簡易檢索 / 詳目顯示

研究生: 曾維功
論文名稱: 磁性奈米粒子在動物體內代謝之研究
Investigation on the Metabolism of Fe3O4 Nanoparticles in Rats
指導教授: 洪姮娥
Horng, Herng-Er
吳造中
學位類別: 博士
Doctor
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 37
中文關鍵詞: 磁性納米粒子代謝
論文種類: 學術論文
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (MNPS)的Fe3O4磁性納米粒子已廣泛應用於許多醫療領域,但很少有研究結果清楚地表明靜脈注射後的粒子。我們進行了磁檢查掃描:SQUID biosusceptometry(SSB)和非磁性考試進行壓縮的代謝靜脈MNP的研究。基於對SSB分析和成立於體外非磁性生物測定的結果,本研究提出了一個模型組成的流動電話號碼可攜性代謝的一種急性代謝階段的持續時間為8小時,其次是一種慢性代謝性階段,持續28天以下的流動電話號碼可攜服務注射。主要功能包括提供的MNP的心臟和其他器官,豐富的巨噬細胞的生物降解MNP的器官,鐵代謝物在尿中的排泄,並從肝,脾鐵負荷的恢復。血清轉鐵蛋白的水平和循環的紅血細胞的數目的增加,伴隨著增加,血清鐵水平以下的MNP注射。這些發現暗示的MNP的鐵的氧化,變廢為寶的新的血紅蛋白和紅細胞合成。

    Magnetic nanoparticles (MNPs) of Fe3O4 have been widely applied in many medical fields, but few studies have clearly shown the outcome of particles following intravenous injection. We performed a magnetic examination using scanning SQUID biosusceptometry (SSB) and non-magnetic examinations for compressively studied the metabolism of intravenous MNPs. Based on the results of SSB analysis and those of established in vitro nonmagnetic bioassays, this study proposes a model of MNP metabolism consisting of an acute metabolic phase with an 8 h duration that is followed by a chronic metabolic phase that continues for 28 d following MNP injection. The major features included the delivery of the MNPs to the heart and other organs, the biodegradation of the MNPs in organs rich with macrophages, the excretion of iron metabolites in the urine, and the recovery of the iron load from the liver and the spleen. Increases in serum iron levels following MNPs injection were
    accompanied by increases in the level of transferrin in the serum and the number of circulating red blood cells. These finding implied the iron form degradation of MNPs were reutilized for new hemoglobin and red blood cells synthesis.

    Contents Chapter 1: Introduction 5 Chapter 2: Physiology of Iron metabolism 9 2.1 Iron homoeostasis 9 2.1.1 Iron absorption 9 2.1.2 Iron distribution 10 2.1.3 Iron storage 11 2.2 Iron turn-over in RBCs 12 Chapter 3: Study methods for metabolism investigation & Experiment design 14 3.1 Magnetic Examination 14 3.1.1 Magnetic iron oxide nanoparticles 14 3.1.2 Scanning SQUID biosusceptometry (SSB) 14 3.2 Non-magnetic Examinations 18 3.2.1 Tissue Prussian blue stain 18 3.2.2 Inductively coupled plasma test (ICP) 18 3.2.3 Hematocrit Test (HCT) 18 3.2.4 Serum Iron, Transferrin & TIBC 19 3.2.5 Transmission Electric Microscopy (TEM) 19 3.3 Experimental Design 20 Chapter 4: Result and Discussing 22 4.1 Result of magnetic and non-magnetic tests 22 4.1.1 Heart and Blood 22 4.1.2 Liver 24 4.1.3 Spleen 26 4.1.4 Lung 27 4.1.5 Kidney and urine 29 4.2 Metabolic Model 31 4.2.1 Acute phase 31 4.2.2 Chronic phase 33 4.2.3 Excretion mode 34 Chapter 5: Conclusion 36 Reference 37

    1. Xu R, Kaneshiro TL, Jeong EK, Parker Dennis L, Lu ZR. (2010) Synthesis and evaluation of nanoglobule-cystamine-(Gd-DO3A), a biodegradable nanosized magnetic resonance contrast agent for dynamic contrast-enhanced magnetic resonance urography. Int J Nanomed 2010: 707 – 713.
    2. Oghabian MA, Gharehaghaji N, Amirmohseni S, Khoei S, Guiti M. (2010) Detection sensitivity of lymph nodes of various sizes using USPIO nanoparticles in magnetic resonance imaging. Nanomed-Nanotechnol 6: 496-499.
    3. Hong CY, Chen WH, Chien CF, Yang SY, Horng HE, Yang LC, et al. (2007) Wash-free immunomagnetic detection for serum through magnetic susceptibility reduction. Appl Phys Let.; 90: 74105-1- 074105-3
    4. Chieh JJ, Yang SY, Horng HE, Yu CY, Lee CL, Wu HL, et al. (2010) Immunomagnetic reduction assay using high-Tc superconductingquantum-interference-device-based magnetosusceptometry. J Appl Phys 107: 074903-1-074903-5.
    5. Moghimi SM. (2011) Bionanotechnologies for treatment and diagnosis of Alzheimer's disease. Nanomed-Nanotechnol 7: 515-518.
    6. Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF, et al. (2011) Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment. Int J Nanomed 2011: 591 – 603.
    7. Müller S. (2009) Magnetic fluid hyperthermia therapy for malignant brain tumors—an ethical discussion. Nanomed-Nanotechnol 5: 387-393.
    8. Wang ZY, Wang L, Zhang J, Li YT, Zhang DS (2011). A study on the preparation and characterization of plasmid DNA and drug-containing magnetic nanoliposomes for the treatment of tumors. Int J Nanomed : 871 – 875.
    9. Rahimi M, Wadajkar A, Subramanian K, , Yousef M, Cui W, Hsieh JT, et al. (2010) In vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled drug delivery. Nanomed-Nanotechnol 6:672-680.
    10. Grobner T. (2006) Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant 21: 1104–1108
    11. ISSA N, POGGIO ED, FATICA RA, Patel R, Ruggieri PM, et al. (2008) Nephrogenic systemic fibrosis and its association with gadolinium exposureduring MRI. Clev Clin J Med 75: 95–111
    12. Arruebo M, Pacheco RF, Ibarra MR, Santamarı´a J (2007) Magnetic nanoparticles for drug delivery. Nanotoday 2: 22–32.
    13. Wang J, Chen Y, Chen B, Ding J, Xia G, et al. (2010) Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomed 2010: 861–866.
    14. Van BBE, Sempoux C, Materne R, Delos M, Smith AM (2001) Biodistribution of Ultrasmall Iron Oxide Particles in the Rat Liver. J Magn Reson Imaging 13: 594–599.
    15. Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, et al. (2007) Renal clearance of quantum dots. Nat Biotechnol 25: 1165–1170.
    16. Schlachter EK, Widmer HR, Bregy A, Lo¨nnfors-Weitzel T, Vajtai I, et al. (2011) Metabolic pathway and distribution of superparamagnetic iron oxide nanoparticles: in vivo study. Int J Nanomed 2011: 1793–1800.
    17. Lo´pez A, Gutie´rrez L, La´zaro FJ (2007) The role of dipolar interaction in the quantitative determination of particulate magnetic carriers in biological tissues Phys Med Biol 52: 5043–5056.
    18. Tsuchiya K, Nitta N, Sonoda A, Nitta-Seko A, Ohta S, et al. (2011) Histological study of the biodynamics of iron oxide nanoparticles with different diameters. Int J Nanomed 2011: 1587–1594.
    19. Sougrat HR, Morgenstern A, Galy B, Leichtmann BY, Zhang DL, et al. (2010) Serum ferritin is derived primarily from macrophages through a non-classical secretory pathway. Blood 116: 1574–1584.
    20. Chieh JJ, Hong CY (2011) Non-invasive and High-sensitivity Scanning Detection of Magnetic Nanoparticles in Animals Using High-Tc Scanning Superconducting-Quantum-Interference- Device Biosusceptometry. Rev Sci Instrum 82: 084301-1-084301-6.
    21. Tseng WK, Chieh JJ, Horng HE, Hong CY, Yang HC, et al. (2011) In-vivo and fast examination of iron concentration of magnetic nano-particles in an animal torso via scanning SQUID Biosusceptometry. IEEE T Appl Supercon 21: 2250– 2253.
    22. Hasegawa M, Hanaichi T, Shoji H, Kawaguchi T, Maruno S, Biological Behavior o Dextran-Iron Oxide Magnetic Fluid Injected Intravenously in Rats (1998) Jpn. J. Phys. 37: 1029-1032
    23. Weissleder R, Stark DD, Engelstad BL, BR Bacon, CC Compton, et al. (1989) Superparamagnetic Iron Oxide: Pharmacokinetics and Toxicity. Am J Roentgenol 152: 167–173.
    24. Mun˜oz M, Garcı ´a-Erce JA, Remacha A´F. (2011) Disorders of iron metabolism. Part 1: molecular basis of iron homoeostasis. J Clin Pathol 64(4): 281-6
    25. Andrews NC (1999) Disorders of iron metabolism. N Engl J Med 341:1986-1995
    26. Zhang AS, Enns CA (2009). Molecular mechanisms of normal iron homeostasis. Hematology Am Soc Hematol Educ Program: 207-14
    27. Mun˜oz M, Villar I, Garcı ´a-Erce JA (2009). An update on iron physiology. World J Gastroenterol 15: 4617-26
    28. Andrews NC (2008). Forging a field: the golden age of iron biology. Blood 112:219-30.
    29. Jiang W, Yang HC, Yang SY, Horng HE, Hung JC, et al. (2004) Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J Magn Magn Mater 283: 210–214.
    30. Sarkar J, Seshadri V, Tripoulas NA, Ketterer ME, Fox PL (2003) Role of ceruloplasmin in macrophage iron efflux during hypoxia. J Biol Chem 278: 44018–44024.
    31. Persson LI, Hansson E, Ro¨nnba¨ck L (1981) Acidic protein in macrophages. Scand J Immunol 14: 359–67.
    32. Ku¨ckelhaus S, Tedesco AC, Oliveira DM, Morais PC, Boaventura GR, et al. (2005) Optical emission spectroscopy as a tool for the biodistribution investigation of cobalt-ferrite nano-particles in mice. J Appl Phys 97: 10Q910-1-10Q910-3.
    33. Saebo KB, Bjørnerud A, Grant D, Ahlstrom H, Berg T, et al. (2004) Hepatic cellular distribution and degradation of iron oxide nanoparticles following single intravenous injection in rats: implications for magnetic resonance imaging. Cell Tissue Res 316: 315–323.

    無法下載圖示 本全文未授權公開
    QR CODE