簡易檢索 / 詳目顯示

研究生: 徐榕蓉
Jung Jung Hsu
論文名稱: 含有反式二苯乙烯發色團的雙偶極有機材料應用於染料敏化太陽能電池
Dipolar Organic Materials with trans-Stilbene Chromophore for Dye-Sensitized Solar Cells
指導教授: 周大新
Chow, Ta-Hsin
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 122
中文關鍵詞: 反式二苯乙烯染料敏化太陽能電池間位共軛
英文關鍵詞: trans-Stilbene, Dye-Sensitized Solar Cells, meta Conjugation
論文種類: 學術論文
相關次數: 點閱:125下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們設計並合成一系列含有反式二苯乙烯為架橋結構的分子,並分別以對位或間位共軛為連接組成共軛系統,與兩端的電子予體及電子受體形成一雙偶極染料分子,應用於染料敏化太陽能電池。理想的架橋應該是要能作為促進電子從電子予體傳遞至受體時的管道,並且抑制反方向的電子再合併。為了瞭解對位及間位共軛在結構上不同的效應,我們討論其光物理性質和元件效率;另外也將離子性液體電解質和改變染料浸泡溶劑作為製備元件的變因,觀察其特性。
    由於間位共軛的電子耦合本質上就相較於對位共軛弱,然而近來發現在電子激發態時它們是不相上下的,尤其間位共軛較長的激發子生命期使得電子再合併不易,有利於提升元件效率;然而因為間位共軛使得分子共軛系統較短,造成光電流形成的低落,仍然是影響元件效率的主因,並且還有待改善,可以從調整分子結構來著手。在我們實驗的結果顯示,化合物(PP)展現了最好的光電轉換效率5.34%;含有間位共軛的化合物(PPM)則展現了不錯的2.89%效率。

    A series of trans-stilbene moiety dyes were designed and synthesized based on the donor-bridge-acceptor (D-B-A) system for the application of dye-sensitized solar cells. Besides typically para-conjugated, the meta-bridge dyes were developed in order to examine the difference of
    structural effect. The ideal bridge would promote electron transfer from donor to acceptor while resisting electron transfer in the reverse direction and thus suppressing charge recombination. In addition the ionic liquids
    electrolytes and different dye baths have been used to investigate the performance and the characteristics.
    It is inherently that electronic coupling through a meta-bridge is weaker than through a para one, however recent meta-bridge undergoes enhanced electronic coupling in the excited state. The meta-bridge isomers shorten
    conjugation system, to cause the photocurrent transport trapped inevasible and low JSC. Thence the meta conjugation effect should be further study in terms of molecular structure, and looking forward to overcome this
    drawbacks. In our study the well-known dye (PP) shows a prominent solar-to-energy conversion efficiency (η) 5.34%, and meta conjugated dye(PPM) also shows 2.89%.

    謝誌 I 中文摘要 II 英文摘要 III 目錄 IV 圖目錄 V 表目錄 VI 第一章 緒論 1 1-1 前言 1 1-2 太陽能簡介 1 1-3 太陽能電池簡介 3 1-3-1 矽太陽能電池 4 1-3-2 薄膜太陽能電池 6 1-3-3 有機太陽能電池 7 第二章 理論說明與文獻回顧 11 2-1 染敏化太陽能電池基本構造 11 2-2 染敏化太陽能電池工作原理 12 2-3 二氧化鈦奈米結晶性多孔膜電極 14 2-3-1 二氧化鈦奈米顆粒製備 15 2-3-2 二氧化鈦薄膜電極的製備 16 2-4 染敏化太陽能電池的染敏化劑 17 2-4-1 無機染敏化劑 18 2-4-2 有機染敏化劑 20 2-5 電解質 25 2-6 太陽能電池電流-電壓輸出特性 26 第三章 含有反式二苯乙烯的雙極性有機染料敏化太陽能電池 27 3-1 研究動機及合成策略 27 3-2 太陽能電池光物理性質探討 28 3-2-1 吸收光譜及電化學性質 28 3-2-2 理論計算 39 3-3 太陽能電池元件性質探討 43 3-3-1 元件製程 43 3-3-2 太陽能電池元件性質 45 3-4 實驗部分 54 3-5 實驗步驟 55 第四章 結論 71 參考文獻 72 附圖 76

    (1) D. Wöhrle, D. Meissner, Adv. Mater. 1991, 3, 129.
    (2) J. Zhao, A. Wang, M. A. Green, F. Ferrazza, Appl. Phys. Lett. 1998, 73, 1991.
    (3) 郭明村,薄膜太陽電池發展近況,工業材料雜誌 2003, 203期, 138.
    (4) C. W. Tang, Appl. Phys. Lett. 1986, 48, 183.
    (5) (a) D. Braun, A. J. Heeger, H. Koremer, J. Electronic Materials 1991, 20, 945. (b) D. Braun, A. J. Heeger, Appl. Phys. Lett. 1991, 58, 1982. (c) K. Narayan, S. T. B. Singh, Appl. Phys. Lett. 1999, 74, 3456.
    (6) F. Hide, B. J. Schwartz, M. A. Diaz-Gracia, A. J. Heeger, Chem. Phys. Lett. 1996, 256, 424.
    (7) T. J. Savenije, J. M. Warman, A. Goossens, Chem. Phys. Lett. 1998, 287, 148.
    (8) (a) S. Günes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324. (b) H. Hoope, N. S. Sariciftci, J. Mater. Chem. 2004, 19, 1924.
    (9) G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger, Science 1995, 270, 1789.
    (10) B. O’Regan, M. Grätzel, Nature 1991, 353, 737.
    (11) M.-S. Tsai, Y.-C. Hsu, J. T. Lin, H.-C. Chen, C.-P. Hsu, J. Phys. Chem. C 2007, 111, 18785.
    (12) (a) M. Grätzel, Nature 2001, 414, 338. (b) M. Grätzel, J. Photochem. Photobio. A: Chem. 2004, 164, 3.
    (13) A. Hagfeldt, M. Grätzel, Chem. Rev. 1995, 49, 95.
    (14) K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Solar Energy Materials & Solar Cell 2003, 77, 89.
    (15) (a) K. M. Reddy, S. V. Manorama, A. R. Reddy, Mater. Chem. and Phy. 2002, 78, 239. (b) K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subbanna, G. Madras, Langmuir 2004, 20, 2900.
    (16) J. Desilvestro, M. Grätzel, L. Kaven, J. Moser, J. Augustynski, J. Am. Chem. Soc. 1985, 107, 2988.
    (17) N. G. Park, G. Schlichthorl, J. van de Lagemaat, H. M. Cheong, A. Mascarenhas, A. J. Frank, J. Phys. Chem. B 1999, 103, 3308.
    (18) (a) M. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer, M. Grätzel, Inorg. Chem. 1999, 38, 6298. (b) K. S. Finnie, J. R. Bartlett, J. L. Woolfrey, Langmuir. 1998, 14, 2744.
    (19) H. G. Agrell, J. Lindgren, A. Hagfeldt, Solar Energy 2003, 75, 169.
    (20) C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt, J. Phys.Chem. B 2002, 106, 12693.
    (21) (a) K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, H. Arakawa, Chem. Commun. 2001, 569. (b) K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 2003, 107, 597. (c) K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, New J. Chem. 2003, 27, 783.
    (22) (a) T. Horiuchi, H. Miura, S. Uchida, Chem. Commun. 2003, 3036. (b) T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218. (c) S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M. Grätzel, Chem. Commun. 2008, 5194.
    (23) (a)T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian, S. Yanagida, Chem. Mater. 2004, 16, 1806. (b) D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, L. Sun, Chem. Commun. 2006, 2245. (c) S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, C. Kim, Chem. Commun. 2007, 4887. (d) D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, L. Sun, J. Org. Chem. 2007, 72, 9550. (e) J. McNulty, D. McLeod, Tetrahedron Lett. 2011, 52, 5467.
    (24) (a) K. Sayama, K. Hara, Y. Ohga, A. Shinpou, S. Suga, H. Arakawa, New. J. Chem. 2001, 25, 200. (b) A. Ehret, L. Stuhl, M. T. Spitler, J. Phys. Chem. B 2001, 105, 9960.
    (25) K. Sayama, S. Tsukagoshi, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Sadaharu, H. Arakawa, J. Phys. Chem. B 2002, 106, 1363.
    (26) (a) Z.-S.Wang, F.-Y. Li, C.-H. Huang, Chem. Commun. 2000, 2063. (b) Q.-H. Yao, L. Shan, F.-Y. Li, D.-D. Yin, C.-H. Huang, New J. Chem. 2003, 27, 1277.
    (27) (a) Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. C. Gordon, R. Humphry-Baker, M. K. Nazeeruddin, M. Grätzel, J. Phys. Chem. B 2005, 109, 15397. (b) W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, M. Grätzel, D. L. Officer, J. Phys. Chem. C 2007, 111, 11760.
    (28) (a) S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F. D. Angelis, D. D. Censo, M. K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 2006, 128, 16701. (b) D. Kuang, P. Walter, F. Nuesch, S. Kim, J. Ko, M. K. Nazeeruddin, P. Comte, S. M. Zakeeruddin, M. Grätzel, Langmuir 2007, 23, 10906. (c) H. Choi, C. Baik, S. O. Kang, J. Ko, M.-S. Kang, M. K. Nazeeruddin, M. Grätzel, Angew. Chem. 2008, 120, 333; Angew. Chem. Int. Ed. 2008, 47, 327.
    (29) Y. Chen, Z. Zeng, C. Li, W. Wang, X. Wang and B. Zhang, New. J. Chem. 2005, 29, 773.
    (30) A. Mishra, M. K. R. Fischer, P. Bäuerle, Angew. Chem. Int. Ed. 2009, 48, 2474.
    (31) R. Kawano, H. Matsui, C. Matsuyama, A. Sato, M.A.B.H. Susan, N. Tanabe, M. Watanabe, J. Photochem. Photobio. A: Chem. 2004, 164, 87.
    (32) U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissörtel, J. Salbeck, H. Spreitzer, M. Grätzel, Nature 1998, 395, 583.
    (33) J.-H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 2011, 4, 842.
    (34) Z. Ning, Y. Fu, H. Tian, Energy Environ. Sci. 2010, 3, 1170.
    (35) (a) Y.-D. Lin, C.-T. Chien, S.-Y. Lin, H.-H. Chang, C.-Y. Liu, T. J. Chow, J. Photochem. Photobio. A: Chem. 2011, 222, 192. (b) Y.-D. Lin, T. J. Chow, J. Mater. Chem. 2011, 21, 14907.
    (36) (a) F. D. Lewis, W. Weigel, J. Phys. Chem. A 2000, 104, 8146. (b) J.-S. Yang, K.-L. Liau, C.-W. Tu, C.-Y. Hwang, J. Phys. Chem. A 2005, 109, 6450.
    (37) (a) J.-S. Yang, K.-L. Liau, C.-Y. Li, M.-Y. Chen, J. Am. Chem. Soc. 2007, 129, 13183. (b) A. L. Thompson, T.-S. Ahn, K.R.J. Thomas, S. Thayumanavan, T. J. Martinez, C. J. Bardeen, J. Am. Chem. Soc. 2005, 127, 16348.
    (38) Z.-S. Wang, Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo, K. Hara, J. Phys. Chem. C 2007, 111, 7224.
    (39) (a) R. Kawano, M. Watanabe, Chem. Commun. 2003, 330. (b) Z.-S. Wang, N. Koumura, Y. Cui, M. Miyashita, S. Mori, K. Hara, Chem. Mater. 2009, 21, 2810.
    (40) H. Tian, X. Yang, R. Chen, R. Zhang, A. Hagfeldt, L. Sun, J. Phys. Chem. C 2008, 112, 11023.

    下載圖示
    QR CODE