簡易檢索 / 詳目顯示

研究生: 王聖寶
Wang, Sheng-Pao
論文名稱: 銅合金與鋁合金異質摩擦攪拌銲接之接合特性研究
Mechanical properties and microstructure of dissimilar friction stir welded copper alloy and aluminum alloy
指導教授: 程金保
Cheng, Chin-Pao
口試委員: 程金保
Cheng, Chin-Pao
王星豪
Wang, Shing-Hoa
黃智威
Huang, Chih-Wei
口試日期: 2023/07/28
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 108
中文關鍵詞: 摩擦攪拌銲接鋁合金純銅銅合金介金屬化合物
英文關鍵詞: friction stir welding, aluminum alloy, copper, copper alloy, intermetallic compound
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202301716
論文種類: 學術論文
相關次數: 點閱:131下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用摩擦攪拌銲接製程於 CuZn35黃銅同質對接、 CuZn35黃銅與 6061-T6鋁合金,及C1100純銅與 6061-T6鋁合金接合之研究,攪拌工具皆使用鎢鋼材質,探討不同的進給與轉速配合下,對於銲接件接合特性之影響。為了分析異質接合之品質,本研究也針對轉速對溫度變化造成之影響進行監測。黃銅同質摩擦攪拌銲接部分,本研究將攪拌棒設定在中心位置,轉速700 rpm、進給速率50 mm/min的條件下,可成功接合,且銲道無缺陷,在攪拌區因晶粒細化使得硬度提高,銲件之抗拉強度與延伸率達到母材之90%以上%。在黃銅及鋁合金之異質對接中,使用偏移量0至1 mm,並使用0至3度傾斜角進行銲接,實驗結果顯示偏移量設定在偏鋁側1 mm,於轉速設定900 rpm、進給速率設定為 30 mm/min,且在傾斜角為3度的條件下可有效接合,沒有缺陷產生,在攪拌區發現鋁銅化合物產生,使得硬度提高,但銲件接合強度不佳,最高抗拉強度約80 MPa 左右,拉伸破壞位置均位於接合界面。在純銅及鋁合金之異質接合中,使用偏移量1 mm,傾斜角1.5度進行銲接,當轉速設定在1700、1800及1900 rpm、進給速率控制在30 mm/min之條件下可達成銲道無缺陷的接合。轉速在1700及1800 rpm時攪拌區觀察到鋁銅化合物生成,硬度增加,但拉伸性質不佳,當轉速提高到1900 rpm時,鋁銅化合物減少,使得銲件的拉伸性質獲得改善。

    This study applied the friction stir welding process to investigate the joining of CuZn35 brass, the joining of CuZn35 brass with 6061-T6 aluminum alloy, and the joining of C1100 pure copper with 6061-T6 aluminum alloy. Tungsten steel was utilized as the material for the stirring tool. The study aimed to explore the influence of different combinations of feed rates and rotational speeds on the joint characteristics of the welded components. In order to analyze the quality of dissimilar joints, the study also monitored the effect of rotational speed on temperature variations.
    For the homogeneous friction stir welding of CuZn35 brass, with the stirring pin positioned at the central location, successful joints were achieved under conditions of a rotational speed of 700 rpm and a feed rate of 50 mm/min. The resulting welds were defect-free, and the grain refinement in the stirred zone led to increased hardness. The tensile strength and elongation of the welds exceeded 90% of the base material's properties
    In the dissimilar joining of CuZn35 brass and aluminum alloy, with an offset ranging from 0 to 1 mm and an inclination angle ranging from 0 to 3 degrees, the experimental results indicated that setting the offset at 1 mm towards the aluminum side, along with a rotational speed of 900 rpm and a feed rate of 30 mm/min, and with a 3-degree inclination angle, effectively achieved defect-free joints. No defects were observed, and the formation of intermetallic compound in the stirred zone led to increased hardness. However, the joint strength was suboptimal, with a maximum tensile strength of approximately 80 MPa, and fractures predominantly occurred at the joint interface.
    In the dissimilar joining of pure copper and aluminum alloy, using a 1 mm offset and a 1.5-degree inclination angle, defect-free welds were achieved under conditions of rotational speeds set at 1700, 1800, and 1900 rpm, along with a controlled feed rate of 30 mm/min. Intermetallic compound formation and increased hardness were observed in the stirred zone at rotational speeds of 1700 and 1800 rpm, but the tensile properties were unsatisfactory. Upon increasing the rotational speed to 1900 rpm, the intermetallic compound content decreased, leading to an improvement in the tensile properties of the welds.

    第一章 前言 1 1.1 研究背景 1 1.2 研究動機與目的 2 第二章 文獻探討 3 2.1鋁合金材料 3 2.1.1 鋁合金簡介 3 2.1.2 鋁合金分類 3 2.2 純銅及銅合金材料 6 2.2.1 純銅及銅合金簡介 6 2.2.2 純銅及其合金分類之特性 6 2.2.3 純銅及黃銅特性介紹 7 2.3 摩擦攪拌銲接技術 8 2.3.1 摩擦攪拌銲接簡介 8 2.3.2 摩擦攪拌銲接原理 8 2.3.3 摩擦攪拌銲接銲後組織特徵 9 2.3.4 攪拌棒材質 11 2.3.5 攪拌銷形狀 12 2.4 同質與異質摩擦攪拌銲接 13 2.4.1 銅合金及鋁合金異質銲接 14 2.4.2 銅合金同質摩擦攪拌銲接 16 2.4.3 異質摩擦攪拌銲接相關實驗 20 2.5 介金屬化合物產生 23 2.5.1介金屬化合物之影響 23 2.5.2異質摩擦攪拌銲接與介金屬化合物 25 第三章 實驗方法與步驟 30 3.1實驗架構 30 3.2接合材料及方法 31 3.2.1 實驗材料 31 3.2.2 黃銅之同質銲接 32 3.2.3 6061-T6鋁合金及CuZn35黃銅之異質銲接 32 3.2.4 6061-T6鋁合金及C1100純銅之異質銲接 33 3.3 銲接製程及參數 34 3.4 接合成果特性分析37 3.4.1轉速測試 37 3.4.2 溫度測試 37 3.4.3 微硬度測試 40 3.4.4 拉伸試驗 41 3.4.5 金相顯微組織觀察 43 3.4.6 掃描式電子顯微鏡 44 3.4.7 XRD X光繞射儀器分析 45 第四章 結果與討論 46 4.1 黃銅合金FSW同質對接性質 46 4.1.1 不同轉速及進給對於銲道外觀之影響 46 4.1.2 黃銅同質FSW銲接金相組織分析 49 4.2 6061-T6鋁合金及CuZn35黃銅合金FSW異質對接性質 59 4.2.1 不同轉速對於異質銲接外觀之影響 59 4.2.2 銲接過程中轉速對於銲接品質之影響 61 4.2.3 銲接過程中溫度對於銲接品質之影響 65 4.2.4 銲接過程中傾斜角對於銲接品質之影響 72 4.2.5 不同條件異質銲接之成分分析 75 4.3 C1100純銅與6061鋁合金異質對接性質 82 4.3.1 銲接過程中轉速對於銲接品質之影響 82 4.3.2 C1100純銅及鋁合金異質銲接之成分分析 89 4.3.3 C1100純銅及鋁合金異質銲接之機械性質 96 第五章 結論 100 參考文獻 101

    1. P. Xue, D. R. Ni, D. Wang, B. L. Xiao, Z. Y. Ma, “ Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints”, Materials Science and Engineering A, Vol. 528, 2011, pp. 4683-4689.
    2. B. Gulenc, “ Investigation of interface properties and weldability of aluminum and copper plates by explosive welding method”, Materials & Design, Vol. 29, 2008, pp. 275-278.
    3. W. B. Lee, K. S. Bang, S. B. Jung, “ Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing”, Journal of Alloys and Compounds, Vol. 390, 2005, pp. 212-219.
    4. R. Baumann, K. Kassner, C. Misbah, D. E. Temkin, “ Spatial Subharmonics, Irrational Patterns, and Disorder in Eutectic Growth”, Physical Review Letters, Vol. 74, 1995, pp. 2444-2445.
    5. J. Ouyang, E. Yarrapareddy, R. Kovacevic, “ Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper”, Processing Technology, Vol. 172, 2006, pp. 110-122.
    6. H. Khodaverdizadeh, A. Mahmoudi , A. Heidarzadeh , E. Nazari, “ Effect of friction stir welding (FSW) parameters on strain hardening behavior of pure copper joints”, Materials & Design, Vol 35, 2012, pp.330-334.
    7. P. Xue, B. L. Xiao, D. R. Ni, Z. Y. Ma, “ Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds”, Materials Science and Engineering: A, Vol. 527, 2010, pp. 5723-5727.
    8. W. B. Lee, K. S. Bang, S. B. Jung, “ Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing , Journals of Alloys and compounds” Vol. 390, 2005, pp. 212-219.
    9. T. Saeid, A. Abdollah-zadeh, B. Sazgari, “ Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding”, Journal of Alloys and Compounds, Vol. 490, 2010, pp. 652-655.
    10. A. C. Somasekharan, L. E. Murr, “ Microstructures in friction-stir welded dissimilar magnesium alloys and magnesium alloys to 6061-T6 aluminum alloy”, Materials Characterization, Vol. 52, 2004, pp. 49-64.
    11. C. W. Tan, Z. G. Jiang, L. Q. Li, “ Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding”, Materials and Design, Vol. 51, 2013, pp. 466-473.
    12. 劉靜安、謝建新,大型鋁合金型材擠壓技術與工模具優化設計,冶金工業出版社,2003, p. 210。
    13. 胡立煒,機械材料與公差,北京理工大學出版社,2010,pp. 33-34。
    14. 郭承典,“純鈦與6061鋁合金摩擦攪拌異質接合之機械性質與抗腐蝕特性研究”,國立臺灣師範大學機電工程學系,碩士論文,2019。
    15. 林貞君、林旻澐,材料科學與工程導論,高立圖書出版社,2012,pp. 359。
    16. M. Thomas, D. Nicholas, “ Improvements relating to friction welding”, United Kingdom, 1992, EP0615480B1.
    17. H. Uzun, C. D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, “ Friction stir welding of dissimilar Al 6013-T4 to X5CrNi18-10 stainless steel”, Materials & Design, Vol. 26, 2005, pp. 41–46.
    18. P. Liu, Q. Y. Shi, X. D. Wang, W. Wang, X. Wang, “Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials”, Materials Letters, Vol 62, 2008, pp. 4106–4108.
    19. J. C. Yan, Z. W. Xu, Z. Y. Li, L. Li, S. Q. Yang, “ Microstructure characteristics and performance of dissimilar welds between magnesium alloy and aluminum formed by friction stirring”, Scripta Materialia, Vol 53, 2005, pp. 585-589.
    20. W. B. Lee, S. B. Jung, Mater, “ Void Free Friction Stir Weld Zone Of The Dissimilar 6061 Aluminum And Copper Joint By Shifting The Tool Insertion Location”, Materials Research Innovations, Vol. 8, 2004, pp. 93–96.
    21. R. Zettler, A. A. M. da Silva, S. Rodrigues, A. Blanco, J. F. D.  Santos, “ Dissimilar Al to Mg Alloy Friction Stir Welds”, Advanced Engineering Materials , Vol. 8, 2006, pp. 415–421.
    22. J. H. Ouyang, E. Yarrapareddy, R. Kovacevic, J. Mater, “ Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper Process”, Journal of Materials Processing Technology, Vol. 172, 2006, pp. 110–122.
    23. Y. S. Stao, S. H. C. Park, M. Michiuchi, H. Kokawa, “ Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys”, Scripta Materialia, Vol. 50, 2004, pp. 1233–1236.
    24. A. Campagnolo, “ Relazione per la prova finale analisi della resistenza a fatica di giunzioni saldate ottenute per friction stir welding (FSW)”, https://thesis.unipd.it/bitstream/20.500.12608/39065/1/Casarotto_Alessandro.pdf.
    25. A. Arif, S. K. Gupta, K. N. Pandey, “ Finite element modeling for validation of maximum temperature in friction stir welding of aluminum alloy”, 3rd International Conference on Production and Industrial Engineering, 2013, p. 1087.
    26. N. Srirangarajalu, A. Rajadurai, “ Microstructure and mechanical behaviour of friction stir welded ETP copper”, La Metallurgia Italiana, 2016, pp. 13-20.
    27. N. Sharma, Z. A. Khan, A. N. Siddiquee, “ Friction stir welding of aluminum to copper —An overview”, Transactions of Nonferrous Metals Society of China, Vol 27, 2017, pp. 2113-2136.
    28. X. Zhao, F. B. Dong, G. Y. Su, L. J. Guo, “ Weld quality improvement with hybrid FSW technology assisted by preheating for copper T2/aluminium 5A06 dissimilar materials”, Applied Mechanics and Materials, Vol. 121, 2012, pp.1707−1711.
    29. T. S. Mishta, Z. Ma, “ Friction stir welding and processing”, Materials Science and Engineering R, Vol. 50, 2005, pp. 1−78.
    30. N. Sun, Y. H. Yin, A. P. Gerlich, T. H. North, “ Tool design and stir zone grain size in AZ31 friction stir spot welds”, Science and Technology of Welding & Joining, Vol. 14, 2009, pp. 747−752.
    31. W. M. Thomas, E. Siores, C. E. D. Rowe, D. Moon, “ Friction stir welding developments in steel”, Welding and Technology, 2010.
    32. P. Colegrove, H. Shercliff, “ Development of Trivex friction stir welding tool Part 2–Three-dimensional flow modeling”, Science and Technology of Welding & Joining, Vol. 9, 2004, pp. 352−361.
    33. W. M. Thomas, K. I. Johnson, C. S. Wiesner, “ Friction stir welding−Recent developments in tool and process technologies. Advanced Engineering Materials”, Vol. 5, 2003, pp. 85−490.
    34. A. Esmaeili, B. M. Givi, Z. H. Rajani, “ Metallurgical and mechanical study on dissimilar Friction Stir welding of aluminum 1050 to brass (CuZn30)”, Materials Science and Engineering A, Vol. 528, 2011, pp. 7093−7102.
    35. A. Esmaeilia, M. K. Besharati, H. R. Givia, R. Zareie, “ A metallurgical and mechanical study on dissimilar Friction Stir welding of aluminum 1050 to brass (CuZn30)”, Materials Science and Engineering: A, Vol 528, 2011, pp. 7093-7102.
    36. A Heidarzadeh, “ Tensile behavior, microstructure, and substructure of the friction stir welded 70/30 brass joints: RSM, EBSD, and TEM study, Archives of Civil and Mechanical Engineering, Vol. 19, 2019, pp. 137–146.
    37. 林建華, “鋁板與銅板對接摩擦攪拌焊接之實驗探討”,國立中山大學機械與機電工程學系,碩士論文,2009。
    38. 陳孟捷、陳玦璋、李雲霆,2022學生專題製作成果報告彙編
    ,國立臺灣師範大學機電工程學系,2022,pp. 1-7。
    39. A. Çakan, H. Atmaca, M. Uğurlu, “ Analysis and joining of Al–Cu plates using friction-stir welding technique”, European Mechanical Science, Vol. 2, 2018, pp. 1-8.
    40. E. T. Akinlabi, A. Andrews, S. A. Akinlabi, “ Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper”, Science Direct, Vol. 24, 2014, pp. 1323-1330.
    41. Q. Z. Zhang, W. B. Gong, W. LIU, “ Microstructure and mechanical properties of dissimilar Al−Cu joints by friction stir welding”, Science Direct, Vol. 25, 2015, pp. 1779-1786.
    42. J. X. Tang, L. Shi, C. S. Wu, M. X. Wu, S. Gao, “ Microstructure and mechanical properties of dissimilar double-side friction stir welds between medium-thick 6061-T6 aluminum and pure copper plates”, Acta Metallurgica Sinica, Vol. 35, 2022, pp. 2027–2046.
    43. P. L. Ting, C. Y. Tsai, L. H. Chiu, C. P. Cheng, “ Tensile strength and metallurgical analysis in anodized Al/Cu joint using friction stir welding”, Key Engineering Materials, Vols. 656-657, 2015, pp. 490-495.
    44. H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon, Y. J. Park, “ Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability”, IEEE, Vol. 26, 2003, pp. 367 – 374.
    45. Y. S. Sato, M. Urata, H. Kokawa, K. Ikeda, “ Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys”, Materials Science and Engineering: A, Vol. 354, 2003, pp. 298-305.
    46. F. Yasuhiro, K. Watanabe, ” Interdiffusion in the Al–Mg system” , Transactions of the Japan Institute of Metals, Vol. 13, 1972, pp. 278-283.
    47. 江曉均, “摩擦攪拌銲接鋁銅異質金屬之組織解析與銲接可靠性研究”,國立虎尾科技大學,材料科學與綠色能源工程所,碩士論文,2014。
    48. C. W. Tan, Z. G. Jiang , L. Q. Li , Y. B. Chen , X. Y. Chen, “Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding”, Materials and Design, Vol. 51, 2013, pp. 466-473.
    49. K. Watanabe, Y. Funamizu, “ Interdiffusion in the Al–Mg System”, Transactions of the Japan Institute of Metals, Vol 13, 1972, pp. 278-283.
    50. X. Fei , Y. Ye , L. Jin , H. Wang , L. Sencan, “ Special welding parameters study on Cu/Al joint in laser-heated friction stir welding”, Journal of Materials Processing Technology, Vol. 256, 2018, pp. 160-171.
    51. I. Galvão, C. Leitão, A. Loureiro, D.M. Rodrigues, “ Study of the welding conditions during similar and dissimilar aluminium and copper welding based on torque sensitivity analysis”, Materials & Design, Vol. 42, 2012, pp. 259–264.
    52. W. T. Hou, L. H. A. Shah, G. Q. Huang, Y. F. Shen, A. Gerlich, “ The role of tool offset on the microstructure and mechanical properties of Al/Cu friction stir welded joints”, Journal of Alloys and Compounds, Vol. 825, 2020, 154045.
    53. M. F. X. Muthu, V. Jayabalan, “ Tool travel speed effects on the microstructure of friction stir welded aluminum–copper joints”, Journal of Materials Processing Technology, Vol. 217, 2015, pp. 105–113.
    54. L. E. Murr, Y. Li, R. D. Flores, Elizabeth, A. Trillo, J. C. McClure, “ Intercalation vortices and related microstructural features in the friction-stir welding of dissimilar metals”, Materials Research Innovations, Vol. 2, 1998, pp. 150–163.
    55. C. W. Tan , Z. G. Jiang , L. Q. Li , Y. B. Chen , X. Y. Chen, “ Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding”, Materials & Design, Vol. 51, 2013, pp. 466–473.
    56. N. A. Muhammad, C. S. Wu, “ Ultrasonic vibration assisted friction stir welding of aluminum alloy and pure copper”, Journal of Manufacturing Processes, Vol. 39, 2019, pp. 114–27.
    57. N. A. Muhammad, C. S. Wu, W. Tian, “ Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints”, Journal of Alloys and Compounds, Vol. 785, pp. 512–522, 2019.
    58. Y. Mao, Y. Ni, X. Xiao, D. Qin, L. Fu, “ Microstructural characterization and mechanical properties of micro friction stir welded dissimilar Al/Cu ultra-thin sheets”, Journal of Manufacturing Processes, Vol. 60, 2020, pp. 356–365.
    59. A. H. Al-Helli, A. H. A. S. Salim, “Effect of heat treatment on the hydroformability of CuZn35 sheet metal”, Materials Science Al-Nahrain Journal for Engineering Sciences, Vol.20, 2017, pp. 505-510.
    60. J. Nemati, G. H. Majzoobi, S. Sulaiman, B. T. H. T. Baharudin, M. A. Azmah Hanim, “Improvements in the microstructure and fatigue behavior of pure copper using equal channel angular extrusion”, International Journal of Minerals, Metallurgy and Materials, Vol. 21, 2014, pp. 569-576.

    下載圖示
    QR CODE