簡易檢索 / 詳目顯示

研究生: 陳之皓
Chih-Hao Chen
論文名稱: 漸變式量子井結構用以減緩綠光發光二極體之效率下降與提升量子效率
Suppression of Efficiency Droop and Improvement of Quantum Efficiency in Green Light Emitting Diodes using the Gradual InGaN Quantum Wells Structure
指導教授: 李亞儒
Lee, Ya-Ju
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 45
中文關鍵詞: 氮化銦鎵發光二極體效率下降
英文關鍵詞: InGaN, Light emitting diode, efficiency droop
論文種類: 學術論文
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討在綠光發光二極體中使用步階式量子井結構與漸變式量子井結構以達到提升內部量子效率(IQE)與減緩效率下降(Efficiency droop)之目的,因極化效應中壓電極化與自發極化均會使能帶傾斜造成電子電洞波函數分離、電子溢流、電洞注入困難等降低量子效率因素的狀況,本研究工作是改變傳統發光二極體中多量子井結構固定銦含量,換成步階式進而漸變式銦含量的量子井結構來減緩極化效應的影響,再用模擬的方式從能帶圖、波函數、電子電洞濃度分佈等來探討量子效率提升與緩和效率下降的原因。

    The effect of gradual indium gallium nitride (InGaN) quantum wells (QWs) on the suppression of efficiency-droop in green light-emitting diodes (LEDs) is numerically investigated. The presented scheme increases the internal quantum efficiency (IQE) by 45.5% at I=20mA and 55.7% at I=100mA, indicating a considerable reduction of efficiency-droop. This improvement is attributable mainly to the use of the gradual InGaN QWs structure that significantly alleviates band bending in the valence band, improving the transport efficiency of injected holes above that of conventional LEDs. The radiative recombination is thus enhanced as the overlap between electron and hole wave functions is increased. Most importantly, the leakage of injected electrons to p-type region is correspondingly reduced, in turn suppressing the efficiency-droop in the LED.

    論文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章  緒論 1 1-1 研究動機 1 1-2 氮化物發光二極體之efficiency droop效應 3 1-2-1 efficiency droop之簡介 3 1-2-2 極化效應之影響 4 1-2-3 降低efficiency droop之設計 8 第二章  氮化物發光二極體之物理特性回顧 11 2-1 極化效應 11 2-2 能帶與波函數 16  2-3 發光光譜 18 第三章  模擬結構與參數設定 21 3-1 元件結構與設計 21 3-1-1 傳統元件結構 21 3-1-2 步階函數狀量子井結構 22 3-1-3 漸變函數狀量子井結構 24 3-2 自由參數設定 25 第四章  效率之分析與討論 28 4-1 能帶結構之特性與探討 28 4-2 元件輸出與發光特性(Efficiency droop)之探討 30 4-3 元件結構對載子複合之影響 33 第五章  結論與未來展望 35

    [1] Krames, M. R.; Shchekin, O. B.; Regina, M. M.; Mueller, G. O. Zhou, L.; Harbers, G.; Craford, M. G. Status and future of high-power light-emitting diodes for solid-state lighting. IEEE Journal of Display Technology 3, 160-175 (2007).
    [2] High-Brightness LED Market Review, Strategies Unlimited, USA, August 2007.
    [3] T. Mukai, A. Michiue, T. Miyoshi, T. Yanamoto, T. Kozaki, S. Nagahama, Y. Narukawa, M. Sano, T. Yamada, “Recent development of nitride LEDs and LDs,” Photonics West, San Jose, CA, USA (2009).
    [4] C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. F. Chen, J. K. Sheu, and J. M. Tsai, “Nitride-based light emitting diodes with Si-doped In0.23Ga0.77N/GaN short period superlattice tunneling contact layer,” IEEE Trans. Electron Devices., vol. 50, pp. 535–537, 2003.
    [5] Y. K. Su, S. J. Chang, S. C. Wei, R. W. Chuang, S. M. Chen, and W. L. Li, “Nitride-based LEDs with n-GaN current spreading layer,” IEEE Electron Dev. Lett., vol. 26, pp. 891–893, 2005.
    [6] C. F. Shen, S. J. Chang, W. S. Chen, T. K. Ko, C. T. Kuo, and S. C. Shei, “Nitride-based high-power flip-chip LED with double-side patterned sapphire substrate,” IEEE Photon. Technol. Lett., vol. 19, pp. 780–782, 2007.
    [7] T. Onuma, H. Amaike, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, “Quantum-confined Stark effects in the m-plane In0.15Ga0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate,” Appl. Phys. Lett., vol. 91, pp. 181903-1–181903-3, 2007.
    [8] C. E. Lee, H. C. Kuo, Y. C. Lee, M. R. Tsai, T. C. Lu, S. C. Wang, and C. T. Kuo, “Luminance enhancement of flip-chip light-emitting diodes by geometric sapphire shaping structure,” IEEE Photon. Technol. Lett., vol. 20, pp. 184–186, 2008.
    [9] H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, and Y. Park, “Enhanced light extraction of GaN-based light-emitting diodes by using textured n-type GaN layers,” Appl. Phys. Lett., vol. 90, pp. 161110-1–161110-3, 2007.
    [10] J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J. P. Liu, R. D. Dupuis, Z. H. Wu, A. M. Fischer, and F. A. Ponce, “Control of quantum-confined Stark effect in InGaN/GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes,” Appl. Phys. Lett., vol. 92, pp. 101113-1–101113-3, 2008.
    [11] Y.-L. Li, Y.-R. Huang, and Y.-H. Lai, “Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness,” Appl. Phys. Lett., vol. 91, pp. 181113-1–181113-3, 2007.
    [12] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 183507-1–183507-3, 2007.
    [13] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III–V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5815–5875, 2001.
    [14] S. P. Łepkowski, H. Teisseyre, T. Suski, P. Perlin, N. Grandjean, and J. Massies, “Piezoelectric field and its influence on the pressure behavior of the light emission from GaN/AlGaN strained quantum wells,” Appl. Phys. Lett., vol. 79, pp. 3693–3695, 2001.
    [15] M. W. Lee, H. Z. Twu, C.-C. Chen, and C.-H. Chen, “Optical characterization of wurtzite gallium nitride nanowires,” Appl. Phys. Lett., vol. 79, pp. 1483–1485, 2001.
    [16] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., vol. 81,
    [17] M. Shatalov, J. Zhang, A. S. Chitnis, V. Adivarahan, J. Yang, G. Simin, and M. Asif Khan, “Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells,” IEEE J. Sel. Top. Quantum Electron., vol. 8, pp. 302−309, 2002.
    [18] G. Franssen, T. Suski, P. Perlin, R. Bohdan, A. Bercha, W. Trzeciakowski, I. Makarowa, P. Prystawko, M. Leszczyński, I. Grzegory, S. Porowski, and S. Kokenyesi, “Fully-screened polarization-induced electric fields in blue/violet InGaN/GaN light-emitting devices grown on bulk GaN,” Appl. Phys. Lett., vol. 87, pp. 041109-1−041109-3, 2005.
    [19] W. Lee, J. Limb, J. -H. Ryou, D. Yoo, T. Chung, and R. D. Dupuis, “Effect of thermal annealing induced by p-type layer growth on blue and green LED performance,” J. Cryst. Growth, vol. 287, pp. 577–581, 2006.
    [20] W. Lee, J. Limb, J.-H. Ryou, D. Yoo, M. A. Ewing, Y. Korenblit, and R. D. Dupuis, “Nitride-based green light-emitting diodes with various p-type layers,” J. Disp. Technol., vol. 3, pp. 126–132, 2007.
    [21] J. Limb, W. Lee, J. -H. Ryou, D. Yoo, and R. D. Dupuis, “Comparison of GaN and In0.04Ga0.96N p-layers on the electrical and electroluminescence properties of green light emitting diodes,” J. Electron. Mater., vol. 36, pp. 426–430, 2007.
    [22] J. P. Liu, J. B. Limb, J. -H. Ryou, D. Yoo, C. A. Horne, R. D. Dupuis, Z. H. Wu, A. M. Fischer, F. A. Ponce, A. D. Hanser, L. Liu, E. A. Preble, and K. R. Evans, “Blue light emitting diodes grown on freestanding (11-20) a-plane GaN substrates,” Appl. Phys. Lett., vol. 92, pp. 011123-1−011123-3, 2008.
    [23] J. Park and Y. Kawakami, “Photoluminescence property of InGaN single quantum well with embedded AlGaN δ layer,” Appl. Phys. Lett., vol. 88, pp. 202107-1−202107-3, 2006.
    [24] J. Park, A. Kaneta, M. Funato, and Y. Kawakami, “Carrier transport and optical properties of InGaN SQW with embedded AlGaN δ-layer,” IEEE J. Quantum Electron., vol. 42, pp. 1023−1030, 2006.
    [25] R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 091110-1−091110-3, 2007.
    [26] R. A. Arif, H. Zhao, and N. Tansu, “Type-II InGaN-GaNAs quantum wells for lasers applications,” Appl. Phys. Lett., vol. 92, pp. 011104-1−011104-3, 2008.
    [27] F. Bernardini, in Nitride Semiconductor Devices: Principles and Simulation, edited by J. Piprek. (Wiley, New York, 2007) pp. 4968.
    [28] A. Thamm, O. Brandt, J. Ringling, A. Trampert, and K. H. Ploog, “Optical properties of heavily doped GaN/(Al,Ga)N multiple quantum wells grown on 6H-SiC(0001) by reactive molecular-beam epitaxy,” Phys. Rev. B, vol. 61, pp. 16025–16028, 2000.
    [29] A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck, “Strain-induced polarization in wurtzite III-nitride semipolar layers,” J. Appl. Phys., vol. 100, pp. 023522-1–023522-10, 2006.
    [30] T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, “Piezoelectric effect in group-III nitride-based heterostructures and quantum wells,” in III-V Nitride Semiconductors Applications and Devices, E. T. Tu and M. O. Manasreh, Eds., New York: Taylor & Francis, 2003, pp. 414–426.
    [31] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, “Nitride semiconductors free of electrostatic field for efficient white light-emitting diodes,” Nature, vol. 406, pp. 865–868, 2000.
    [32] Q. X. Guo, T. Tanaka, M. Nishio, H. Ogawa, X. D. Pu, and W. Z. Shen, “Observation of visible luminescence from indium nitride at room temperature,” Appl. Phys. Lett., vol. 86, pp. 231913-1–231913-3, 2005.
    [33] S.-C. Shi, C. F. Chen, S. Chattopadhyay, K.-H. Chen, B.-W. Ke, L.-C. Chen, L. Trinkler, and B. Berzina, “Luminescence properties of wurtzite AlN nanotips,” Appl. Phys. Lett., vol. 89, pp. 163127-1–163127-3, 2006.
    [34] I. Akasaki and H. Amano, “Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters,” Jpn. J. Appl. Phys., vol. 36, pp. 5393–5408, 1997.
    [35] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, “Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells,” Jpn. J. Appl. Phys., vol. 36, pp. L382–L385, 1997.
    [36] T. Takeuchi, S. Sota, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Quantum-confined Stark effect in strained GaInN quantum wells on sapphire (0001),” J. Cryst. Growth, vol. 189/190, pp. 616–620, 1998.
    [37] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, “Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures,” Appl. Phys. Lett., vol. 73, pp. 2006–2008, 1998.
    [38] Chih-Teng Liao, “Numerical Study on Blue InGaN Light-Emitting Diodes with Asymmetric Active Region,” 2009
    [39] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phy., vol. 89, pp. 5815-5875, 2001.
    [40] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN,” Appl. Phys. Lett., vol. 81, pp. 1246-1248, 2002.
    [41] F. Bernardini, “Spontaneous and piezoelectric polarization: Basic theory vs. practical recipes,” in Nitride Semiconductor Devices: Principles and Simulation, J. Piprek, Ed., Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2007, pp. 49-68.s8
    [42] I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phy., vol. 94, pp. 3675-3696, 2003.
    [43] Chih-Teng Liao, “Numerical Study on Blue InGaN Light-Emitting Diodes with Asymmetric Active Region,” 2009
    [44] S. L. Chuang and C. S. Chang, “k・p method for strained wurtzite semiconductors,” Phys. Rev. B 54, 2491, 1996.
    [45] SiLENSe Physics Summary, STR, Inc. 2008
    [46] T. Takeuchi, C. Wetzel, H. Amano, and I. Akasaki, “Piezoelectric effect in group-III nitride-based heterostructures and quantum wells,” in III-V Nitride Semiconductors Applications and Devices, E. T. Tu and M. O. Manasreh, Eds., New York: Taylor & Francis, 2003, pp. 414–426.
    [47] R. A. Arif, Y.-K. Ee, and N. Tansu, “Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes,” Appl. Phys. Lett., vol. 91, pp. 091110-1−091110-3, 2007.
    [48] R. A. Arif, H. Zhao, and N. Tansu, “Type-II InGaN-GaNAs quantum wells for lasers applications,” Appl. Phys. Lett., vol. 92, pp. 011104-1−011104-3, 2008.
    [49] S. F. Chichibu, H. Marchand, M. S. Minsky, S. Keller, P. T. Fini, J. P. Ibbetson, S. B. Fleischer, J. S. Speck, J. E. Bowers, E. Hu, U. K. Mishra, S. P. DenBaars, T. Deguchi, T. Sota, and S. Nakamura, “Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth,” Appl. Phys. Lett., vol. 74, pp. 1460–1462, 1999.
    [50] J. Mickevičius, M. S. Shur, R. S. Q. Fareed, J. P. Zhang, R. Gaska, and G. Tamulaitis, “Time-resolved experimental study of carrier lifetime in GaN epilayers,” Appl. Phys. Lett., vol. 87, pp. 241918-1–241918-3, 2005.
    [51] T. Malinauskas, R. Aleksiejūnas, K. Jarašiūnas, B. Beaumont, P. Gibart, A. Kakanakova-Georgieva, E. Janzen, D. Gogova, B. Monemar, and M. Heuken, “All-optical characterization of carrier lifetimes and diffusion lengths in MOCVD-, ELO-, and HVPE- grown GaN,” J. Cryst. Growth, vol. 300, pp. 223–227, 2007.
    [52] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matushita, and T. Mukai, “InGaN/GaN/AlGaN-based LEDs and laser dioes,” MRS Internet J. Nitride Semicond. Res., vol. 4S1, pp. G1.1, 1999.

    無法下載圖示 本全文未授權公開
    QR CODE