簡易檢索 / 詳目顯示

研究生: 陳映儒
論文名稱: 使用在彩色影像增強上的多階段雙邊雜訊濾波器與邊緣偵測演算法
Multi-stage Bilateral Noise Filtering and Edge Detection for Color Image Enhancement
指導教授: 黃奇武
Huang, Chi-Wu
高文忠
Kao, Wen-Chung
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2008
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 雙邊雜訊濾波器相似度濾波器距離濾波器邊緣增強
英文關鍵詞: Bilateral noise filtering, range filter, domain filter, edge enhancement
論文種類: 學術論文
相關次數: 點閱:335下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在影像處理當中,清楚呈現邊緣與增強邊緣,同時也去除不必要的雜訊是最基本的工作。當我們使用數位相機截取影像時,很常見的是彩色影像當中摻雜了各式各樣的雜訊,因此,雜訊濾波器在此是相當必要的。而雜訊濾除的最大問題是會降低影像的銳利度,換句話說,光學鏡頭瑕疵對於影像的影響就有如低通濾波器一般,它會導致影像的模糊情形,習慣上,這樣的情形會應用邊緣增強演算法來改進影像的銳利度,但做邊緣增強的影像處理也常常會同時將雜訊的訊號也同時增強。在本論文中,我們提出一個整合型的流程架構來改善影像的品質。其中結合了在適合的影像空間下所做的彩色邊緣偵測、同時使用到相似度濾波器與距離濾波器的雙邊濾波器與邊緣增強演算法, 從實驗結果可看出這個影像處理流程可以達到濾除雜訊的同時也保留並增強邊緣的效果。

    Removing noise while preserving and enhancing edges is one of the most fundamental operations of image/video processing. When taking pictures with digital cameras, it is frequently found that the color images are corrupted by miscellaneous noise and, hence, noise filtering is necessary. The difficulty is that usually the filtering will reduce the sharpness of the image. On the other hand, optical lens imperfections are usually equivalent to spatial low pass filters and tend to result in blurred images. It is customary to apply edge enhancement algorithm on the image in order to improve the sharpness, but this process usually increase the noise level as a by-product. In this paper, we present a new integrated approach to address these issues. The proposed approach combines color edge detection, bilateral and trilateral noise filter using range filter and domain filter, and edge enhancement based on suitable color spaces. The experimental results show that the proposed approach can effectively reduce the noise while preserving and enhancing edges.

    第一章 緒 論 7 1.1 研究背景 7 1.2 相關研究 15 1.3 研究動機(目前的方法會出現的缺點與問題) 17 1.4 本文提出的方法 20 1.5 本論文後續章節的組織架構 22 第二章 系統架構 23 2.1 典型數位相機中影像處理流程 23 2.2 影像處理流程中各區塊的主要功能 24 第三章 雙邊雜訊濾波器演算法設計 30 3.1 問題簡介 30 3.2 相關研究 32 3.2.1 雜訊濾波器相關研究 32 3.2.2 邊緣偵測相關研究 42 3.3 所提出的演算法 43 3.4 實驗結果 57 第四章 三邊雜訊濾波器與影像增強 61 4.1 三邊濾波器相關研究 61 4.2 三邊濾波器結合本文提出的演算法 63 4.3 實驗結果 65 第五章 實驗結果 68 5.1 為加速計算所使用的對照表與影像尺寸邊緣判斷 68 5.2 邊緣偵測實驗結果 73 5.3 雜訊濾除與邊緣增強演算法實驗結果 78 第六章 結論 93

    [1] R. C. Gonzalez and R. E. Woods, Digital image processing, Pearson Education, Upper Saddle River, New Jersey, 2002.
    [2] http://inventors.about.com/library/inventors/bldigitalcamera.htm
    [3] T. Chen and H. R. Wu, “Space variant median filters for the restoration of impulse noise corrupted images,” IEEE Trans. Circuit and Systems, vol. 48, no. 8, pp. 784-789, Aug. 2001.
    [4] L. R. Rabiner, M. R. Sambur, and C. E. Schmidt, ”Applications of a nonlinear smoothing algorithm to speech processing,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-23, PP. 552-557, Sec. 1975.
    [5] N. S. Jayant, “Average and median-based smoothing techniques for improving digital speech quality in the presence of transmission errors,” IEEE Trans. Commun., vol. COM-24, pp. 1043-1045, Sep. 1976.
    [6] W. K. Pratt, “Median filtering,” in Semiannual Report, Image Processing Institute, Univ. of Southern California, pp. 116-123, Sep. 1975.
    [7] B. R. Frieden, “A new restoring algorithm for the preferential enhancement of edge gradients,” J. Pot. Soc. Amer., vol. 66, pp. 280-283, 1976.
    [8] L. Yin and R. Yang, “Circuits and systems exposition — weighted median filters: a tutorial,” IEEE Trans., Circuit and Systems, vol. 42, no. 10, pp. 583-601, Oct. 1995.
    [9] R. Garnett, T. Huegerich, C. Chui, “A universal noise removal algorithm with an impulse detector“, IEEE Trans., image processing, vol. 14, no. 11, Nov. 2005.
    [10] P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans., pattern analysis and machine intelligence, vol. 12, no. 7, Jul. 1990.
    [11] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc. 6th Int. Conf. Computer Vision, New Delhi, India, pp. 839-846, 1998.
    [12] P. S. Marc and J. S. Chen, “Adaptive smoothing: a general tool for early vision,” IEEE Trans., pattern analysis and machine intelligence, vol. 13, no. 6, Jun. 1991.
    [13] M. Basu, ”Gaussian-based edge-detection methods―a survey,” IEEE Trans., Systems, man, and cybernetics, vol. 32, no. 3, pp. 252-260, Aug. 2002.
    [14] J. J. Francis and G. de Jager, “The bilateral median filter,” CiteSeer, 2003.
    [15] S. Fleishman, I. Drori and D. C. Or, “Bilateral mesh denoising,” in Proc. Conf. SIGGRAPH '03, pp. 950-953.
    [16] H. C. Lee, Introduction to color image science, Cambridge University Press, 2005.
    [17] M. Elad, “On the origin of the bilateral filter and ways to improve it,” IEEE Trans., image processing, vol. 11, no. 10, pp. 1141-1151, Oct. 2002.
    [18] P. Choudhury and J. Tumblin, “The trilateral filter for high contrast images and meshes,” in Proc., Eurographics Symposium on Rendering, Per. H. Christensen and Daniel Cohen eds., pp. 186-196, 2003.
    [19] W. C. K. Wong, A. C. S. Chung, S. C. H. Yu, ”Trilateral filtering for biomedical images,” in Proc., ISBI, pp. 820-823, 2004.

    QR CODE