簡易檢索 / 詳目顯示

研究生: 林洧辰
Lin, Wei-Chen
論文名稱: 評估液相層析條件對代謝體學於塑膠微粒毒性研究的影響
Evaluation of LC Conditions on Metabolomics in Microplastic Toxicity
指導教授: 陳頌方
Sung-Fang Chen
口試委員: 陳頌方
Sung-Fang Chen
陳怡婷
Chen, Yi-Ting
陳百昇
Chen, Pai-Sheng
口試日期: 2024/07/22
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 123
中文關鍵詞: 代謝體學液相層析條件優化塑膠微粒
英文關鍵詞: Metabolomics, LC-MS, Microplastics
研究方法: 實驗設計法觀察研究
DOI URL: http://doi.org/10.6345/NTNU202500334
論文種類: 學術論文
相關次數: 點閱:59下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,塑膠微粒汙染成為國際關注的議題,許多文獻指出生物體攝入塑膠微粒後,會導致炎症、細胞壞死等毒性影響。因此,眾多研究正在探討這些毒性背後的運作機制。液相層析-質譜聯用(LC-MS)是一種強大的工具,適用於疾病相關差異代謝物的非靶向和靶向分析。然而,不同LC條件之間缺乏系統比較,限制了分析效率。在本研究中,我們使用了Amide、Silica、Obelisc N、CN、F5和C18六種管柱,並使用甲酸、乙酸、甲酸銨、乙酸銨、氫氧化銨五種移動相添加劑,綜合出十六種層析條件,探討了不同LC條件對小鼠中受塑膠微粒毒性影響的代謝物的影響。我們將研究分為電極模式、管柱、添加劑三大部分進行討論。總體而言,RPLC在負電模式下增強了代謝物的鑑定,並檢測到更多的碳水化合物和脂類。而HILIC管柱在正離子模式下顯示出更強的檢測能力,增加了胺基酸、核苷酸和有機酸的檢測。我們也發現,使用甲酸作為添加劑比乙酸能夠得到更好的峰型。最後,我們結合了HILIC和RPLC兩種層析模式,獲得代謝物總和的最大值,找出了小鼠攝入塑膠微粒後產生的差異代謝物。本研究強調了優化LC條件的重要性,揭示了塑膠微粒在生物系統中對生化影響的顯著見解,並成功找出了其毒性影響。

    In recent years, plastic microbead pollution has become an issue of international concern. Studies indicate that ingesting plastic microbeads can cause toxic effects such as inflammation and cell necrosis. As a result, researchers are investigating the mechanisms behind these effects. Liquid chromatography-mass spectrometry (LC-MS) is a powerful tool for both untargeted and targeted analysis of disease-related metabolites, but the lack of systematic comparisons between different LC conditions limits efficiency. In this study, we used six columns (Amide, Silica, Obelisc N, CN, F5, and C18) and five mobile phase additives (formic acid, acetic acid, ammonium formate, ammonium acetate, and ammonium hydroxide), creating sixteen chromatographic conditions. We examined the effects of these conditions on metabolites in mice affected by microplastic toxicity, focusing on electrode mode, column type, and additives. RPLC in negative ion mode enhanced metabolite identification and detected more carbohydrates and lipids. In positive ion mode, HILIC columns increased the detection of amino acids, nucleotides, and organic acids. Formic acid as an additive resulted in better peak shapes than acetic acid. Combining HILIC and RPLC modes maximized the identification of differential metabolites in mice after ingesting plastic microbeads. This study underscores the importance of optimizing LC conditions and provides significant insights into the biochemical impacts of microplastics.

    第1章 緒論 1 1.1. 塑膠微粒 1 1.2. 代謝體學 3 1.2.1. 靶向與非靶向 3 1.2.2. 分析平台 4 1.3. 質譜儀應用 5 1.3.1. 電灑游離法 5 1.3.2. 四極桿飛行時間質譜儀 5 1.3.3. 掃描模式 6 1.4. 液相層析應用 8 1.4.1. 移動相 8 1.4.2. 固定相 9 1.5. 數據校正 10 1.5.1. 實驗誤差 10 1.5.2. 常見的校正方法 10 1.5.3. 同位素內標校正法 11 1.6. 實驗動機 12 第2章 材料與方法 13 2.1. 實驗流程圖 13 2.2. 材料 14 2.2.1. 化學藥品 14 2.2.2. 儀器 15 2.3. 動物實驗 16 2.3.1. 實驗簡介 16 2.3.2. 毒性測試組 17 2.3.3. 生物累積組 17 2.3.4. 代謝物萃取 18 2.4. 液相層析儀 19 2.4.1. 儀器參數 19 2.4.2. 層析條件 19 2.4.3. 移動相條件 22 2.5. 質譜儀 26 2.5.1. 儀器參數 26 2.5.2. 掃描模式 26 2.6. 樣品製備 27 2.6.1. 內部標準品 27 2.6.2. 代謝物萃取 27 2.6.3. 批次設定 28 2.7. 數據處理 29 2.7.1. MS-DIAL 29 2.7.2. MetaboAnalyst 6.0 30 第3章 結果與討論 31 3.1. 動物實驗結果 31 3.1.1. 體重變化分析 31 3.1.2. 組織切片分析 35 3.1.3. 血清生化分析 38 3.2. 內部標準品結果 40 3.2.1. 濃度優化 40 3.2.2. 校正成果 42 3.3. LC-MS結果 44 3.3.1. 整體結果 44 3.3.2. 電極模式 51 3.3.3. 管柱 55 3.3.4. 添加劑 66 3.4. 差異代謝物分析 71 3.4.1. 層析條件整合 72 3.4.2. Amide + F5層析條件組合 75 3.4.3. Amide + C18層析條件組合 78 第4章 結論 81 參考文獻 82 附錄 92

    (1) Lebreton, L.; Andrady, A. Future Scenarios of Global Plastic Waste Generation and Disposal. Palgrave Commun. 2019, 5 (1), 1–11. https://doi.org/10.1057/s41599-018-0212-7.
    (2) Fotopoulou, K. N.; Karapanagioti, H. K. Degradation of Various Plastics in the Environment. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Takada, H., Karapanagioti, H. K., Eds.; Springer International Publishing: Cham, 2019; pp 71–92. https://doi.org/10.1007/698_2017_11.
    (3) Zhao, X.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A. J.; Ozcan, S. Plastic Waste Upcycling toward a Circular Economy. Chem. Eng. J. 2022, 428, 131928. https://doi.org/10.1016/j.cej.2021.131928.
    (4) Hale, R. C.; Seeley, M. E.; La Guardia, M. J.; Mai, L.; Zeng, E. Y. A Global Perspective on Microplastics. J. Geophys. Res. Oceans 2020, 125 (1), e2018JC014719. https://doi.org/10.1029/2018JC014719.
    (5) Eriksen, M.; Lebreton, L. C. M.; Carson, H. S.; Thiel, M.; Moore, C. J.; Borerro, J. C.; Galgani, F.; Ryan, P. G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLOS ONE 2014, 9 (12), e111913. https://doi.org/10.1371/journal.pone.0111913.
    (6) Dris, R.; Imhof, H.; Sanchez, W.; Gasperi, J.; Galgani, F.; Tassin, B.; Laforsch, C. Beyond the Ocean: Contamination of Freshwater Ecosystems with (Micro-)Plastic Particles. Environ. Chem. 2015, 12 (5), 539–550. https://doi.org/10.1071/EN14172.
    (7) Mishra, A. K.; Singh, J.; Mishra, P. P. Microplastics in Polar Regions: An Early Warning to the World’s Pristine Ecosystem. Sci. Total Environ. 2021, 784, 147149. https://doi.org/10.1016/j.scitotenv.2021.147149.
    (8) Nizzetto, L.; Futter, M.; Langaas, S. Are Agricultural Soils Dumps for Microplastics of Urban Origin? Environ. Sci. Technol. 2016, 50 (20), 10777–10779. https://doi.org/10.1021/acs.est.6b04140.
    (9) Yao, Y.; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of Microplastics in Indoor and Ambient Air in Northern New Jersey. Environ. Res. 2022, 207, 112142. https://doi.org/10.1016/j.envres.2021.112142.
    (10) Kwon, J.-H.; Kim, J.-W.; Pham, T. D.; Tarafdar, A.; Hong, S.; Chun, S.-H.; Lee, S.-H.; Kang, D.-Y.; Kim, J.-Y.; Kim, S.-B.; Jung, J. Microplastics in Food: A Review on Analytical Methods and Challenges. Int. J. Environ. Res. Public. Health 2020, 17 (18), 6710. https://doi.org/10.3390/ijerph17186710.
    (11) Li, Z.; Chao, M.; He, X.; Lan, X.; Tian, C.; Feng, C.; Shen, Z. Microplastic Bioaccumulation in Estuary-Caught Fishery Resource. Environ. Pollut. 2022, 306, 119392. https://doi.org/10.1016/j.envpol.2022.119392.
    (12) Lu, X.; Zhang, J.-X.; Zhang, L.; Wu, D.; Tian, J.; Yu, L.-J.; He, L.; Zhong, S.; Du, H.; Deng, D.-F.; Ding, Y.-Z.; Wen, H.; Jiang, M. Comprehensive Understanding the Impacts of Dietary Exposure to Polyethylene Microplastics on Genetically Improved Farmed Tilapia (Oreochromis Niloticus): Tracking from Growth, Microbiota, Metabolism to Gene Expressions. Sci. Total Environ. 2022, 841, 156571. https://doi.org/10.1016/j.scitotenv.2022.156571.
    (13) Medriano, C. A.; Bae, S. Acute Exposure to Microplastics Induces Metabolic Disturbances and Gut Dysbiosis in Adult Zebrafish (Danio Rerio). Ecotoxicol. Environ. Saf. 2022, 245, 114125. https://doi.org/10.1016/j.ecoenv.2022.114125.
    (14) Xiong, X.; Gao, L.; Chen, C.; Zhu, K.; Luo, P.; Li, L. The Microplastics Exposure Induce the Kidney Injury in Mice Revealed by RNA-Seq. Ecotoxicol. Environ. Saf. 2023, 256, 114821. https://doi.org/10.1016/j.ecoenv.2023.114821.
    (15) Tao, J.; Deng, P.; Lin, M.; Chen, C.; Ma, Q.; Yang, L.; Zhang, W.; Luo, Y.; Chen, S.; Pi, H.; Zhou, Z.; Yu, Z. Long-Term Exposure to Polystyrene Microplastics Induces Hepatotoxicity by Altering Lipid Signatures in C57BL/6J Mice. Chemosphere 2024, 347, 140716. https://doi.org/10.1016/j.chemosphere.2023.140716.
    (16) Wang, X.; Liu, L.; Zheng, H.; Wang, M.; Fu, Y.; Luo, X.; Li, F.; Wang, Z. Polystyrene Microplastics Impaired the Feeding and Swimming Behavior of Mysid Shrimp Neomysis Japonica. Mar. Pollut. Bull. 2020, 150, 110660. https://doi.org/10.1016/j.marpolbul.2019.110660.
    (17) Han, Y.; Shi, W.; Tang, Y.; Zhou, W.; Sun, H.; Zhang, J.; Yan, M.; Hu, L.; Liu, G. Microplastics and Bisphenol A Hamper Gonadal Development of Whiteleg Shrimp (Litopenaeus Vannamei) by Interfering with Metabolism and Disrupting Hormone Regulation. Sci. Total Environ. 2022, 810, 152354. https://doi.org/10.1016/j.scitotenv.2021.152354.
    (18) Wang, X.; Huang, W.; Wei, S.; Shang, Y.; Gu, H.; Wu, F.; Lan, Z.; Hu, M.; Shi, H.; Wang, Y. Microplastics Impair Digestive Performance but Show Little Effects on Antioxidant Activity in Mussels under Low pH Conditions. Environ. Pollut. 2020, 258, 113691. https://doi.org/10.1016/j.envpol.2019.113691.
    (19) Liu, Z.; Zhuan, Q.; Zhang, L.; Meng, L.; Fu, X.; Hou, Y. Polystyrene Microplastics Induced Female Reproductive Toxicity in Mice. J. Hazard. Mater. 2022, 424, 127629. https://doi.org/10.1016/j.jhazmat.2021.127629.
    (20) Deng, Y.; Zhang, Y.; Lemos, B.; Ren, H. Tissue Accumulation of Microplastics in Mice and Biomarker Responses Suggest Widespread Health Risks of Exposure. Sci. Rep. 2017, 7 (1), 46687. https://doi.org/10.1038/srep46687.
    (21) Lee, S.; Kang, K.-K.; Sung, S.-E.; Choi, J.-H.; Sung, M.; Seong, K.-Y.; Lee, S.; Yang, S. Y.; Seo, M.-S.; Kim, K. Toxicity Study and Quantitative Evaluation of Polyethylene Microplastics in ICR Mice. Polymers 2022, 14 (3), 402. https://doi.org/10.3390/polym14030402.
    (22) Viršek, M. K.; Lovšin, M. N.; Koren, Š.; Kržan, A.; Peterlin, M. Microplastics as a Vector for the Transport of the Bacterial Fish Pathogen Species Aeromonas Salmonicida. Mar. Pollut. Bull. 2017, 125 (1), 301–309. https://doi.org/10.1016/j.marpolbul.2017.08.024.
    (23) Zhao, T.; Tan, L.; Han, X.; Wang, X.; Zhang, Y.; Ma, X.; Lin, K.; Wang, R.; Ni, Z.; Wang, J.; Wang, J. Microplastic-Induced Apoptosis and Metabolism Responses in Marine Dinoflagellate, Karenia Mikimotoi. Sci. Total Environ. 2022, 804, 150252. https://doi.org/10.1016/j.scitotenv.2021.150252.
    (24) Kim, J.; Maruthupandy, M.; An, K. S.; Lee, K. H.; Jeon, S.; Kim, J.-S.; Cho, W.-S. Acute and Subacute Repeated Oral Toxicity Study of Fragmented Microplastics in Sprague-Dawley Rats. Ecotoxicol. Environ. Saf. 2021, 228, 112964. https://doi.org/10.1016/j.ecoenv.2021.112964.
    (25) Lay, J. O.; Liyanage, R.; Borgmann, S.; Wilkins, C. L. Problems with the “Omics.” TrAC Trends Anal. Chem. 2006, 25 (11), 1046–1056. https://doi.org/10.1016/j.trac.2006.10.007.
    (26) Multi-omics approaches to disease | Genome Biology. https://link.springer.com/article/10.1186/s13059-017-1215-1 (accessed 2024-06-04).
    (27) Metabolomics:  The Greatest Omics of Them All? | Analytical Chemistry. https://pubs.acs.org/doi/full/10.1021/ac0614341 (accessed 2024-06-04).
    (28) Cajka, T.; Fiehn, O. Toward Merging Untargeted and Targeted Methods in Mass Spectrometry-Based Metabolomics and Lipidomics. Anal. Chem. 2016, 88 (1), 524–545. https://doi.org/10.1021/acs.analchem.5b04491.
    (29) Emwas, A.-H.; Roy, R.; McKay, R. T.; Tenori, L.; Saccenti, E.; Gowda, G. A. N.; Raftery, D.; Alahmari, F.; Jaremko, L.; Jaremko, M.; Wishart, D. S. NMR Spectroscopy for Metabolomics Research. Metabolites 2019, 9 (7), 123. https://doi.org/10.3390/metabo9070123.
    (30) Beale, D. J.; Pinu, F. R.; Kouremenos, K. A.; Poojary, M. M.; Narayana, V. K.; Boughton, B. A.; Kanojia, K.; Dayalan, S.; Jones, O. A. H.; Dias, D. A. Review of Recent Developments in GC–MS Approaches to Metabolomics-Based Research. Metabolomics 2018, 14 (11), 152. https://doi.org/10.1007/s11306-018-1449-2.
    (31) Kuan-Lu Wu; Wan-Rou Liao; Wei-Chen Lin; Sung-Fang Chen. A Review of Liquid Chromatography-Mass Spectrometry Strategies for the Analyses of Metabolomics Induced by Microplastics. Separations 2023, 10 (4), 257. https://doi.org/10.3390/separations10040257.
    (32) Cech, N. B.; Enke, C. G. Practical Implications of Some Recent Studies in Electrospray Ionization Fundamentals. Mass Spectrom. Rev. 2001, 20 (6), 362–387. https://doi.org/10.1002/mas.10008.
    (33) Ferrer, I.; Thurman, E. M. Liquid Chromatography/Time-of-Flight/Mass Spectrometry (LC/TOF/MS) for the Analysis of Emerging Contaminants. TrAC Trends Anal. Chem. 2003, 22 (10), 750–756. https://doi.org/10.1016/S0165-9936(03)01013-6.
    (34) Bonner, R.; Hopfgartner, G. Swath Acquisition Mode for Drug Metabolism and Metabolomics Investigations. Bioanalysis 2016. https://doi.org/10.4155/bio-2016-0141.
    (35) Arnhard, K.; Gottschall, A.; Pitterl, F.; Oberacher, H. Applying ‘Sequential Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra’ (SWATH) for Systematic Toxicological Analysis with Liquid Chromatography-High-Resolution Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2015, 407 (2), 405–414. https://doi.org/10.1007/s00216-014-8262-1.
    (36) Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12 (6), 523–526. https://doi.org/10.1038/nmeth.3393.
    (37) Souihi, A.; Mohai, M. P.; Palm, E.; Malm, L.; Kruve, A. MultiConditionRT: Predicting Liquid Chromatography Retention Time for Emerging Contaminants for a Wide Range of Eluent Compositions and Stationary Phases. J. Chromatogr. A 2022, 1666, 462867. https://doi.org/10.1016/j.chroma.2022.462867.
    (38) Kafeenah, H. I. S.; Osman, R.; Bakar, N. K. A. Effect of Mobile Phase pH on the Electrospray Ionization Efficiency and Qualitative Analysis of Pharmaceuticals in ESI + LC-MS/MS. J. Chromatogr. Sci. 2019, 57 (9), 847–854. https://doi.org/10.1093/chromsci/bmz061.
    (39) Huffman, B. A.; Poltash, M. L.; Hughey, C. A. Effect of Polar Protic and Polar Aprotic Solvents on Negative-Ion Electrospray Ionization and Chromatographic Separation of Small Acidic Molecules. Anal. Chem. 2012, 84 (22), 9942–9950. https://doi.org/10.1021/ac302397b.
    (40) Souihi, A.; Mohai, M. P.; Martin, J. W.; Kruve, A. Mobile Phase and Column Chemistry Selection for High Sensitivity Non-Targeted LC/ESI/HRMS Screening of Water. Anal. Chim. Acta 2023, 1274, 341573. https://doi.org/10.1016/j.aca.2023.341573.
    (41) Taraji, M.; Haddad, P. R.; Amos, R. I. J.; Talebi, M.; Szucs, R.; Dolan, J. W.; Pohl, C. A. Chemometric-Assisted Method Development in Hydrophilic Interaction Liquid Chromatography: A Review. Anal. Chim. Acta 2018, 1000, 20–40. https://doi.org/10.1016/j.aca.2017.09.041.
    (42) Malm, L.; Palm, E.; Souihi, A.; Plassmann, M.; Liigand, J.; Kruve, A. Guide to Semi-Quantitative Non-Targeted Screening Using LC/ESI/HRMS. Molecules 2021, 26 (12), 3524. https://doi.org/10.3390/molecules26123524.
    (43) Madhusudanan, K. P. Tandem Mass Spectra of Ammonium Adducts of Monosaccharides: Differentiation of Diastereomers. J. Mass Spectrom. 2006, 41 (8), 1096–1104. https://doi.org/10.1002/jms.1085.
    (44) Zeng, Z.; Liu, X.; Dai, W.; Yin, P.; Zhou, L.; Huang, Q.; Lin, X.; Xu, G. Ion Fusion of High-Resolution LC–MS-Based Metabolomics Data to Discover More Reliable Biomarkers. Anal. Chem. 2014, 86 (8), 3793–3800. https://doi.org/10.1021/ac500878x.
    (45) Tang, D.-Q.; Zou, L.; Yin, X.-X.; Ong, C. N. HILIC-MS for Metabolomics: An Attractive and Complementary Approach to RPLC-MS. Mass Spectrom. Rev. 2016, 35 (5), 574–600. https://doi.org/10.1002/mas.21445.
    (46) Lämmerhofer, M. HILIC and Mixed-Mode Chromatography: The Rising Stars in Separation Science. J. Sep. Sci. 2010, 33 (6–7), 679–680. https://doi.org/10.1002/jssc.201090015.
    (47) De Livera, A. M.; Dias, D. A.; De Souza, D.; Rupasinghe, T.; Pyke, J.; Tull, D.; Roessner, U.; McConville, M.; Speed, T. P. Normalizing and Integrating Metabolomics Data. Anal. Chem. 2012, 84 (24), 10768–10776. https://doi.org/10.1021/ac302748b.
    (48) Scholz, M.; Gatzek, S.; Sterling, A.; Fiehn, O.; Selbig, J. Metabolite Fingerprinting: Detecting Biological Features by Independent Component Analysis. Bioinformatics 2004, 20 (15), 2447–2454. https://doi.org/10.1093/bioinformatics/bth270.
    (49) Dunn, W. B.; Wilson, I. D.; Nicholls, A. W.; Broadhurst, D. The Importance of Experimental Design And Qc Samples in Large-Scale And Ms-Driven Untargeted Metabolomic Studies of Humans. Bioanalysis 2012, 4 (18), 2249–2264. https://doi.org/10.4155/bio.12.204.
    (50) Chen, D.; Han, W.; Su, X.; Li, L.; Li, L. Overcoming Sample Matrix Effect in Quantitative Blood Metabolomics Using Chemical Isotope Labeling Liquid Chromatography Mass Spectrometry. Anal. Chem. 2017, 89 (17), 9424–9431. https://doi.org/10.1021/acs.analchem.7b02240.
    (51) Cole, M.; Coppock, R.; Lindeque, P. K.; Altin, D.; Reed, S.; Pond, D. W.; Sørensen, L.; Galloway, T. S.; Booth, A. M. Effects of Nylon Microplastic on Feeding, Lipid Accumulation, and Moulting in a Coldwater Copepod. Environ. Sci. Technol. 2019, 53 (12), 7075–7082. https://doi.org/10.1021/acs.est.9b01853.
    (52) Veerappan, A.; Miyazaki, S.; Kadarkaraisamy, M.; Ranganathan, D. Acute and Subacute Toxicity Studies of Aegle Marmelos Corr., an Indian Medicinal Plant. Phytomedicine 2007, 14 (2), 209–215. https://doi.org/10.1016/j.phymed.2006.05.004.
    (53) Wei, X.; Shi, X.; Kim, S.; Patrick, J. S.; Binkley, J.; Kong, M.; McClain, C.; Zhang, X. Data Dependent Peak Model Based Spectrum Deconvolution for Analysis of High Resolution LC-MS Data. Anal. Chem. 2014, 86 (4), 2156–2165. https://doi.org/10.1021/ac403803a.
    (54) Yao, Y.; Zhang, H.; Tu, L.; Yu, T.; Chen, B.; Huang, P.; Hu, Y.; Luan, T. Normalization Approach by a Reference Material to Improve LC–MS-Based Metabolomic Data Comparability of Multibatch Samples. Anal. Chem. 2023, 95 (2), 1309–1317. https://doi.org/10.1021/acs.analchem.2c04188.
    (55) Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; C. Ewald, J.; Fraser, P. D.; Giavalisco, P.; Hall, R. D.; Heinemann, M.; Link, H.; Luo, J.; Neumann, S.; Nielsen, J.; Perez de Souza, L.; Saito, K.; Sauer, U.; Schroeder, F. C.; Schuster, S.; Siuzdak, G.; Skirycz, A.; Sumner, L. W.; Snyder, M. P.; Tang, H.; Tohge, T.; Wang, Y.; Wen, W.; Wu, S.; Xu, G.; Zamboni, N.; Fernie, A. R. Mass Spectrometry-Based Metabolomics: A Guide for Annotation, Quantification and Best Reporting Practices. Nat. Methods 2021, 18 (7), 747–756. https://doi.org/10.1038/s41592-021-01197-1.
    (56) Cajka, T.; Hricko, J.; Rudl Kulhava, L.; Paucova, M.; Novakova, M.; Kuda, O. Optimization of Mobile Phase Modifiers for Fast LC-MS-Based Untargeted Metabolomics and Lipidomics. Int. J. Mol. Sci. 2023, 24 (3), 1987. https://doi.org/10.3390/ijms24031987.
    (57) Jaeger, C.; Lisec, J. Towards Unbiased Evaluation of Ionization Performance in LC-HRMS Metabolomics Method Development. Metabolites 2022, 12 (5), 426. https://doi.org/10.3390/metabo12050426.
    (58) Obłąk, E.; Futoma-Kołoch, B.; Wieczyńska, A. Biological Activity of Quaternary Ammonium Salts and Resistance of Microorganisms to These Compounds. World J. Microbiol. Biotechnol. 2021, 37 (2), 22. https://doi.org/10.1007/s11274-020-02978-0.
    (59) Wang, Y.; Feng, R.; Wang, R.; Yang, F.; Li, P.; Wan, J.-B. Enhanced MS/MS Coverage for Metabolite Identification in LC-MS-Based Untargeted Metabolomics by Target-Directed Data Dependent Acquisition with Time-Staggered Precursor Ion List. Anal. Chim. Acta 2017, 992, 67–75. https://doi.org/10.1016/j.aca.2017.08.044.
    (60) Normal-Phase Chromatography - an overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/chemistry/normal-phase-chromatography (accessed 2024-07-16).
    (61) Monnin, C.; Ramrup, P.; Daigle-Young, C.; Vuckovic, D. Improving Negative Liquid Chromatography/Electrospray Ionization Mass Spectrometry Lipidomic Analysis of Human Plasma Using Acetic Acid as a Mobile-Phase Additive. Rapid Commun. Mass Spectrom. 2018, 32 (3), 201–211. https://doi.org/10.1002/rcm.8024.
    (62) Zhang, X.; Clausen, M. R.; Zhao, X.; Zheng, H.; Bertram, H. C. Enhancing the Power of Liquid Chromatography–Mass Spectrometry-Based Urine Metabolomics in Negative Ion Mode by Optimization of the Additive. Anal. Chem. 2012, 84 (18), 7785–7792. https://doi.org/10.1021/ac3013835.
    (63) Reçber, T.; Nemutlu, E.; Beksaç, K.; Aksoy, S.; Kır, S. Optimization and Validation of a HILIC-LC-ESI-MS/MS Method for the Simultaneous Analysis of Targeted Metabolites: Cross Validation of Untargeted Metabolomic Studies for Early Diagnosis of Breast Cancer. Microchem. J. 2020, 159, 105559. https://doi.org/10.1016/j.microc.2020.105559.

    無法下載圖示 本全文未授權公開
    QR CODE