簡易檢索 / 詳目顯示

研究生: 張宏偉
Hong Wei Chang
論文名稱: 雷射光致奈米記錄點於鍺銻碲相變化材料之特性研究
Characteristic of laser-induced nano recording marks on Ge2Sb2Te5 phase-change thin film
指導教授: 蔡定平
Tsai, Din-Ping
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 76
中文關鍵詞: 相變化材料雷射光致記錄點加熱器表面缺陷表面形貌散熱性
英文關鍵詞: phase-change material, laser-induced recording mark, heater, surface defect, surface topography, temperature decay rate
論文種類: 學術論文
相關次數: 點閱:132下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用雷射光泵探系統(pump and probe laser system)於不同厚度之Ge2Sb2Te5相變化薄膜上寫下記錄點矩陣,欲分析在改變膜層厚度條件下,記錄點之光學反射訊號及表面形貌的改變。實驗中經由以下幾點進行分析:(a)、雷射光探測系統,可藉由光學反射強度進而了解記錄點不同相態(phase state)之改變關係;(b)、透過原子力顯微儀(atomic force microscopy),可知記錄點表面的形貌(surface topography)起伏與變化,藉此了解雷射光束對相變化材料造成之物理形變為何;(c)、透過導電式原子力顯微儀(conductive-atomic force microscopy),可知記錄點表面之導電性強弱,藉以分析不同相態之記錄點電性為何;(d)、透過歐傑能譜(Auger electron spectrum)分析,可對樣品表面進行元素成分分析,探討實驗中之表面氧化(surface oxidized)及不連續缺陷區域(defect of surface discontinuity)議題;(e)、透過加熱平台(heating stage),在加熱下進行原子力顯微儀掃描,可得不同溫度下,寫下記錄點表面變化情形及相變化薄膜電性之改變。

    In this study, we first investigate the optical response on phase-change material Ge2Sb2Te5 with an optical pump-probe system (Static tester, Optica co.). From the CCD images and reflectance of recorded mark matrix, the process of recording mark formation and the reflectance change can be analyzed and categorized. An Auger electron spectrum (VG Scientific,Microlab 350.) is also applied to analyze the component and oxidization of different types of recording marks.
    For further understanding of the phase-change state of recording marks, we use a conductive atomic force microscope (C-AFM) with a heating stage (Asylum Research co.) to investigate the topographic change and the surface current distribution of recording marks on phase-change material at different temperature. From the experimental results, the process and the phase transition of recording marks on phase-change material Ge2Sb2Te5 can be obtained to have the further usage in ultra-high density recording.

    目錄 中文摘要……………………………………………………………..Ⅰ 英文摘要……………………………………………………………..Ⅱ 目錄…………………………………………………………………..Ⅲ 圖目錄………………………………………………………………..Ⅳ 致謝…………………………………………………………………..Ⅴ 第一章 緒論……………………………………………………….....p.1 1-1. 光碟記錄媒體的發展與其重要性…………………………......p.1 1-2. 相變化薄膜材料之性質與應用………..……………………....p.2 1-3. 相變化材料之相態轉變特性…………………………………..p.6 1-4. 鍺銻碲(Ge2Sb2Te5)相變化材料之結構與特性………………...p.9 第二章 實驗儀器架構……………………………………………...p.13 2-1. 奈米薄膜之製備.………………………………………………p.13 2-2. 雷射光泵探系統(靜態測試儀)………………………………..p.16 2-2-1. 靜態測試儀光路系統.........................................................p.17 2-2-2. 重要光學元件.....................................................................p.18 2-3. 原子力顯微儀(AFM)及導電式原子力顯微儀(C-AFM)..........p.21 2-3-1. 原子力顯微儀之工作模式.................................................p.22 2-3-2. 導電式原子力顯微儀.........................................................p.23 Ⅲ 第三章 實驗結果與討論分析...........................................................p.26 3-1. 相變化記錄層薄膜之光學性質...……………………………..p.26 3-2. 相變化材料膜厚對雷射光束寫下記錄點之影響…………….p.28 3-2-1. 動機與樣品結構及寫入參數……………………………..p.28 3-2-2. 光學反射影像之實驗結果………………………………..p.29 3-2-3. 原子力顯微儀之實驗結果………………………………..p.31 3-2-4. 比較記錄點寫入程度與改變相變化材料膜厚之關係…..p.34 3-3. 探討不同性質之雷射寫入參數,其形成記錄點之光學性質與表面形貌………………………………………………………….p.36 3-3-1. 光學反射訊號之實驗結果………………………………..p.37 3-3-2. 原子力顯微儀之實驗結果………………………………..p.40 3-4. 不同溫度下相變化薄膜對雷射寫下之記錄點其表面形貌的改變…..…………………………………………………………...p.45 3-5. 導電式原子力顯微儀(C-AFM)觀察不同溫度下覆寫式商業光碟片其記錄點隨溫度改變圖…………………………………….p.53 3-6. 探討表面不連續缺陷對導電式原子力顯微儀之影響……….p.59 第四章 結論………………………………………………………...p.69 4-1. 改變相變化記錄層厚度對記錄點形成之影響……………….p.69 4-2. 雷射功率及作用時間對相變化記錄點之光學及表面形貌的影響……………………………………………………………….p.69 4-3. 改變溫度對相變化薄膜記錄點之影響……………………….p.70 4-4. 導電式原子力顯微儀之應用限制…………………………….p.71 參考文獻…………………………………………………………….p.72

    [1]. 蔡定平,林威志,“近場光碟片最近的發展”,光訊,第八十七期,14-20頁 (2001).

    [2]. 劉威志,林威志,蔡定平,“高密度近場光碟片”,物理,第二十三卷第二期 ,335-345頁 (2001).

    [3]. S. R. Ovshinsky, “Reversible Electrical Switching Phenomena in Disordered Structures,” Phys. Rev. Lett. Vol.21, 1450 (1968).

    [4]. F. Jedema, “Designing optical Media of the future,” News&Reviews, Nature Materials, Vol. 6, February (2007).

    [5]. 徐豪汶,“鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究”,碩士論文,中央大學物理研究所 (2006).

    [6]. R. Kojima, S. Okabayashi, T. Kashihara, k. Horai, and N. Yamada, “Potential of Ge-Sb-Te phase change optical disks with high speedoverwrite ability,” Optical Data Storage Topical Meeting, ODS. Conference Digest (1997).

    [7]. T. Ohta, “Phase-Change Optical Memory Promotes the DVD Optical Disk,” J. Opt. Adv. Mat. Vol. 3, 609 (2001).

    [8]. S. K. Lin, I. C. Lin, and D. P. Tsai, “Characterization of nano recorded marks at different writing strategies on phase-change recording layer of optical disks,” Optics Express, Vol. 14, Issue 10, 4452-4458 (2006).

    [9]. Y. Yang, C. T. Li, and S. M. Sadeghipour, “Thermal characterization of dielectric and phase change materials for the optical recording applications,” Journal of Applied Physics, Vol. 100, 024102 (2006).

    [10]. M. Born, E. Wolf. Principles of optics, Oxford. Pergamon (1959).

    [11]. T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, “Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase,” Thin Solid Films, Vol. 370, 258-261 (2000).

    [12]. N. K. Abrikosov and G. T. Danilova-dobryakova, and I. A. Nauk, “Phase-change materials: Designing optical media of the future,” Nature Materials, Vol. 6, 90-91 (2007).

    [13]. N. Yamada, E. Ohno, K. Nishiuchi, M. Takao, and N. Akahira, “Rapid-Phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,” J. J. Appl. Phys. Vol. 69, 2849 (1991).

    [14]. T. Matsunaga, N. Yamada, and Y. Kubot, “Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe-Sb2Te3 pseudo-binary systems,” Acta Cryst. B. 60, 685 (2004).

    [15]. N. Yamada, T. Matsunaga, “Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory,” J. J. Appl. Phys. Vol. 88, 7020 (2000).
    [16]. T. Matsunaga, and N. Yamada, “Crystallographic studies on high-speed phase-change materials used for rewritable optical recording disks,” J. J. Appl. Phys. Vol. 43, 4704 (2004).

    [17]. Z. Sun, J. Zhou, and R. Ahuja, “Unique melting behavior in phase-change materials for rewritable data storage,” PRL 98, 05505 (2007).

    [18]. C. Peng and M. Mansuripur, “Measurement of the thermal conductivity of erasable phase-change optical recording media,” Optical Society of America Appl. Opt. Vol. 39, 2347-2352 (2000).

    [19]. P. K. Khulbe, “Crystallization behavior of as-deposited, melt quenched, and primed amorphous states of Ge2Sb2.3Te5 films,” J. J. Appl. Phys. Vol. 88, 3926 (2006).

    [20]. W. K. Njoroge, “Density changes upon crystallization of Ge2Sb2.04Te4.74 films,” J. Vac. Sci. Technol. A20(1), 230 (2002).

    [21]. R. Zallen, “Improved Pinning Center Morphology in HTS with Order-of-Magnitude Increase in Jc and Bpin Compared to Columnar Pinning,” The Physics of Amorphous Solids (John Wiley and Sons, New York) (1983).

    [22]. V. G. Karpov, Y. A. Kryukov, S. D. Savransky and I. V. Karpov, “Nucleation switching in phase change memory,” Applied Physics Letters Vol. 90, 123504 (2007).
    [23]. M. O. Thompson, G. J. Galvin, and J. W. Mayer, “Melting temperature and explosive crystallization of amorphous silicon during pulsed laser irradiation,” Physical Review Letters, Vol. 25, number23, June (1984).

    [24]. C. Peng, L. Cheng, and M. Mansuripur, “Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media,” American Institute of Physics, s0021-8979(97)07821-3 (1997).

    [25]. T. Tadokoro, T. Saiki, K. Yusu and K. Ichihara, “High-resolutin examination of recording marks in phase-change media using a scanning near-field optical microscope,” J. J. Appl. Phys. Vol. 39, 3599-3602, part1. No. 6a, June (2000).

    [26]. T. Luoh, J. S. Bow, A. Peng, S. Y. Tsai, and M. R. Tseng, “Observation of recording marks in phase-change media using scanning electron microscopy channeling contrast image,” J. J. Appl. Phys. Vol. 38, 1698-1700, part1, No. 3B, March (1999).

    [27]. V. A. Kolobov, P. Fons, A. I. Frenkel, A. Ankudinov, J. Tominaga, and T. Uruga, “Understanding the phase-change mechanism of rewritable optical media,” Nat. Mater. Vol. 3, 703 (2004).

    [28]. 高宗聖,“氧化鋅複合材料奈米薄膜之近場超解析結構”,碩士論文,台灣大學物理學研究所,(2004).

    [29]. M. Mansuripur, J. K. Erwin, W. Bletscher, P. khulbe, K. Sadeghi, X. Xun, A. Gupta, and S. B. Mendes, “Static tester for characterization of phase-change, dye-polymer, and magneto-optical media for optical data storage,” Appl. Opt. Vol. 38, 7095 (1999).

    [30]. P. K. Khulbe, T. Hurst, M. Horie, and M. Mansuripur, “Crystallization Behavior of Ge-Doped Eutectic Sb70Te30 Films in Optical Disks,” Appl. Opt. Vol. 41, 6220 (2002).

    QR CODE