簡易檢索 / 詳目顯示

研究生: 蔡東育
Tsai, Dong-Yu
論文名稱: 細菌表面顯示金屬結合胜肽作為對硝基苯胺還原反應之生物催化劑與發展貴重金屬離子的 FRET 生物感測器
Bacterial surface display of metal binding peptides as whole-cell biocatalysts for 4-nitroaniline reduction and a FRET-based biosensor for detection of noble metal ions
指導教授: 葉怡均
Yeh, Yi-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 91
中文關鍵詞: 表面顯示技術金和鉑奈米粒子生物催化劑對硝基苯胺還原反應螢光共振能量轉移青色螢光蛋白黃色螢光蛋白CueR 轉錄調節蛋白
英文關鍵詞: surface display, IgA protease, gold and platinum nanoparticles, whole-cell biocatalyst, 4-nitroaniline reduction, copper transcriptional regulator CueR
DOI URL: https://doi.org/10.6345/NTNU202203830
論文種類: 學術論文
相關次數: 點閱:158下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用表面顯示技術以源自淋病奈瑟菌 (Neisseria gonorrheaea) 的IgA protease 作為攜帶蛋白,將金屬結合胜肽表現於Escherichia coli和Ralstonia eutropha的外膜上,回收與合成金和鉑奈米粒子。研究結果顯示,膜外表現金屬結合胜肽的細菌不僅能夠還原金和鉑離子,還能將奈米粒子透過金屬結合胜肽表現在細菌表面上。接著我們以吸附金屬奈米粒子的細菌作為生物催化劑,成功地催化對硝基苯胺的還原反應。此外,我們以蛋白質工程的方式設計出對一價銅、一價銀和三價金離子具有選擇性的螢光共振能量轉移蛋白質感測器。以感測蛋白A-66 (CFP-GGSGGS-CueR-GGSGGS-YFP),進行試管內與活體細胞之金屬離子監測應用。

    A surface display system was used for green synthesis of gold and platinum nanoparticles via an autotranspoter protein, immunoglobulin A protease (IgA protease) from Neisseria gonorrheae as carrier proteins. Metal binding peptides were expressed on the outer membranes of Escherichia coli and Ralstonia eutropha to recover metal ions. The results of this study showed that cells expressing metal binding peptides could synthesize and display the nanoparticles on the cell surfaces, simultaneously. Next, the metal nanoparticle-coated microorganisms were used as whole-cell biocatalysts for the reduction of 4-nitroaniline. Besides, we designed a protein-based fluorescence resonance energy transfer (FRET) reporter for detection of copper (I), silver (I), and gold (III) ions. The A-66 reporter (CFP-GGSGGS-CueR-GGSGGS-YFP) was selected for in vitro and in vivo metal ions detection.

    誌謝 i 中文摘要 ii Abstract iii Contents iv List of Figures vii List of Tables xiii Part I 14 Chapter 1 Introduction 15 1.1 金屬奈米材料的催化 15 1.2 金屬奈米粒子生物合成 17 1.3 微生物細胞表面顯示技術 19 1.4 研究動機與目的 22 Chapter 2 Materials and Experimental Methods 23 2.1 實驗儀器 23 2.2 實驗藥品 24 2.3 實驗方法 25 2.3.1 質體設計 25 2.3.2 利用螢光顯微鏡分析紅色螢光蛋白的位置 28 2.3.3 金奈米粒子的合成 28 2.3.4 比較多種表面顯示系統 28 2.3.5 金與鉑奈米粒子生物合成 29 2.3.6 對硝基苯胺的還原反應 29 Chapter 3 Results and Discussions 31 3.1 建構微生物表面顯示系統 31 3.2 比較表面顯示系統之成效 33 3.3 利用微生物合成金屬奈米粒子 35 3.4 全細胞 (whole-cell) 生物催化對硝基苯胺的還原反應 38 Chapter 4 Conclusions 44 Part II 45 Chapter 1 Introduction 46 1.1 微生物金屬調控 46 1.2 MerR-type的銅離子調節蛋白 (transcriptional regulator) 47 1.3 螢光蛋白之應用 49 1.4 研究動機與目標 51 Chapter 2 Materials and Experimental Methods 53 2.1 實驗儀器 53 2.2 實驗藥品 54 2.3 實驗方法 57 2.3.1 螢光蛋白感測器的設計 57 2.3.2 螢光蛋白感測器純化 (protein purification) 59 2.3.3 十二烷基硫酸鈉聚丙烯醯胺凝膠電泳 (Sodium dodecyl sulfate polyacrylamide gel electrophore, SDS-PAGE) 59 2.3.4 螢光蛋白感測器濃度測定 (Bradford protein assay) 60 2.3.5 篩選螢光蛋白與CueR (S) 間不同鏈長設計的螢光蛋白感測器 60 2.3.6 金屬選擇性 (selectivity) 61 2.3.7 金屬靈敏性 (Sensitivity) 61 2.3.8 金屬干擾性 (Interference) 61 2.3.9 細菌體內偵測實驗 (in vivo) 62 Chapter 3 Results and Discussion 63 3.1 篩選以螢光共振能量轉移所建立的 (FRET-based) 螢光蛋白感測器 63 3.2 螢光蛋白感測器選擇性探討 65 3.3 螢光蛋白感測器其螢光強度與金、銀、銅離子濃度關係 66 3.4 螢光蛋白感測時金屬離子間的干擾性 68 3.5 螢光蛋白感測器在E. coli中對銅離子的感測情形 69 Chapter 4 Conclusions 71 Reference 72 Appendix A Primers, Plasmids and Strains 74 Appendix B EDS spectra 88

    1. 蔡宜蓉. 微生物細胞表面顯示系統及合成多樣化金屬奈米粒子的開發與應用. 國立臺灣師範大學, 台北市, 2014.
    2. Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K., Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions. Angewandte Chemie (International ed. in English) 2012, 51 (1), 136-9.
    3. Ghosh, S.; Raj, C. R., Shape-controlled synthesis of Pt nanostructures and evaluation of catalytic and electrocatalytic performance. Catalysis Science & Technology 2013, 3 (4), 1078-1085.
    4. Makarov, V. V.; Love, A. J.; Sinitsyna, O. V.; Makarova, S. S.; Yaminsky, I. V.; Taliansky, M. E.; Kalinina, N. O., "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 2014, 6 (1), 35-44.
    5. Park, T. J.; Lee, S. Y.; Heo, N. S.; Seo, T. S., In vivo synthesis of diverse metal nanoparticles by recombinant Escherichia coli. Angewandte Chemie (International ed. in English) 2010, 49 (39), 7019-24.
    6. Chiu, C. Y.; Li, Y.; Ruan, L.; Ye, X.; Murray, C. B.; Huang, Y., Platinum nanocrystals selectively shaped using facet-specific peptide sequences. Nature chemistry 2011, 3 (5), 393-9.
    7. Lee, S. Y.; Choi, J. H.; Xu, Z., Microbial cell-surface display. Trends in biotechnology 2003, 21 (1), 45-52.
    8. Liu, Q.; Yuan, F.; Liang, Y.; Li, Z., Cadmium adsorption by E. coli with surface displayed CadR. RSC Advances 2015, 5 (21), 16089-16092.
    9. Matano, Y.; Hasunuma, T.; Kondo, A., Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Bioresource technology 2012, 108, 128-33.
    10. Tozakidis, I. E.; Sichwart, S.; Jose, J., Going beyond E. coli: autotransporter based surface display on alternative host organisms. New Biotechnology 2015, 32 (6), 644-50.
    11. Tsai, D.-Y.; Tsai, Y.-J.; Yen, C.-H.; Ouyang, C.-Y.; Yeh, Y.-C., Bacterial surface display of metal binding peptides as whole-cell biocatalysts for 4-nitroaniline reduction. RSC Advances 2015, 5 (107), 87998-88001.
    12. Yeh, Y. C.; Muller, J.; Bi, C.; Hillson, N. J.; Beller, H. R.; Chhabra, S. R.; Singer, S. W., Functionalizing bacterial cell surfaces with a phage protein. Chemical communications (Cambridge, England) 2013, 49 (9), 910-2.
    13. Valls, M.; de Lorenzo, V.; Gonzalez-Duarte, R.; Atrian, S., Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. Journal of inorganic biochemistry 2000, 79 (1-4), 219-23.
    14. Lin, I. W.-S.; Lok, C.-N.; Che, C.-M., Biosynthesis of silver nanoparticles from silver(I) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chemical science 2014, 5 (8), 3144-3150.
    15. Jo, J. H.; Han, C. W.; Kim, S. H.; Kwon, H. J.; Lee, H. H., Surface display expression of Bacillus licheniformis lipase in Escherichia coli using Lpp'OmpA chimera. Journal of microbiology (Seoul, Korea) 2014, 52 (10), 856-62.
    16. Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241 (105), 20-22.
    17. Jian, J. W.; Huang, C. C., Colorimetric detection of DNA by modulation of thrombin activity on gold nanoparticles. Chemistry (Weinheim an der Bergstrasse, Germany) 2011, 17 (8), 2374-80.
    18. Huang, Y.; Chiang, C.-Y.; Lee, S. K.; Gao, Y.; Hu, E. L.; Yoreo, J. D.; Belcher, A. M., Programmable Assembly of Nanoarchitectures Using Genetically Engineered Viruses. Nano Letters 2005, 5 (7), 1429-1434.
    19. Singh, H. P.; Sharma, S.; Sharma, S. K.; Sharma, R. K., Biogenic synthesis of metal nanocatalysts using Mimosa pudica leaves for efficient reduction of aromatic nitrocompounds. RSC Advances 2014, 4 (71), 37816-37825.
    20. Giedroc, D. P.; Arunkumar, A. I., Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton transactions (Cambridge, England : 2003) 2007, (29), 3107-20.
    21. Changela, A.; Chen, K.; Xue, Y.; Holschen, J.; Outten, C. E.; O'Halloran, T. V.; Mondragon, A., Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science (New York, N.Y.) 2003, 301 (5638), 1383-7.
    22. Philips, S. J.; Canalizo-Hernandez, M.; Yildirim, I.; Schatz, G. C.; Mondragon, A.; O'Halloran, T. V., TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science (New York, N.Y.) 2015, 349 (6250), 877-81.
    23. Chudakov, D. M.; Lukyanov, S.; Lukyanov, K. A., Fluorescent proteins as a toolkit for in vivo imaging. Trends in biotechnology 2005, 23 (12), 605-13.
    24. Broussard, J. A.; Rappaz, B.; Webb, D. J.; Brown, C. M., Fluorescence resonance energy transfer microscopy as demonstrated by measuring the activation of the serine/threonine kinase Akt. Nat. Protocols 2013, 8 (2), 265-281.
    25. Chiu, T. Y.; Yang, D. M., Intracellular Pb2+ content monitoring using a protein-based Pb2+ indicator. Toxicological sciences : an official journal of the Society of Toxicology 2012, 126 (2), 436-45.
    26. Evers, T. H.; van Dongen, E. M.; Faesen, A. C.; Meijer, E. W.; Merkx, M., Quantitative understanding of the energy transfer between fluorescent proteins connected via flexible peptide linkers. Biochemistry 2006, 45 (44), 13183-92.
    27. Fonin, A. V.; Stepanenko, O. V.; Povarova, O. I.; Volova, C. A.; Philippova, E. M.; Bublikov, G. S.; Kuznetsova, I. M.; Demchenko, A. P.; Turoverov, K. K., Spectral characteristics of the mutant form GGBP/H152C of D-glucose/D-galactose-binding protein labeled with fluorescent dye BADAN: influence of external factors. PeerJ 2014, 2, e275.
    28. Rensing, C.; Grass, G., Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS microbiology reviews 2003, 27 (2-3), 197-213.
    29. Rademacher, C.; Masepohl, B., Copper-responsive gene regulation in bacteria. Microbiology (Reading, England) 2012, 158 (Pt 10), 2451-64.

    下載圖示
    QR CODE