研究生: |
陳奕穎 Yi-Ying Chen |
---|---|
論文名稱: |
螢光奈米鑽石及近紅外光螢光染料之螢光能量共振轉移 Fluorescence resonance energy transfer between fluorescent nanodiamonds and near-infrared dyes |
指導教授: |
張煥正
Chang, Huan-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 94 |
中文關鍵詞: | 奈米鑽石 、螢光能量共振轉移 、螢光顯微鏡 、光漂白 |
英文關鍵詞: | diamond nanoparticle, fluorescence resonance energy transfer, fluoresce microscopy, photobleaching |
論文種類: | 學術論文 |
相關次數: | 點閱:182 下載:10 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有NV0及NV-缺陷中心(defect center)的螢光奈米鑽石(fluorescent nanodiamond),是一種擁有許多獨特特性的新穎奈米材料,例如絕佳的生物相容性、容易進行表面修飾、具有較高組織穿透力的紅色螢光以及優異的光穩定性,很適合用來做為近紅外光螢光生物標記(biolabel)。近來,螢光能量共振轉移廣泛地被應用在研究生物分子結構、酵素動力學及蛋白質交互作用上,因此利用螢光奈米鑽石傑出的光穩定性,做為能量轉移之施子(donor),可提供一個以螢光奈米鑽石為主的生物螢光感測器應用。在本篇論文中,我們藉由測量19奈米直徑螢光奈米鑽石與近紅外光染料(IRDye 800 CW)在不同比例下螢光光譜,以及觀察在聚賴胺酸(poly-lysine)基質(matrix)上,23奈米直徑螢光奈米鑽石之螢光強度及螢光生命期(lifetime)在光漂白近紅外光染料前後之變化,可發現螢光能量轉移效率可達30%。同時,藉由蒙地卡羅模擬(Monte Carlo simulation)可估算平均每個螢光奈米鑽石微粒可與鄰近10個染料分子發生螢光能量共振轉移。這對於利用螢光奈米鑽石做為單分子螢光標記或具有奈米級解析度之分子尺(molecular ruler)提供了新的應用平台。
Fluorescent nanodiamond (FND) is a potent fluorescent probe possessing several unique properties such as excellent biocompatibility, facile surface modification, high tissue-penetrable red fluorescence, and outstanding photostability. The neutral and negatively charged nitrogen-vacancy (NV0 and NV-) defect centers embedded in the diamond lattice is responsible for the far red photon emission from this novel nanomaterial. FNDs are excellent biolabels and could be used to probe intricate biochemical processes. Fluorescence resonance energy transfer (FRET) has recently been widely introduced to study biomolecular configuration, enzyme kinetics and protein-protein interactions. Therefore, as a donor, with its perfect photostability, FND paves the way for a FND-based biosensor. In this thesis, we investigate the fluorescence spectra of 19-nm-sized FND conjugated with near-infrared dye (IRDye 800 CW) and demonstrate that it is possible to approach the FRET efficiency up to 30% between 23-nm-sized FND and dye molecules co-embedded in a poly-lysine matrix. We measured the changes in both fluorescence intensity and lifetime of FNDs before and after photobleaching of near-infrared dye. Moreover, according to Monte Carlo simulations, on an average, each FND transfers its energy to 10 dye molecules attached to its periphery. These results set the stage for FND-based single particle bio-labeling or molecular ruler with nanometric resolution.
1. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T., Quantum dots versus organic dyes as fluorescent labels. Nat Meth 2008, 5 (9), 763-775.
2. Johnson, I., Review: Fluorescent probes for living cells Histochemical Journal 1999, 7 (3), 123-140.
3. Tsien, R. Y., The Green Fluorescent Protein. Annual Review of Biochemistry 1998, 67 (1), 509-544.
4. Jennifer Lippincott-Schwartz, N. A.-B. a. G. H. P., Review: Photobleaching and photoactivation: following protein dynamics in living cells. Nature Cell Biology 2003, 5, S7-S14.
5. X. Michalet, F. F. P., L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics. Science 2005, 307, 538-544.
6. R., M., Semiconductor Electroshemistry. Weley-Veh: New York, 2001; Vol. 1st ed.
7. Chan, W. C.; nbsp; W.; Nie, S., Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 1998, 281 (5385), 2016-2018.
8. Mahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J.-P.; Dubertret, B., Towards non-blinking colloidal quantum dots. Nat Mater 2008, 7 (8), 659-664.
9. Wang, X.; Ren, X.; Kahen, K.; Hahn, M. A.; Rajeswaran, M.; Maccagnano-Zacher, S.; Silcox, J.; Cragg, G. E.; Efros, A. L.; Krauss, T. D., Non-blinking semiconductor nanocrystals. Nature 2009, 459 (7247), 686-689.
10. Wang, X.; Kim, Y.-G.; Drew, C.; Ku, B.-C.; Kumar, J.; Samuelson, L. A., Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors. Nano Letters 2004, 4 (2), 331-334.
11. Alivisatos, A. P.; Gu, W.; Larabell, C., QUANTUM DOTS AS CELLULAR PROBES. Annual Review of Biomedical Engineering 2005, 7 (1), 55-76.
12. Yu, S.-J.; Kang, M.-W.; Chang, H.-C.; Chen, K.-M.; Yu, Y.-C., Bright Fluorescent Nanodiamonds: No Photobleaching and Low Cytotoxicity. Journal of the American Chemical Society 2005, 127 (50), 17604-17605.
13. Weissleder, R.; Ntziachristos, V., Shedding light onto live molecular targets. Nat Med 2003, 9 (1), 123-128.
14. Fu, C.-C.; Lee, H.-Y.; Chen, K.; Lim, T.-S.; Wu, H.-Y.; Lin, P.-K.; Wei, P.-K.; Tsao, P.-H.; Chang, H.-C.; Fann, W., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proceedings of the National Academy of Sciences 2007, 104 (3), 727-732.
15. Schrand, A. M.; Huang, H.; Carlson, C.; Schlager, J. J.; sawa, E.; Hussain, S. M.; Dai, L., Are Diamond Nanoparticles Cytotoxic? The Journal of Physical Chemistry B 2006, 111 (1), 2-7.
16. Nguyen, T. T.-B.; Chang, H.-C.; Wu, V. W.-K., Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diamond and Related Materials 16 (4-7), 872-876.
17. Hui, Y. Y.; Zhang, B.; Chang, Y.-C.; Chang, C.-C.; Chang, H.-C.; Hsu, J.-H.; Chang, K.; Chang, F.-H., Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Express 2010, 18 (6), 5896-5905.
18. Xing, Y.; Dai, L., Nanodiamonds for nanomedicine. Nanomedicine 2009, 4 (2), 207-218.
19. Vaijayanthimala, V.; Chang, H.-C., Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 2009, 4 (1), 47-55.
20. contributors, W. Nitrogen-vacancy center. (accessed 22 Apr.).
21. Neugart, F.; Zappe, A.; Jelezko, F.; Tietz, C.; Boudou, J. P.; Krueger, A.; Wrachtrup, J., Dynamics of Diamond Nanoparticles in Solution and Cells. Nano Letters 2007, 7 (12), 3588-3591.
22. Wu, X.; Liu, H.; Liu, J.; Haley, K. N.; Treadway, J. A.; Larson, J. P.; Ge, N.; Peale, F.; Bruchez, M. P., Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotech 2003, 21 (1), 41-46.
23. contributors, w. Diamond. (accessed 29 May).
24. Davies, G., Properties and Growth of Diamond. the Institution of Electric Engineers: London, 1994.
25. Davies, G.; Lawson, S. C.; Collins, A. T.; Mainwood, A.; Sharp, S. J., Vacancy-related centers in diamond. Physical Review B 1992, 46 (20), 13157.
26. Mita, Y.; et al., Photochromism of H2 and H3 centres in synthetic type Ib diamonds. Journal of Physics: Condensed Matter 1990, 2 (43), 8567.
27. Davies, G., The effect of nitrogen impurity on the annealing of radiation damage in diamond. Journal of Physics C: Solid State Physics 1972, 5 (17), 2534.
28. Jones, R. G., J. P., Theory of aggregation of nitrogen in diamond. 2000.
29. Chang, H.-C.; et al., Nanodiamond as a Possible Carrier of Extended Red Emission. The Astrophysical Journal Letters 2006, 639 (2), L63.
30. 宋建民, 奈米鑽石的大千世界. 2004.
31. Clegg, R. M., Fluorescence Resonance Energy Transfer. In Fluorescence Imaging Spectroscopy and Microscopy, Xue Wang, B. H., Ed. John Willey & Sons, Inc: New York, 1996.
32. Föster, T., Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 1948, 437 (1-2), 55-75.
33. Epe, B.; Steinhöuser, K. G.; Woolley, P., Theory of measurement of Förster-type energy transfer in macromolecules. Proceedings of the National Academy of Sciences of the United States of America 1983, 80 (9), 2579-2583.
34. Clegg, R. M., Fluorescence resonance energy transfer. Current Opinion in Biotechnology 1995, 6 (1), 103-110.
35. Dietrich, A.; Buschmann, V.; Mler, C.; Sauer, M., Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data. Reviews in Molecular Biotechnology 2002, 82 (3), 211-231.
36. B. W. Van der Meer, G. C., S.-Y. S. Chen, Resonance Energy Transfer: Theory and Data. 1994.
37. Lakowicz, J. R., Principles of Fluorescence Spectroscopy. 3rd ed.; Springer: New York, 2006; p 954 pages.
38. van der Meer, B. W., Kappa-squared: from nuisance to new sense. Reviews in Molecular Biotechnology 2002, 82 (3), 181-196.
39. Greenleaf, W. J.; Woodside, M. T.; Block, S. M., High-Resolution, Single-Molecule Measurements of Biomolecular Motion. Annual Review of Biophysics and Biomolecular Structure 2007, 36 (1), 171-190.
40. Piston, D. W.; Kremers, G.-J., Fluorescent protein FRET: the good, the bad and the ugly. Trends in Biochemical Sciences 2007, 32 (9), 407-414.
41. Berney, C.; Danuser, G., FRET or no FRET: A quantitative comparison. Biophysical Journal 2003, 84 (6), 3992-4010.
42. Chang, Y.-R.; Lee, H.-Y.; Chen, K.; Chang, C.-C.; Tsai, D.-S.; Fu, C.-C.; Lim, T.-S.; Tzeng, Y.-K.; Fang, C.-Y.; Han, C.-C.; Chang, H.-C.; Fann, W., Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nano 2008, 3 (5), 284-288.
43. contributors, W. Ion implantation. (accessed 5 Apr. 2010).
44. CEM CEM Corporation: Microwave Basics. (accessed 4 April).
45. contributors, W. Rotatory evaporator. (accessed 24 Apr.).
46. Corporation, K. KUBOTA-Model 3780, High Speed Micro Refrigerated Centrifuge. Product Overview. (accessed 14 May).
47. Kensal E van Holde, C. J., Pui Shing Ho, Methods for the separation and Characterization of Macromolecules. In Principles of Physical BIochemistry, Carlson, G., Ed. Pearson Education, Inc.: NJ, 2006.
48. Bruce J. Berne, R. P., Dynamic light scattering: with applicaitons to chemistry, biology and physics. Dover Publications: New York, 2000.
49. Dr. Wolfgang Becker, H. H. Time-correlated single photon counting: General measurement principle (accessed 31 May).
50. Desmond V. O’Connor, D. P., Time-correlated single photon counting. 1984.
51. PicoQuant, TCSPC with USB interface manual.
52. Osswald, S.; Yushin, G.; Mochalin, V.; Kucheyev, S. O.; Gogotsi, Y., Control of sp2/sp3 Carbon Ratio and Surface Chemistry of Nanodiamond Powders by Selective Oxidation in Air. Journal of the American Chemical Society 2006, 128 (35), 11635-11642.
53. Mohan, N.; Tzeng, Y.-K.; Yang, L.; Chen, Y.-Y.; Hui, Y. Y.; Fang, C.-Y.; Chang, H.-C., Sub-20-nm Fluorescent Nanodiamonds as Photostable Biolabels and Fluorescence Resonance Energy Transfer Donors. Advanced Materials 2010, 22 (7), 843-847.
54. Sam, S.; Touahir, L.; Salvador Andresa, J.; Allongue, P.; Chazalviel, J. N.; Gouget-Laemmel, A. C.; Henry de Villeneuve, C.; Moraillon, A.; Ozanam, F.; Gabouze, N.; Djebbar, S., Semiquantitative Study of the EDC/NHS Activation of Acid Terminal Groups at Modified Porous Silicon Surfaces. Langmuir 2009, 26 (2), 809-814.
55. PicoQuant, Manual of PicoHarp 300.
56. Tauber, M. J.; Mathies, R. A., Resonance Raman spectra and vibronic analysis of the aqueous solvated electron. Chemical Physics Letters 2002, 354 (5-6), 518-526.
57. Max, J.-J.; Chapados, C., Isotope effects in liquid water by infrared spectroscopy. III. H[sub 2]O and D[sub 2]O spectra from 6000 to 0 cm[sup -1]. The Journal of Chemical Physics 2009, 131 (18), 184505-13.
58. M. E. J. Newman, G. T. B., Monte Carlo Methods in Statistical Physics. Oxford University Press Inc.: New York, 1999.
59. Simons, J., An Introduction to Theoretical Chemistry. United Kindom at the University Press: Cambridge, 2003.
60. Frederix, P. L. T. M.; de Beer, E. L.; Hamelink, W.; Gerritsen, H. C., Dynamic Monte Carlo Simulations to Model FRET and Photobleaching in Systems with Multiple Donor-Acceptor Interactions. The Journal of Physical Chemistry B 2002, 106 (26), 6793-6801.
61. contributors, W. Polar coordinate system. (accessed 19 May).
62. Jelezko, F.; Wrachtrup, J., Single defect centres in diamond: A review. physica status solidi (a) 2006, 203 (13), 3207-3225.
63. Max, J.-J.; Chapados, C., Isotope effects in liquid water by infrared spectroscopy. III. H2O and D2O spectra from 6000 to 0 cm-1. The Journal of Chemical Physics 2009, 131 (18), 184505.
64. Peng, X.; Chen, H.; Draney, D. R.; Volcheck, W.; Schutz-Geschwender, A.; Olive, D. M., A nonfluorescent, broad-range quencher dye for Föster resonance energy transfer assays. Analytical Biochemistry 2009, 388 (2), 220-228.
65. Yun, C. S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N. O.; Strouse, G. F., Nanometal Surface Energy Transfer in Optical Rulers, Breaking the FRET Barrier. Journal of the American Chemical Society 2005, 127 (9), 3115-3119.