to the southwest margin of modern Western Pacific Warm Pool) and ODP 806 (near the center of the WPWP) shows a periodicity of 41ky. Difference in 18O values between ODP 1115B and ODP 806 decreases from 2.2 Ma to 1.7 Ma and becomes stable since 1.7 Ma. Therefore, the modern WPWP hydrographic condition may have formed since 1.7 Ma. Difference in 18O values between glacial and interglacial of ODP 1115B was greater than those of ODP 806. This suggests the paleoceanographic condition may have changed due to fluctuation of southwestern margin of West Pacific Warm Pool and higher 18O values in ODP 1115B may indicate higher evaporation rate associated shift in ITCZ over Solomon Sea
參考文獻
Anderson T. F. and Arthur, M. A., 1983, Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, in sedimentary geology: SEPM Short Course, no.10, p.1–151
Anderson D. M. ,Prell WL, and Barratt N J, 1989, Estimates of sea surface temperature in the coral sea at the last glacial maximum: Paleoceanography, p.615–627
Aubry M.P., Berggren W.A., Van Couvering J.A., Rio D. and Castradori D., 1998, The Pliocene-Pleistocene boundary should remain at 1.81 Ma, GSA Today, 8(11), p.22.
Bard E., 1988, Correction of accelerator mass spectrometry 14C age measured on planktonic foraminifera: paleoceanographic implications. Paleoceanography, 3 (6), p.635–645
Bé A. W. H., Caron D. A., and Anderson O. R., 1981, Effects of Feeding Frequency on Life Processes of the Planktonic Foraminifer Globigerinoides-Sacculifer in Laboratory Culture: Journal of the Marine Biological Association of the United Kingdom, 61(1), p. 257–277
Becquey S. and Gersonde R., 2002, Past hydrographic and climatic changes in the Subantarctic zone of the South Atlantic- The Pleistocene record from ODP Site1090: Palaeogeography, Palaeoclimatology, Palaeoecology, 182(19), p.221–239
Berger W. H. and Wefer G., 2003, On the dynamics of the ice ages: Stage-11 paradox, mid-brunhes climate shift, and 100-ky cycle: Geophysical monograph, 137, p.41–59
Berger W. H., Killingley, J. S., and Vincent, E., 1978, Stable Isotopes in Deep-Sea Carbonates - Box Core Erdc-92: West Equatorial Pacific Oceanologica Acta, 1(2), p.203–216.
Berger W. H., Yasuda M. K., Bickert T., Wefer G., and Takayama T.1994, Quaternary time scale for the Ontong Java Plateau : Milankovitch template for Ocean Drilling Program site 806: Geology, 22, p.463–467.
Berger W. H, Bickert T., Schmidt H., and Wefer G., 1993 Quaternary oxygen isotope records of pelagic foraminifers: Site 806, Ontong Java Plateau : Proc. ODP Sci. Results, 130, p.381–395.
Berggren W. A., Hilgen F. J., Langereis C. G., Kent D. V., Obradovich J. D., Raffi I., Raymo M. E., and Shackleton N. J., 1995, Late Neogene chronology; new perspectives in high-resolution stratigraphy: GSA Bulletin 107(11), p.1272–1287
Broecker W. S., 1982, Glacial to interglacial changes in ocean chemistry :Oceanography,11(2), p.151–197
Brummer G. J. A., Hemleben C., and Spindler M., 1987, Ontogeny of Extant Spinose Planktonic-Foraminifera (Globigerinidae) - a Concept Exemplified by Globigerinoides sacculifer (Brady) and G. ruber (Dorbigny): Marine Micropaleontology, 12(4), p.357–381.
Cane, M. A. and Molnar P., 2001, Closing of Indonesian seaway as a precursor to east Arfrican aridification around 3-4 million years ago: Nature, 411,p.157–162
Chaisson W. P. and Leckie R. M., 1993, High-Resolution Neogene Planktonic Foraminifer Biostratigraphy Of Site 806, Ontong Java Plateau (Western Equatorial Pacific): Proceedings of the Ocean Drilling Program, Scientific Results, 130, p.137–178
Channell J. E. T. , Curtis J. H. and Flower B. P.,2004, The Matuyama–Brunhes boundary interval (500–900 ka) in North Atlantic drift sediments :Geophysical Journal International, 158(2), p.489–505
Clark P. U. and Pollard D., 1998 ,Origin of the middle Pleistocene transition by ice sheet erosion of regolith: Paleoceanography, 13 (1), p.129
Clement A. C., Cane M. A., and Seager R., 2001, An Orbitally Driven Tropical Source for Abrupt Climate Change: Journal of Climate,Article, p. 2369–2375
CLIMAP, 1976, The surface of the Ice-Age Earth: Science, 191, p.1131–1136
CLIMAP, 1981, Seasonal reconstructions of the Earth's surface at the last glacial maximum: Geological Society of America Map Chart,1, MC-36
Cresswell G. R., 2000, Coastal currents of northern Papua New Guinea, and the Sepik River outflow: Marine and Freshwater Research, 51, p.553–564
Dansgaard W., Johnsen S. J., Clausen H. B., Dahl-Jensen D., Gundestrup N.S.,Hammer C. U., Hvidberg C. S., Steffensen J. P., Sveinbjornsdottir A.E., Jouzel J., and Bond G., 1993, Evidence for general instability of past climate from a 250 kyr ice-core record: Nature, 364, p.218–220.
Donguy, J.R., 1987, Recent advances in the knowledge of the climatic variations in the tropical Pacific Ocean: Progress in Oceanography, 19, p.49–85
Elderfield H., Vautravers M., and Cooper M., 2002, The relationship between shell size and Mg/Ca, Sr/Ca, delta O-18, and delta C-13 of species of planktonic foraminifera: Geochemistry Geophysics Geosystems, 3(8), p.1
Emiliani C., 1955, Pleistocene temperature: The Journal of Geology, 63(6), p.538–578
Erez J. and Luz B., 1983, Experimental paleotemperature equation for planktonic foraminifera: Geochimica et Cosmochimica Acta, 47(6), p.1025–1031
Fairbanks R.G., Evans M.N., Rubenstone J.L., Mortlock R.A., Broad K., Moore M.D., and Charles C.D., 1997, Evaluating climate indices and their geochemical proxies measured in corals: Coral Reefs, 16, p.93–100
Garrison T., 1996, Oceanography: New York (Wadsworth).
George R. C., 2000, Coastal currents of northern Papua New Guinea,and the Sepik River outflow: Mar. Freshwater Res., 51, p.553–64
Goodliffe A. M., Taylor B., Martinez F., Hey R.N., Maeda K., and Ohno, K., 1997, Synchronous reorientation of the Woodlark Basin spreading center: Earth Planet, Sci. Lett, 146, p.233–242.
Graber K. K., Pollard E., Jonasson B., and Schulte E., 2002, Overview of Ocean Drilling Program Engineering Tools and Hardware: ODP Tech. Note, 31.
Hemleben C., Spindler M., and Anderson O. R., 1989, Modern planktonic foraminifera, New York: Springer-Verlag.
Heslop D., Dekkers M. J., Kruiver P. P., and van Oorschot I. H. M.,2002, Analysis of isothermal remanent magnetization acquisition curves using the expectation–maximization algorithm: Geophysical Journal International,148(1), p.58–64
Horng C. S. , Lee M. Y., Pälike H., Wei K. Y., Liang W. T., Iizuka Y., and Torii M., 2002, Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron: Earth Planets Space, 54, p.679–690
Herguera J. C. and Berger W. H., 1991, Paleoproductivity from benthic foraminifera abundance; glacial to postglacial change in the west-equatorial Pacific: Geology, 19(12), p.1173–1176
Hyodo M, Biswas D. K., Noda T., Tomioka N., Mishima T., Itota C., and Sato H., 2006, Millennia- to submillennia-scale features of the Matuyama-Brunhes geomagnetic polarity transition from Osaka Bay, southwestern Japan: Journal of Geophysical Research, 111, B02103,
Imbrie J., Berger A., Boyle E. A., Clemens S. C., Duffy A., Howard W. R., Kukla,G., Kutzbach J., Martinson D. G., McIntyre A., Mix A. C., Molfino B., Morley J. J., Peterson L. C., Pisias N. G., Prell W. L., Raymo M. E., Shackleton N. J., and Toggweiler J. R., 1993, On the structure and origin of major glaciation cycles 2: The 100,000-year cycle: Paleoceanography, 8, p.698–735.
Imbrie J., Hays J. D., Martinson D. G., McIntyre A., Mix A. C., Morley J. J., Pisias N. G., Prell W. L., and Shackleton N. J., 1984, The orbital theory of Pleistocene climate: Support from a revised chronology of the marine 18O record: Milankovitch and Climate: Understanding the Response to Astronomical Forcing, Proceedings of the NATO Advanced Research Workshop held 30 November - 4 December, 1982 in Palisades, NY. Edited by A. Berger, J. Imbrie, H. Hays, G. Kukla, and B. Saltzman. Dordrecht: D. Reidel Publishing, p.269–305
IPCC (Intergovernmental Panel on Climate Change), 2007, Fourth assessment report: Climate change, http://www.ipcc.ch.
Jansen J.H.F., Kuijpers A., and Troelstra S.R., 1986, A mid-Brunhes climatic event: Long-term changes in global atmosphere and ocean circulation: Science, 232, p.619–622.
Jian Z. M. ,Yu Y. ,Li B. H., Wang J., Zhang X., and Zhou Z., 2006, Phased evolution of the south-north hydrographic gradient in the South China Sea since the Middle Miocene: Palaeogeography, Palaeoclimatology, Palaeoecology, 230, p.251 – 263
Keeling C.D. and Whorf T. P., 2004, Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.
Kemp A. E. S., Pike J., Pearce R. B., and Lange C. B., 2000, The “fall dump”-a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux.: Deep Sea Research PartII:Topical Studies in Oceanography, 47(9-11), p.2129~2154
Kennett J. P. and Srinivasan M. S., 1983, Neogene planktonic foraminifera : a phylogenetic atlas. Stroudsburg, Pa. New York, NY: Hutchinson Ross.
Koutavas A., Lynch-Stieglitz J., Marchitto T. M., and Sachs J. P., 2002, El Nino–like pattern in Ice Age tropical Pacifi c sea surface temperature: Science, 297, p. 226–230
Takahashi K., Cortese G., Frost G.M., Gerbaudo S., Goodliffe A.M., Ishikawa N., Lackschewitz K.S., Perembo R.C.B., Resig J.M., Siesser W.G., Taylor B., and Testa M., 2001, Summary of revised age assignments for ODP Leg 180. In Huchon P.,Taylor B., and Klaus A. (Eds.), Proc. ODP, Sci. Results, 180, 1–12
Lea D. W., Pak D. K., and Spero H. J., 2000, Climate impact of the late Quaternary equatorial Pacific sea surface temperature variations: Science, 289, p.1719–1724
Lee M. Y. and Wei K. Y., 2000, Australasian microtektites in the South China Sea and the West Philippine Sea:Implications for age, size, and location of the impact crater: Meteoritics and Planetary Science, 35, p.1151–1155
Levitus S., 1982, Climatological atlas of the world ocean: National Oceanic and Atmospheric Administration, Rockville,MD.
Li B. H., Jian Z. M., Li Q. Y., Tian J., and Wang P. X., 2005, Paleoceanography of the South China Sea since the middle Miocene: evidence from planktonic foraminifera: Marine Micropaleontology, 54(1-2), p.49–62
Lindstrom E., Lukas R., Fine R., Firing E., Godfrey S., Meyers G., and Tsuchiya M., 1987, The Western Equatorial Pacific Ocean Circulation Study: Nature , 330, p.533–537
Liss P. S. and Merlivat L., 1986 , The Role of Air-Sea Exchange in Geochemical Cycling: D. Reidel, Hingham, MA, p.113–129.
Lohmann G. P., 1995, A model of variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography, 10(3), p.445–457.
Martinez J. I., Deckker P. D., and Chivas A. R.,1997, New estimates for salinity changes inthe Western Pacific Warm Pool during the LastGlacial Maximum: Oxygen-isotope evidence,Mar. Micropaleontol., 32, p.311–340
McGregor H. V., and Gagan M. K., 2004,Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño–Southern Oscillation: Geophysical Research Letters, 31, L11204
McGregor H.V., Gagan M.K., McCulloch M.T., Hodge E., and Mortimer G., 2008, Mid-Holocene variability in the marine 14C reservoir age for northern coastal Papua New Guinea: Quaternary Geochronology, 3, p.213–225
McAlpine J.R., Keig G., and Falls R., 1983, Climate of Papua New Guinea. :Australian National University Press, Canberra
Mix, A.C., 1989, Productivity of the Pleistocene Atlantic ocean estimated from foraminiferal species: implications for paleo-CO2 : Nature, 337, p.541–544
Mudelsee M. and Schulz M., 1997,The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka: Earth and Planetary Science Letters, 151(1-2), p.117–123
Muller R. A. and MacDonald G. J., 1995, Glacial cycles and orbital inclination: Nature, 377, p.107–108
Neftel A., Moor E., Oeschger H., and Stauffer B.,1985, Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries: Nature, 315, p.45–47
Nilsson T., 1983, The Pleistocene-geology and life in the quternary ice age . London: D. Reidel Publishing company.
Oehler D. Z., Schopf J. W., and Kvenvolden K. A.,1972, Carbon Isotopic Studies of Organic Matter in Precambrian Rocks: Science, 175, (4027), p.1246–1248
Oglesby R. J. and Saltzman B.,1990, Sensitivity of the equilibrium surface temperature of a GCM to systematic changes in atmospheric carbon dioxide: Geophysical Research Letters, 17(8), p.1089–1092.
Oppo D. W. and Fairbanks R. G., 1989, Carbon Isotope Ccomposition of Tropical Surface Water During the Past 22,000 Years: Paleoceanography, 4(4), p.333–351.
Peterson L. C., Haug G. H., Hughen K. A., and Rohl U., 2000, Rapid Changes in the Hydrologic Cycle of the Tropical Atlantic During the Last Glacial: Science, 290(5498), p.1947–1951
Pillans B., 1991, New Zealand Quaternary Stratigraphy: An Overview. : Quaternary Science Review, 10, p.405–418
Pisias N. G., Rea D. K., 1988, Late Pleistocene paleoclimatology of the central equatorial Pacific: Sea surface response to the southeast trade winds: Paleoceanography, 3(1), p.21–37
Prokopenko A.A., Williams D.F., Kuzmin M.I., Karabanov E.B., Khursevich G.K., and Peck J.A., 2002, Muted climate variations in continental Siberia during the mid-Pleistocene epoch: Nature., 418(6893), p.65–68
Raffi I.,2002,Revision of the early-middle pleistocene calcareous nannofossil biochronology (1.75-0.85 Ma)Marine Micropaleontology, 45(1), May 2002 , p. 25–55
Raffi I., Backman J., Fornaciari E., Palike H., Rio D., Lourens L., and Hilgen F., 2006, A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years: Quaternary Science Reviews , 25 (23-24), p.3113–3137
Raymo M. E., Oppo D. W., and Curry W., 1997, The Mid-Pleistocene climate transition: A deep sea ca bon isotopic perspective: Paleoceanography , 12 (4),p.546–559
Rossignol-Strick M., Paterne M., Bassinot F. C., Emeis K. C., and Delange G. J., 1998, An unusual mid-Pleistocene monsoon period over Africa and Asia: Nature ,392(6673), p.269–272
Ruddiman W. F., Raymo M. E. , Martinson D. G., Clement B. M., and Backman J., 1989, Pleistocene Evolution : North Hemisphere Ice sheet and North Atlantic Ocean: Paleoceanography, 4 (4), p.353–412
Ruddiman W. F., 2001, Earth's Climate Past and Future, New York: WH Freeman, p.8–9.
Sarnthein M., Winn K., Duplessy J. C., and Fontugne M. R .,1988,Global variations of surface ocean productivity in low and mid latitudes: Influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years: Paleoceanography, 3(3), p.361–39
Schmieder F., von Dobeneck T. , and Bleil U., 2000, The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean : initiation , interim state and terminal event: Earth and Planetary Science Letters , 179, p.539–549.
Schneider D.A., Kent D. V., and Mello G. A., 1992, A detailed chronology of the Australasian impact event: The Brunhes/Matuyama gromagnetic polarity reversal, and global climatic change: Earth Planet Sci. Lett., 111, p.395–405.
Schrag D.P., HaMPR G., and Murray D.W., 1996, Pore fluid constraints on the temperature and isotopic composition of the glacial ocean: Science, 272, p.1930–1932.
Shackleton N. J., 1967, Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed: Nature, 215, p.15–17
Shackleton N. J. and Opdyke N. D., 1973. Oxygen isotope and paleomagnetic stratigraphy of Equatorial Pacific core V28-238: Oxygen isotope temperature and ice volumes on a 105 year and 106 year scale: Quaternary Research, 3, p.39–55
Shackleton N. J., Berger A., and Peltier W. R., 1990, An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677: Trans. R. Soc. Edinburgh Earth Sci., 81, p.251–261.
Shi Y. F., Zhen B. , Li S., and Ye B. S., 1995 , Studies on altitude and climatic environment in the middle and east parts of Tibetan Plateau during Quaternary Maximum Glaciation: Journal of Glaciology and Geocryology, 17(2), p.97–112.
Shi Y. F., Li J., Li B. Y., Yao T. D., Wang S. M., and Li S. J.,1999 , Uplift of the Qinghai-Xizang ( Tibetan) Plateau and East Asia environmental change during late Cenozoic: Acta Geographica Sinica, 54, p.10–21
Smith T.M., Richard W. R., Thomas C. P., and Lawrimore J., 2008, Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006): Journal of Climate,21(10), p.2283–2296 . http://www.cdc.noaa.gov/cdc/data.noaa.ersst.html
Spero H. J., 1992, Do planktic foraminifera accurately record shifts in the carbon isotopic composition of sea water ΣCO2? :Mar. Micropaleontol, 19, p.275–285
Spero H. J., Bijima J., Lea D., and Bemis B.E., 1997, Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes: Nature, 390(4), p.497–500.
Spero H. J. and Lea D. W., 1993, Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: Results from laboratory experiments. Mar. Micropaleontol, 22, p.221–234
Spero H. J., Mielke K. M., Kalve E. M., Lea D. W., and Pak D. K., 2003, Multispecies approach to reconstructing eastern equatorial Pacific thermocline hydrography during the past 360 kyr: Paleoceanography, 18(1)
Taylor B., Huchon P., and Klaus A., 1999, Proc. ODP, Init. Repts., 180 [CD-ROM]. Available from:Ocean Drilling Program, Texas A&M University, College Station, TX 77845-9547, U.S.A.
Thompson P. R., Bé A. W. H., Duplessy J. C., and Shackleton N. J., 1979, Disappearance of pink-pigmented Globigerinoides ruber at 120,000 yr BP in the Indian and Pacific Oceans: Nature, 280, p.554–558.
Thunell R., Anderson D., Gellar D., and Miao Q., 1994, Sea-surface temperature estimates for the tropical western pacific during the last glaciation and their implications for the Pacific warm pool: Quaternary Research, 41, p.255–264.
Tsuchiya M., Lukas R., Fine R. A., Firing E., and Lindstrom E., 1989, Source waters of the Pacific Equatorial Undercurrent: Progress in Oceanography, 23, p.101–147.
Turk D., McPhaden M. J., Busalacchi A. J., and Lewis M. R., 2001, Remotely sensed biological production in the equatorial Pacific. :Science, 293(5229), p.471–474
Wang P., Tian J., Cheng X., Liu C., and Xu J., 2003, Carbon reservoir changes preceded major ice-sheet expansion at the mid-Brunhes event: Geology, 31 (3), p.239–242.
Webster P. J. and Lukas R., 1992, TOGA COARE: The Coupled Ocean-Atmosphere Response Experiment: Bulletin American Meteorological Society, 73 (9), p.1377–1416.
Wei W., 1993, Calibration of Upper Pliocene - Lower Pleistocene Nannofossil Events with Oxygen Isotope Stratigraphy: Paleoceanography, 8 (1), p.85–99.
Weissel J. K., Taylor B., and Karner G. D., 1982, The opening of the Woodlark basin, subduction of the Woodlark spreading system, and the evolution of northern Melanesia since mid-Pliocene time: Tectonophysics, 87, p.253–277.
Williams M. J. M., Warner R. C., and Budd W. F., 1998, The effects of ocean warming on melting and ocean circulation under the Amery Ice Shelf, East Antarctica: Annals of Glaciology, 27, p.75–80.
Wu G. P. and Berger W. H., 1991, Pleistocene d18O records from Ontong-Java Plateau: Effects of winnowing and dissolution. Marine Geology, 96, 193–209.
Wyrtki K.,1981, An Estimate of Equatorial Upwelling in the Pacific: American Meteorological Society, 11,p.1205–1214
Xiao J. and An Z., 1999, Three large shifts in East Asian monsoon circulation indicated by loess-paleosol sequences in China and late Cenozoic deposits in Japan: Palaeogeography, Palaeoclimatology, Palaeoecology, 154 (3), p.179–189.
Yan X. H., Ho C. R., Zheng Q., and Klemas V., 1992, Temperature and size variabilities of the Western Pacific Warm Pool: Science, 258 (5088), p.1643–1645
莊智凱 (2008), 西赤道太平洋所羅門海ODP1115B站位上部上新統至更新統鈣質超微化石生物地層硏究, 碩士論文, 台灣大學, 72頁
陳致維 (2003), 西太平洋暖池晚第四紀浮游有孔蟲氧同位素地層紀錄,碩士論文, 台灣大學, 60頁
陳貞吟 (2006), 以”異時發生觀點探討浮游有孔蟲Globigerinoides fistulosus的絕滅, 學士論文, 台灣大學, 17頁
陳貞吟 (2008), 浮游有孔蟲Globigerinoides fistulosus 絕滅與熱帶太平洋表水水文變化關係,碩士論文, 台灣大學, 52頁
羅立 (2007), 七十四萬年來地軸傾角與西太平洋暖池擴張-收縮史,碩士論文, 台灣大學, 64頁