簡易檢索 / 詳目顯示

研究生: 楊寶棠
YANG, PAO-TANG
論文名稱: 不同傳播形式之健康資訊假消息與迴力鏢效應影響研究
An Investigation into the Boomerang Effect with Different Modes of Health (Mis-)Information
指導教授: 袁千雯
Yuan, Chien-Wen
口試委員: 袁千雯
Yuan, Chien-Wen
畢南怡
Bi, Nan-Yi
張永儒
Chang, Yung-Ju
口試日期: 2021/11/29
學位類別: 碩士
Master
系所名稱: 圖書資訊學研究所
Graduate Institute of Library and Information Studies
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 假消息健康資訊迴力鏢效應
英文關鍵詞: misinformation, health, clarification information, boomerang effect
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200495
論文種類: 學術論文
相關次數: 點閱:261下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糾正假消息有許多方式,像是有研究利用大量假消息進行機器深度學習訓練出模型來識別假消息;也有試著先提供含有錯誤內容的假消息供人閱讀後,再提供正確消息讓同一人再閱讀,試圖以此舉來糾正並釐清閱聽人先前已閱讀到的錯誤訊息。但後者的策略並非總是能發揮作用,有時反而會因為閱聽人本身的信念、態度、對原先消息的信任程度等因素影響。當接收到糾正、釐清的資訊時,反而引起閱聽人反彈,強化對原先錯誤消息的信任度,此現象稱為「迴力鏢效應」。
    在眾多假消息的主題中,本研究針對健康類假消息,因為此種假消息會影響個人身體健康、且大眾不一定能有專業能力辨別真偽。同時相關研究也發現不同傳播型式的內容其傳播效果也有所不同,因此本研究將結合不同傳播型式之健康類假消息與迴力鏢效應進行深入研究。
    本研究以組間實驗法進行,實驗組之受測者閱讀文字、圖片、影片其中一種假消息以及文字、圖片、影片其中一種真消息;控制組未閱讀真消息。所有受測者在閱讀完假消息、正確消息後都會填寫說服性、態度、可信度、情緒、嚴重性、認知、行動量表,以了解受測者閱讀假消息、真消息後對於資訊之說服性、態度、可信度、情緒、嚴重性、認知、行動面向的改變,藉此判別迴力鏢效應的程度。
    本研究經分析發現受測者在閱讀圖片假消息時在說服性、態度、可信度面向較易產生迴力鏢效應;在閱讀圖片真消息時在行動、行動_採納面向較易產生迴力鏢效應;在閱讀影片真消息在可信度、態度面向較易產生迴力鏢效應。

    There are many ways to correct misinformation, one of which is to use big data to train artificial intelligence models to identify misinformation. In addition to the engineering perspective, attempts are also made to provide clarifying information to readers after they read the correspondent misinformation. However, research shows that this approach does not always work and people may still believe the original misinformation. This phenomenon is called the “boomerang effect.” The current study focuses on health misinformation because this kind of misinformation can affect individuals’ well-being and tremendous negative consequences may arise if people cannot effectively distinguish correct information from misinformation. We tackle the issue from the angle of various communication modes, including text, image, and video, to examine the interaction effects of three modes of misinformation and three modes of clarifying information. With a three by three experimental design (misinformation in text, image, and video vs. clarification information in text, image, and audio), we intend to uncover which communication mode may most easily yield boomerang effect and which communication mode may most effectively correct misinformation. We include participants’ following reactions as dependent variables to determine the degree of the boomerang effect: perceived message persuasiveness, attitude towards the information, information credibility, emotion towards the information, information severity, cognition, and intended action. According to the analysis, our results showed that the participants were more likely to have a boomerang effect in perceived message persuasiveness, attitude, and information credibility when reading image misinformation. Also, they were more likely to have a boomerang effect when they read clarification information in image and video forms. Last, when viewing the video clarification information, they were more likely to produce a boomerang effect in dimensions of credibility and attitude.

    第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究問題 3 第二章 文獻回顧 4 第一節 假消息內涵及傳播 4 一、 假消息定義 4 二、 假消息傳播途徑與管道 5 第二節 資訊的傳播工具與形式 7 一、 資訊傳播工具 7 二、 消息之傳播型式(communication mode) 10 第三節 健康(假)資訊與迴力鏢效應 14 一、 迴力鏢效應簡介 14 二、 迴力鏢效應量測指標 18 第三章 研究方法與設計 20 第一節 研究對象招募 20 第二節 實驗參與者組成 21 第三節 研究資料蒐集 21 一、 研究方法 21 二、 實驗情境說明 22 三、 實驗流程說明 24 四、 實驗工具設計說明 27 五、 實驗素材來源及說明 32 第四節 研究量表 37 一、 前測 37 二、 依變項 38 三、 共變項 42 第四章 研究結果 44 第一節 敘述統計 44 第二節 推論統計結果分析 52 第五章 討論與建議 74 第一節 研究結果討論 74 第二節 研究限制 78 第三節 研究建議 79 第六章 參考文獻 80 一、 中文文獻 80 二、 英文文獻 81 附錄一 量表 93

    中文文獻
    台灣事實查核中心(2021)。查核準則。台灣事實查核中心。https://tfc-taiwan.org.tw/about/principle
    何吉森(2018)。假新聞之監理與治理探討。傳播研究與實踐,8(2),1-41。doi:10.6123/JCRP.2018.07_8(2).0001
    林照真 (2018)。 假新聞情境初探:以阿拉伯世界的資訊逆流為例[Contextualizing Fake News: A Case Study on Contra-Flows of the Arab World]。傳播研究與實踐, 8(1),頁 1-26。 doi: 10.6123/jcrp.2018.001
    柯舜智(2017)。資訊傳播概說。翰蘆圖書出版有限公司
    胡元輝(2018)。造假有效、更正無力?第三方事實查核機制初探。傳播研究與實踐,8(2),43-73。doi:10.6123/JCRP.2018.07_8(2).0002
    陳憶寧。(2018)。傳統媒體與社群媒體上呈現的食安危機比較:頂新餿水油事件的個案研究 [Food Crisis Coverage in Social and Traditional Media: A Case Study of the Ting Hsin Tainted Oil Crisis]。(45), 47-89.
    傅文成、陶聖屏(2018)。以大數據觀點探索網路謠言的「網路模因」傳播模式。中華傳播學刊,(33),99-135。doi:10.6195/cjcr.201806_33.0003
    黃翊晴(2020)。聽川普的話喝消毒水 美國男子出院後轉送精神病院。新頭殼。https://newtalk.tw/news/view/2020-04-29/399183
    楊惟任(2019)。假新聞的危害與因應。展望與探索月刊,17(12),95-116。
    楊錫彬(2015)。影像的訊息傳播。揚智文化
    葉乃靜(2020)。後真相時代社會性媒體上的假新聞分享行為研究。圖書館學與資訊科學, 46(1), 96-112。https://jlis.glis.ntnu.edu.tw/ojs/index.php/jlis/article/view/764
    詹昭能(2000)。索引指標。教育大辭書。http://terms.naer.edu.tw/detail/1308700/
    資策會(2017)。驚! 隨手分享Line訊息 親朋好友竟遭詐騙變成受”災”戶 7成鐵粉愛轉傳健康、災難或政府政策等實用性訊息 不到5成會辯真偽。取自https://www.iii.org.tw/Press/NewsDtl.aspx?fm_sqno=14&nsp_sqno=1931
    劉昌德(2020)。小編新聞學:社群媒體與通訊軟體如何轉化新聞專業 ["Social-network-manager" journalism: The impacts of social media and messaging apps on the journalistic profession]。新聞學研究(142), 1-58. https://doi.org/10.30386/MCR.202001_(142).0001
    鄭芬蘭(2000)。認知。教育大辭書。http://terms.naer.edu.tw/detail/1313433/
    鄭翰林(2007)。當代傳播理論Q&A。風雲論壇有限公司
    蕭湘文(2009)。廣告傳播。威仕曼文化
    羅世宏(2018)。關於「假新聞」的批判思考:老問題、新挑戰與可能的多重解方。資訊社會研究,(35),51-85。doi:10.29843/JCCIS.201807_(35).0003
    英文文獻
    Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/https://doi.org/10.1016/0749-5978(91)90020-T
    Ajzen, I. (2002). Constructing a TPB questionnaire: Conceptual and methodological considerations.
    Appelman, A., & Sundar, S. S. (2015). Measuring Message Credibility: Construction and Validation of an Exclusive Scale. Journalism & Mass Communication Quarterly, 93(1), 59-79. https://doi.org/10.1177/1077699015606057
    Austin, E. W., Pinkleton, B. E., Austin, B. W., & Van de Vord, R. (2012). The relationships of information efficacy and media literacy skills to knowledge and self-efficacy for health-related decision making. J Am Coll Health, 60(8), 548-554. https://doi.org/10.1080/07448481.2012.726302
    Bapaye, J. A., & Bapaye, H. A. (2021). Demographic Factors Influencing the Impact of Coronavirus-Related Misinformation on WhatsApp: Cross-sectional Questionnaire Study [Original Paper %J JMIR Public Health Surveill]. 7(1), e19858. https://doi.org/10.2196/19858
    Bhaskaran, H., Mishra, H., & Nair, P. (2017). Contextualizing fake news on post-truthera: Journalism education in India. Asia Pacific Educator, 27(1), 41-50.
    Blanton, H., Gerrard, M., & McClive-Reed, K. P. (2013). Threading the needle in health-risk communication: increasing vulnerability salience while promoting self-worth. J Health Commun, 18(11), 1279-1292. doi:10.1080/10810730.2013.778359
    Buchanan, T., & Benson, V. (2019). Spreading disinformation on facebook: Do trust in message source, risk propensity, or personality affect the organic reach of “fake news”? Social Media + Society, 5(4). doi:10.1177/2056305119888654
    Byrne, S., & Hart, P. S. (2009). The “boomerang” effect: A synthesis of findings and a preliminary theoretical framework. In C. Beck (Ed.), Communication yearbook 33 (pp. 3–37). Mahwah, NJ: Lawrence Erlbaum Associates.
    Cameron, A. F., & Webster, J. (2005). Unintended consequences of emerging communication technologies: Instant Messaging in the workplace. Computers in Human Behavior, 21(1), 85-103. https://doi.org/10.1016/j.chb.2003.12.001
    Charness, G., Gneezy, U., & Kuhn, M. A. (2012). Experimental methods: Between-subject and within-subject design. Journal of Economic Behavior & Organization, 81(1), 1-8. https://doi.org/10.1016/j.jebo.2011.08.009
    Chen, X., Tsaparas, P., Lijffijt, J., & Bie, T. (2019). Opinion Dynamics with Backfire Effect and Biased Assimilation.
    Clayman, M. L., Manganello, J. A., Viswanath, K., Hesse, B. W., & Arora, N. K. (2010). Providing Health Messages to Hispanics/Latinos: Understanding the Importance of Language, Trust in Health Information Sources, and Media Use. Journal of Health Communication, 15(sup3), 252-263. doi:10.1080/10810730.2010.522697
    Conroy, N. K., Rubin, V. L., & Chen, Y. (2015). Automatic deception detection: Methods for finding fake news. 52(1), 1-4. https://doi.org/10.1002/pra2.2015.145052010082
    Cook, J., Ecker, U., & Lewandowsky, S. (2015). Misinformation and How to Correct It. In Emerging Trends in the Social and Behavioral Sciences (pp. 1-17). https://doi.org/10.1002/9781118900772.etrds0222
    Dillard, J. P., & Peck, E. (2016). Affect and Persuasion. Communication Research, 27(4), 461-495. https://doi.org/10.1177/009365000027004003
    Ecker, U. K. H., & Ang, L. C. (2018). Political Attitudes and the Processing of Misinformation Corrections. Political Psychology,40(2), 241-260. doi:10.1111/pops.12494
    Ecker, U. K., Lewandowsky, S., Fenton, O., & Martin, K. (2014). Do people keep believing because they want to? Preexisting attitudes and the continued influence of misinformation. Mem Cognit, 42(2), 292-304. https://doi.org/10.3758/s13421-013-0358-x
    Flynn, D., Nyhan, B. and Reifler, J. (2017), The Nature and Origins of Misperceptions: Understanding False and Unsupported Beliefs About Politics. Advances in Political Psychology, 38: 127-150.doi:10.1111/pops.12394
    Freeze, M., Baumgartner, M., Bruno, P., Gunderson, J. R., Olin, J., Ross, M. Q., & Szafran, J. (2020). Fake Claims of Fake News: Political Misinformation, Warnings, and the Tainted Truth Effect. Political Behavior. https://doi.org/10.1007/s11109-020-09597-3
    Full Fact (2019). The backfire effect: Does it exist? And does it matter for factcheckers?. Retrived from: https://fullfact.org/media/uploads/backfire_report_fullfact.pdf
    Garimella, K., & Eckles, D. (2020). Images and Misinformation in Political Groups: Evidence from WhatsApp in India. Harvard Kennedy School Misinformation Review, 1. https://doi.org/10.37016/mr-2020-030
    Gelfert, A. (2018). Fake News: A Definition. Informal Logic, 38(1), 84-117. https://doi.org/https://doi.org/10.22329/il.v38i1.5068
    Hameleers, M., Powell, T. E., Van Der Meer, T. G. L. A., & Bos, L. (2020). A Picture Paints a Thousand Lies? The Effects and Mechanisms of Multimodal Disinformation and Rebuttals Disseminated via Social Media. Political Communication, 37(2), 281-301. https://doi.org/10.1080/10584609.2019.1674979
    Hartung, U., Schulz, P. J., & Keller, S. (2013). A Boomerang Effect of an All-Clear Message on Radiation Risk. Human and Ecological Risk Assessment: An International Journal, 20(1), 224-241. https://doi.org/10.1080/10807039.2012.716679
    Herrero-Diz, P., Conde-Jiménez, J., & Reyes de Cózar, S. (2020). Teens’ Motivations to Spread Fake News on WhatsApp. Social Media + Society, 6(3). https://doi.org/10.1177/2056305120942879
    Hesse, B. W., Nelson, D. E., Kreps, G. L., Croyle, R. T., Arora, N. K., Rimer, B. K., & Viswanath, K. (2005). Trust and sources of health information: the impact of the Internet and its implications for health care providers: findings from the first Health Information National Trends Survey. Arch Intern Med, 165(22), 2618-2624. doi:10.1001/archinte.165.22.2618
    Hoewe, J. (2017). Manipulation Check. In The International Encyclopedia of Communication Research Methods (pp. 1-5). https://doi.org/10.1002/9781118901731.iecrm0135
    Huang, J. L., Bowling, N. A., Liu, M., & Li, Y. (2014). Detecting Insufficient Effort Responding with an Infrequency Scale: Evaluating Validity and Participant Reactions. Journal of Business and Psychology, 30(2), 299-311. https://doi.org/10.1007/s10869-014-9357-6
    Jin, Y., Liu, B. F., Anagondahalli, D., & Austin, L. (2014). Scale development for measuring publics’ emotions in organizational crises. Public Relations Review, 40(3), 509-518. https://doi.org/10.1016/j.pubrev.2014.04.007
    Kergoat, M., Meyer, T., & Merot, A. (2017). Picture-based persuasion in advertising: the impact of attractive pictures on verbal ad’s content. Journal of Consumer Marketing, 34(7), 624-635. https://doi.org/10.1108/jcm-01-2016-1691
    Kim, H. J., Lee, H., & Hong, H. (2020). Scale Development and Validation for Psychological Reactance to Health Promotion Messages. Sustainability, 12(14). https://doi.org/10.3390/su12145816
    Laurie A. Babin, Alvin C. Burns, and Abhijit Biswas (1992) ,"A Framework Providing Direction For Research on Communications Effects of Mental Imagery-Evoking Advertising Strategies", in NA - Advances in Consumer Research Volume 19, eds. John F. Sherry, Jr. and Brian Sternthal, Provo, UT : Association for Consumer Research, Pages: 621-628
    Lewandowsky, S., Ecker, U. K., Seifert, C. M., Schwarz, N., & Cook, J. (2012). Misinformation and Its Correction: Continued Influence and Successful Debiasing. Psychol Sci Public Interest, 13(3), 106-131. https://doi.org/10.1177/1529100612451018
    Lim, K. H., & Benbasat, I. (2000). The Effect of Multimedia on Perceived Equivocality and Perceived Usefulness of Information Systems. MIS Quarterly, 24(3), 449-471. https://doi.org/10.2307/3250969
    Lins de Holanda Coelho, G., H. P. Hanel, P., & J. Wolf, L. (2020). The Very Efficient Assessment of Need for Cognition: Developing a Six-Item Version. 27(8), 1870-1885. https://doi.org/10.1177/1073191118793208
    Maros, A., Almeida, J. M., & Vasconcelos, M. (2021, 2021//). A Study of Misinformation in Audio Messages Shared in WhatsApp Groups. Disinformation in Open Online Media, Cham.
    McCroskey, J. C. (1969). A summary of experimental research on the effects of evidence in persuasive communication. Quarterly Journal of Speech, 55(2), 169-176. https://doi.org/10.1080/00335636909382942
    Melo, P., Vieira, C., Garimella, K., Vaz de Melo, P., & Benevenuto, F. (2019). Can WhatsApp Counter Misinformation by Limiting Message Forwarding?
    Messaris, P. (1997). Visual Persuasion: The Role of Images in Advertising. SAGE Publications, Inc. https://doi.org/http://dx.doi.org/10.4135/9781452233444
    Newman, N., Fletcher R., Schulz A., Andi S., & Nielsen R. (2018). Reuters Institute Digital News Report 2020. Reuters Institute for the Study of Journalism. Retrieved from https://reutersinstitute.politics.ox.ac.uk/sites/default/files/2020-06/DNR_2020_FINAL.pdf
    Nyhan, B., & Reifler, J. (2010). When Corrections Fail: The Persistence of Political Misperceptions. Political Behavior,32(2), 303-330. doi:10.1007/s11109-010-9112-2
    Obadă, R. (2019). Sharing Fake News about Brands on Social Media: a New Conceptual Model Based on Flow Theory. Argumentum. Journal of the Seminar of Discursive Logic,Argumentation Theory and Rhetoric, 17, 144-166.
    Perrin, D. G. (1969). A Theory of Multiple-Image Communication. AV Communication Review, 17(4), 368-382. http://www.jstor.org/stable/30217536
    Peter, C., & Koch, T. (2015). When Debunking Scientific Myths Fails (and When It Does Not). Science Communication, 38(1), 3-25. https://doi.org/10.1177/1075547015613523
    Petrova, P. K., & Cialdini, R. B. (2005). Fluency of Consumption Imagery and the Backfire Effects of Imagery Appeals. Journal of Consumer Research, 32(3), 442-452. https://doi.org/10.1086/497556 %J Journal of Consumer Research
    Politifact (2021). The Principles of the Truth-O-Meter: PolitiFact’s methodology for independent fact-checking. Poynter Institute. https://www.politifact.com/article/2018/feb/12/principles-truth-o-meter-politifacts-methodology-i/#Truth-O-Meter%20ratings
    Powell, T. E., Boomgaarden, H. G., De Swert, K., & de Vreese, C. H. (2015). A Clearer Picture: The Contribution of Visuals and Text to Framing Effects. Journal of Communication, 65(6), 997-1017. https://doi.org/10.1111/jcom.12184
    Ramirez, A., & Broneck, K. (2009). `IM me': Instant messaging as relational maintenance and everyday communication. Journal of Social and Personal Relationships, 26(2-3), 291-314. https://doi.org/10.1177/0265407509106719
    Reis, J. C. S., Correia, A., Murai, F., Veloso, A., & Benevenuto, F. (2019). Supervised Learning for Fake News Detection. IEEE Intelligent Systems, 34(2), 76-81. https://doi.org/10.1109/MIS.2019.2899143
    Resende, G., Melo, P., Reis, J.C., Vasconcelos, M., Almeida, J., & Benevenuto, F. (2019). Analyzing Textual (Mis)Information Shared in WhatsApp Groups. Proceedings of the 10th ACM Conference on Web Science.
    Resende, G., Melo, P., Sousa, H., Messias, J., Vasconcelos, M., Almeida, J., & Benevenuto, F. (2019). (Mis)Information Dissemination in WhatsApp: Gathering, Analyzing and Countermeasures.
    Reuters Institute for the Study of Journalism. (2020). Reuters Institute Digital News Report 2020. https://www.digitalnewsreport.org/
    Ringold, D. J. (2002). Boomerang Effects in Response to Public Health Interventions: Some Unintended Consequences in the Alcoholic Beverage Market. Journal of Consumer Policy, 25(1), 27-63. doi:10.1023/a:1014588126336
    Saat, R. M., & Selamat, M. H. (2014). An Examination of Consumer's Attitude towards Corporate Social Responsibility (CSR) Web Communication Using Media Richness Theory. Procedia - Social and Behavioral Sciences, 155, 392-397. https://doi.org/10.1016/j.sbspro.2014.10.311
    Saefi, M., Fauzi, A., Kristiana, E., Adi, W. C., Muchson, M., Setiawan, M. E., Islami, N. N., Ningrum, D. E. A. F., Ikhsan, M. A., & Ramadhani, M. (2020). Survey data of COVID-19-related knowledge, attitude, and practices among indonesian undergraduate students. Data in Brief, 31, 105855. https://doi.org/https://doi.org/10.1016/j.dib.2020.105855
    Schill, D. (2012). The Visual Image and the Political Image: A Review of Visual Communication Research in the Field of Political Communication. Review of Communication, 12(2), 118-142. https://doi.org/10.1080/15358593.2011.653504
    Sears, D., & Freedman, J. (1967). Selective Exposure to Information: A Critical Review. Public Opinion Quarterly, 31. https://doi.org/10.1086/267513
    Shu, K., Bernard, H. R., & Liu, H. (2019). Studying Fake News via Network Analysis: Detection and Mitigation. In N. Agarwal, N. Dokoohaki, & S. Tokdemir (Eds.), Emerging Research Challenges and Opportunities in Computational Social Network Analysis and Mining (pp. 43-65). Springer International Publishing. https://doi.org/10.1007/978-3-319-94105-9_3
    Shu, K., Wang, S., & Liu, H. (2019). Beyond News Contents: The Role of Social Context for Fake News Detection Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining, Melbourne VIC, Australia. https://doi.org/10.1145/3289600.3290994
    Snopes. (2021). Fact Check Ratings. Snopes Media Group. https://www.snopes.com/fact-check-ratings/
    Starbird, K., Arif, A., & Wilson, T. (2019). Disinformation as Collaborative Work: Surfacing the Participatory Nature of Strategic Information Operations. 3(CSCW %J Proc. ACM Hum.- Comput. Interact.), Article 127. doi:10.1145/3359229
    Stray, J. (2019). Institutional Counter-disinformation Strategies in a Networked Democracy. Paper presented at the Companion Proceedings of The 2019 World Wide Web Conference on - WWW '19.
    Strekalova, Y. A., & Krieger, J. L. (2017). A Picture Really is Worth a Thousand Words: Public Engagement with the National Cancer Institute on Social Media. J Cancer Educ, 32(1), 155-157. https://doi.org/10.1007/s13187-015-0901-5
    Sundar, S. S. (2000). Multimedia Effects on Processing and Perception of Online News: A Study of Picture, Audio, and Video Downloads. 77(3), 480-499. https://doi.org/10.1177/107769900007700302
    Tandoc, E. C., Lim, D., & Ling, R. (2020). Diffusion of disinformation: How social media users respond to fake news and why. Journalism, 21(3), 381–398.https://doi.org/10.1177/1464884919868325
    Tandoc, E. C., Ling, R., Westlund, O., Duffy, A., Goh, D., & Zheng Wei, L. (2017). Audiences’ acts of authentication in the age of fake news: A conceptual framework. New Media & Society, 20(8), 2745-2763. doi:10.1177/1461444817731756
    Treharne, T., & Papanikitas, A. (2020). Defining and detecting fake news in health and medicine reporting. J R Soc Med, 113(8), 302-305. https://doi.org/10.1177/0141076820907062
    Trevors, G. J., Muis, K. R., Pekrun, R., Sinatra, G. M., & Winne, P. H. (2016). Identity and Epistemic Emotions During Knowledge Revision: A Potential Account for the Backfire Effect. Discourse Processes, 53(5-6), 339-370. doi:10.1080/0163853x.2015.1136507
    van der Meer, T. G. L. A., & Jin, Y. (2020). Seeking Formula for Misinformation Treatment in Public Health Crises: The Effects of Corrective Information Type and Source. Health Communication, 35(5), 560-575. doi:10.1080/10410236.2019.1573295
    van der Meer, T. G. L. A., & Verhoeven, J. W. M. (2014). Emotional crisis communication. Public Relations Review, 40(3), 526-536. https://doi.org/https://doi.org/10.1016/j.pubrev.2014.03.004
    V-Dem Institute. (2019). Democracy Facing Global Challenges: V-DEM Annual Democracy Report 2019. https://www.v-dem.net/media/filer_public/99/de/99dedd73-f8bc-484c-8b91-44ba601b6e6b/v-dem_democracy_report_2019.pdf
    Vraga, E. K., & Bode, L. (2017). Using Expert Sources to Correct Health Misinformation in Social Media. Science Communication,39(5), 621-645. doi:10.1177/1075547017731776
    Walter, N., & Murphy, S. T. (2018). How to unring the bell: A meta-analytic approach to correction of misinformation. Communication Monographs, 85(3), 423-441. https://doi.org/10.1080/03637751.2018.1467564
    Walter, N., Brooks, J. J., Saucier, C. J., & Suresh, S. (2020). Evaluating the Impact of Attempts to Correct Health Misinformation on Social Media: A Meta-Analysis. Health Communication, 1-9. doi:10.1080/10410236.2020.1794553
    Walter, N., Brooks, J. J., Saucier, C. J., & Suresh, S. (2020). Evaluating the Impact of Attempts to Correct Health Misinformation on Social Media: A Meta-Analysis. Health Communication, 1-9. https://doi.org/10.1080/10410236.2020.1794553
    Wang, Y., Mckee, M., Torbica, A., & Stuckler, D. (2019). Systematic literature review on the spread of health-related misinformation on social media. Social Science & Medicine, 240, e112552. Article. https://doi.org/10.1016/j.socscimed.2019.112552
    Wardle, C.(2017). Information Disorder: Toward an interdisciplinary framework for research and policymaking . https://shorensteincenter.org/information-disorder-framework-for-research-and-policymaking/
    Wardle, C., & Derakhshan, H.(2017). Information Disorder: Toward an interdisciplinary framework for research and policymaking. Retrived from https://shorensteincenter.org/information-disorder-framework-for-research-and-policymaking/#The_Three_Types_of_Information_Disorder
    Wendt, P. R. (1956). THE LANGUAGE OF PICTURES. ETC: A Review of General Semantics, 13(4), 281-288. http://www.jstor.org/stable/42581627
    Wood, T., & Porter, E. (2018). The Elusive Backfire Effect: Mass Attitudes’ Steadfast Factual Adherence. Political Behavior,41(1), 135-163. doi:10.1007/s11109-018-9443-y
    Yale, R. N., Jensen, J. D., Carcioppolo, N., Sun, Y., & Liu, M. (2015). Examining First- and Second-Order Factor Structures for News Credibility. Communication Methods and Measures, 9(3), 152-169. https://doi.org/10.1080/19312458.2015.1061652
    Young, R., Subramanian, R., & Hinnant, A. (2016). Stigmatizing Images in Obesity Health Campaign Messages and Healthy Behavioral Intentions. Health Educ Behav, 43(4), 412-419. doi:10.1177/1090198115604624
    Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker, J. F. (2006). Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness. Information & Management, 43(1), 15-27. https://doi.org/10.1016/j.im.2005.01.004
    Zhang, Y., Sun, Y., & Kim, Y. (2017). The influence of individual differences on consumer's selection of online sources for health information. Computers in Human Behavior, 67, 303-312. doi:10.1016/j.chb.2016.11.008
    Zubiaga A, Liakata M, Procter R, Wong Sak Hoi G, Tolmie P (2016) Analysing How People Orient to and Spread Rumours in Social Media by Looking at Conversational Threads. PLoS ONE 11(3): e0150989. https://doi.org/10.1371/journal.pone.0150989

    無法下載圖示 本全文未授權公開
    QR CODE