簡易檢索 / 詳目顯示

研究生: 林信甫
Hsin-Fu Lin
論文名稱: 划船選手臨界負荷無氧動力及能量消耗指標與運動表現之相關研究
Application of critical concepts, anaerobic power and energy expenditure in predicting rowing performance
指導教授: 林正常
Lin, Jung-Charng
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 104
中文關鍵詞: 臨界速度臨界動力無氧動力能量消耗划船運動表現
英文關鍵詞: critical velocity, critical power, anaerobic power, energy expenditure, rowing, performance
論文種類: 學術論文
相關次數: 點閱:234下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 划船選手臨界負荷無氧動力及能量消耗
    指標與運動表現之相關研究
    中華民國94年6月 研 究 生:林信甫
    指導教授:林正常

    本研究主要目的在探討以不同臨界負荷(臨界動力與臨界速度)、無氧動力與能量消耗指標(效率與經濟性)評價划船測功儀上的運動表現,以確認最佳的臨界負荷預測模式,同時探討以臨界速度(CV)與臨界動力(CP)持續運動的時間與生理反應,包括心跳率(HR)、乳酸([La-])、氧攝取量(VO2)、二氧化碳產生量(VCO2)與換氣量(VE),考驗臨界負荷於划船運動時的生理狀態是否穩定。本研究受試對象為國內優秀的女性西式划船選手15名(年齡 20.73± 1.44歲、身高164 ±0.35公分、體重56.64±4.38公斤),經平衡次序法,所有受試者皆在划船測功儀上(Concept II),接受不同距離(400公尺、600公尺、800公尺、1000公尺)與時間(90秒、240秒、600秒、1200秒)的運動測驗,以線性模式分析分別獲得CV(4.00 ±0.14m/s)與CP(139.49 ±20.37W);其次進行漸進負荷測驗、CV與CP的20分鐘持續運動測驗;實驗過程中以Vmax29能量代謝系統、YSI1500乳酸分析儀分別測得VO2max(2.47±0.47L)與AT4(157.81 ±22.08W)以及持續運動中的呼吸生理變化;最後進一步經2000公尺衝刺測驗獲得運動表現成績(493.44±19.02秒)與30秒無氧動力測驗獲得無氧能力(6912.14±895.64W),平均無氧動力(323.17±26.70W),疲勞指數(3.77±2.55%)。經皮爾遜積差相關檢定與重複量數變異數分析的結果顯示,CV與CP與2000公尺划船運動成績皆有顯著相關(r=-0.97、-0.81,p<.05),其中CV的相關程度大於VO2max與AT4(r=-0.85、-0.84,p<.05),但划船效率以及經濟性皆無相關。進一步經多元逐步迴歸分析顯示,以CV配合疲勞指數(FI)為預測2000公尺划船成績的最佳預測模式(T2000=−131.83CV(m/s)−1.00FI(%)+1023.91, SEE=4.10s, p<.05)決定係數高達0.96。在CV持續運動時間為14±4分鐘,運動過程中[La-]、HR、VO2、VE皆不會出現穩定狀態,而VCO2則無變化;同時在CP強度下,持續運動時間為20分鐘,VO2、VCO2會出現穩定狀態,但是[La-]、HR以及VE皆隨著運動時間的增加而上升。因此,本研究發現划船選手的CV越高,2000公尺的運動表現越佳,較CP而言,CV是划船運動較佳的臨界負荷指標,且配合疲勞指數構成最佳的成績預測模式。同時,CV並無法持續長時間的運動,且各項生理指標皆無法呈現穩定狀態,而CP強度下雖然可以持續20分鐘,但並非所有生理狀態均呈現穩定。

    Application of critical concepts, anaerobic power and energy expenditure in predicting rowing performance
    June,2005 Hsin-Fu Lin
    Advisor: Jung-Charng Lin,

    Abstract
    Critical velocity (CV) and critical power (CP) have been proposed to be effective indirect anaerobic threshold methods in monitoring training and predicting performance of rowing respectively. The purpose of this study was to compare these two indexes in predicting indoor rowing performance by combining different physiological variables, including maximal oxygen uptake ( VO2max ), anaerobic threshold (AT4) and modified Wingate test, which are important physiological variables in endurance performance. In addition, whether or not the physiological variables (VO2, VCO2, VE, HR, [La-]) under these two critical intensities were stable was also examined. Fifteen elite female rowers (age 20.73± 1.44 years, height 1.64 ±0.35m, weight 56.64±4.38kg) were recruited in this study. VO2max (2.47 ±0.47L) and AT4(157.81 ±22.08W) were measured during a discontinuous graded exercise test, starting at 100W, on a Concept II ergometer increased by 25 W for each 3-min stage. Four test times of duration 90s, 240s, 600s, and 1200s were used to determine CP (139.49 ±20.37W), whereas CV( 4.00 ±0.14m/s) was estimated by 400m, 600m, 800m, 1000m maximal exertion trials in different days as well by using Linear distance-time model. Peak power (353.48 ±27.71W), maximum power (350.12 ±26.72W), minimum power (336.85 ±21.58W), mean power (314.44 ±27.87W), fatigue index (max power - min power/ mean power) were obtained using a modified Wingate test protocol (30s sprint) on the ergometer. Physiological variation of intensity at CV and CP, including VO2, VCO2, VE, HR, [La-], were measured every 5 minutes in 20-min constant rowing tests. The results of study showed that VO2max, AT4, CP, CV, peak power, mean power were significantly correlated with 2000 indoor rowing performance (r=−0.84, −0.85, −0.81, −0.97, −0.66, −0.67, P<0.01). By submitting mean power, fatigue index, VO2max, AT4 with each index to a stepwise regression analysis, it produced two individual critical concept models as following to predict 2000 indoor rowing performance: CV model: T2000= −131.83 CV(m/s)−1.00 fatugue index(%) +1023.91 (R2=0.96, SEE=4.10, p<.05); CP model: T2000=−22.59 VO2max(L/min)−.38AT4(W)+608.58 (R2 =0.82, SEE=8.05, p<.05). When rowing at CV on indoor ergometer (14±4 min), VO2, VE, HR, [La-] didn’t reach steady state and VCO2 was not different at different time points. Under CP, VO2, VCO2 didn’t change with time, however, there were significant difference of VE, HR, [La-] at different time points. Our findings in this study indicated that CV has more predictive power, representing as anaerobic threshold, than AT4 to predict rowing performance. Besides CV, fatigue index from modified Wingate test is also an important determinant for 2000-m performance of female rowers. Therefore, comparing with CP, CV could be used when applying critical concept in training and evaluate indoor performance in rowing. In addition, both two-parameter-derived CV and CP in rowing do not represent sustainable steady state intensities.

    Key words: critical velocity, critical power, anaerobic power, energy expenditure, rowing, performance.

    目次 表次…………………………………………………………………V 圖次………………………………………………………………VII 中文摘要……………………………………………………………VIII 英文摘要……………………………………………………………IX 第一章 緒論 一、研究背景……………………………………………………………1 二、研究目的……………………………………………………………6 三、研究假設……………………………………………………………6 四、操作性定義…………………………………………………………7 五、研究的重要性………………………………………………………8 第二章 文獻探討 一、臨界負荷與運動表現的相關研究…………………………………10 二、能量消耗與經濟性的相關研究……………………………………13 三、有關划船測功儀的生理反應研究…………………………………17 四、本章總結……………………………………………………………27 第三章 研究方法與步驟 一、受試對象與實驗地點………………………………………………28 二、實驗方法與程序……………………………………………………28 三、資料處理與統計分析………………………………………………34 第四章 結果 一、受試者特徵與測驗基本資料………………………………………35 二、臨界速度、臨界動力與無氧動力測驗資料………………………36 三、最大攝氧量 、無氧閾值、臨界負荷與運動表現之關係……….…38 四、無氧動力、作功效率、經濟性與運動表現之關係………………38 五、CV與划船經濟性預測運動表現…………………………………40 六、CP與作功效率預測運動表現……………………………………41 七、不同臨界負荷划船的持續運動的生理反應……………………43 第五章 討論 一、最大攝氧量、無氧閾值、臨界負荷與運動成績之相關…………54 二、無氧動力、划船經濟性、效率與運動成績之相關………………57 三、不同臨界負荷模式預測成績表現…………………………………60 四、持續臨界負荷划船運動時的乳酸與心跳反應……………………62 五、持續臨界負荷划船運動時的呼吸系統反應………………………64 第六章 結論與建議 一、結論…………………………………………………………………66 二、建議…………………………………………………………………66 引用文獻…………………………………………………………………68 附錄一 受試者須知……………………………………………………79 附錄二 受試者同意書…………………………………………………80 附錄三 健康情況調查表………………………………………………82 附錄四 受試者體型基本資料…………………………………………84 附錄五 受試者不同距離划船成績表現………………………………85 附錄六 受試者臨界負荷與生理指標資料……………………………86 附錄七 受試者不同部位皮脂厚測量資料……………………………87 附錄八 受試者無氧動力資料…………………………………………88 附錄九 受試者CV持續運動時第5分鐘的生理反應…………………89 附錄十 受試者CV持續運動結束時的生理反應……………………90 附錄十一 受試者CP持續運動時第5分鐘的生理反應……………91 附錄十二 受試者CP持續運動時第10分鐘的生理反應……………92 附錄十三 受試者CP持續運動時第15分鐘的生理反應……………93 附錄十四 受試者CP持續運動時第20分鐘的生理反應……………94

    中文部分
    王順正與林正常(1994)。跑步臨界負荷與無氧閾值的關係研究。中華民國大專院校1994年體育學術研討會專刊,411-426。
    王順正與林正常(1995)。臨界負荷評估無氧閾值的效度概化。中華民國大專院校1995年體育學術研討會專刊,1-15。
    王順正(1997)。長跑選手臨界速度跑的生理反應研究。國立台灣師範大學體育研究所博士論文,未出版。
    林正常編著(2002)。運動科學與訓練-運動教練手冊。台北市:銀禾文化事業公司。
    吳慧君與林正常(1999)。運動能力的生理學評定。台北市:師大書苑。
    陳麗玉(1987)。探討Jsckson等人預測女性身體脂肪十八種公式對國內女性之適用性。引自吳慧君與林正常(1999)。運動能力的生理學評定,79。台北市:師大書苑。

    英文部分
    Bangsbo, J. (1996). Physiological factors associated with efficiency in high intensity exercise. Sports Medicine, 22(5), 229-306.
    Billat, V., Renoux, J. C., Pinoteau, J., Petit, B., & Koralsztien, J. P. (1994). Times to exhaustion at 100% of velocity at VO2max and modeling of the time-limit/velocity relationship in elite long-distance runners. European Journal of Applied Physiology, 69, 271-273.
    Borch, K. W., Ingjer, F. Larsen, S. & Tomten, S. E. (1993). Rate of accumulation of blood lactate during graded exercise as a predictor of anaerobic threshold. Journal of Sports Science, 11, 49-55.
    Bourdin, M., Messonnier, L., Hager, J. P., & Lacour, J. R. (2004). Peak power output predicts rowing ergometer performance in elite male rowers. International Journal of Sports Medicine, 25(5), 368-373.
    Bourgois, J., & Vrijens, J. (1998). The conconi test, a controversial concept for the determination of the anaerobic threshold in young rowers. International Journal of Sports Medicine, 19, 553-559.
    Bourgois, J., & Vrijens, J. (1998). Metabolic and cardiorespiratory responses in young oarsmen during prolonged exercise tests on a rowing ergometer at power outputs corresponding to two concepts of anaerobic threshold. European Journal of Applied Physiology, 77, 164-169.
    Brahler, C.J., & Blank, S.E. (1995). VersaClimbing elicits higher VO2max than does treadmill running or rowing ergometry. Medicine and Science in Sports and Exercise, 27(2), 249-254.
    Brickley, G., Doust, J., & Williams, C. A. (2002). Physiological responses during exercise to exhaustion at critical power. European Journal of Applied Physiology, 88, 146-151.
    Bunc, V. V., & Leso, J. (1993). Ventilatory threshold and work efficiency during exercise on a cycle and rowing ergometer. Journal of Sports Science, 11, 43-48.
    Bulbulian, R., Wilcox, A. R., & Darabos, B. L, (1986). Anaerobic contribution to distance running performance of trained cross country athletes. Medicine and Science in Exercise and Sports, 19, 107-113.
    Bulbulian, R., Jeong, J. W., & Murphy, M. (1996). Comparison of anaerobic components of the Wingate and critical power tests in the males and females. Medicine and Science in Sports and Exercise, 28(10), 1336-1341.
    Casaburi, R., Bsrstow, T. J., Robinson, T., & Wasserman, K. (1989). Influence of work rate on ventilation and gas exchange kinetics. Journal of Applied Physiology, 67, 547-577.
    Clingeleffer, A., McNaughton, L. R. & Davoren, B. (1994a). Critical power may be determined from two tests in elite kayakers. European Journal of Applied Physiology, 68, 36-40.
    Clingeleffer, A., McNaughton, L. R. & Davoren, B. (1994b). The use of critical power as a determinant for establishing the onset of blood lactate accumulation. European Journal of Applied Physiology, 68, 182-187.
    Conley, D. L., & Krahenbuhl, G. S. (1980). Running economy and distance running performance of highly trained athletes. Medicine and Science in Sports and Exercise, 12(5), 357-360.
    Cosgrove, M. J., Wilson, J., Watt, D., & Grant, S. F. (1999). The relationship between selected physiological variables of rower and rowing performance as determined by a 2000m ergometer test. Journal of Sports Science, 17, 845-852.
    Craib, M. W., Mitchell, V. A., Fields. K. F., Cooper, T. R., Hopewell, R., & Morgan, D. W. (1996). The association between flexibility and running economy in sub-elite male distance runners. Medicine and Science in Sports and Exercise, 28(6), 737-743.
    Cunningham, D.A., Goode, P.B., & Critz, J.B. (1975). Cardiorespiratory response to exercise on a rowing and bicycle ergometer. Medicine and Science in Sports and Exercise, 7(1), 37-43.
    Cunningham, L. N. (1990). Relationship of running economy, ventilatory threshold, and maximal oxygen consumption to running performance in high school females. Research Quarterly for Exercise and Sport, 61(4), 369-374.
    Daniels, J. T. (1985). A physiologist’s view of running economy. Medicine and Science in Sports and Exercise, 17(3), 332-338.
    Davies, C. T. M. (1980). Effects of wind assistance and resistance on the forward motion of a runner. Journal of Applied Physiology 48(4), 702-709.
    Dengel D. R., Flynn, M. G., Costill, D. L. (1989). Determinants of success during triathlon competition. Research Quarterly for Exercise and Sport, 60, 234-238.
    Dekerle, J., Baron, B., Dupont, L., Vanvelcenaher, J., & Pelayo, P. (2003). Maximal lactate steady state, respiratory compensation threshold and critical power. European Journal of Applied Physiology, 93, 281-288.
    deVries, H.A. & Moritani,T. (1980) A simple, direct method for estimation of aerobic power and anaerobic threshold. Abstract. Medicine and Science in Sports and Exercise, 12, 86.
    deVires, H. A., Moritani, T., Nagata, A., & Magnussen, K. (1982). The relation between critical power and neuromuscular fatigue as estimated from electromyographic data. Ergonomics, 25(9), 783-791.
    diPrampero, P. E., Cortili, G., Celentano, F. & Cerretelli, P. (1971). Physiological aspect of rowing. Journal of Applied Physiology, 31, 853-857.
    diPrampero, P. E. (1986). The energy cost of human locomotion on land and in water. International Journal of Sports Medicine, 7, 55-72.
    Droghetti, P., Jensen, K. & Nilsen, T. S. (1991). The total estimated metabolic cost of rowing. FISA Coach, 2, 1-4.
    Fell, J. W., & Gaffney, P. T. (2001). Physiological profiles of Australian surf boat rowers. Journal of Science and Medicine in Sport, 4(2), 188-195.
    Franch, J., Madsen, Klavs Djurhuus, M. S., & Pedersen P. K. (1998). Improved running economy following intensified training correlates with reduced ventilatory demands. Medicine and Science in Sports and Exercise, 30(8), 1250-1256.
    Gaesser, G. A. & Brooks, G. A. (1975). Muscular efficiency during steady-rate exercise effects of speed and work rate. Journal of Applied Physiology, 38(6), 1132-1139.
    Gaesser, G.. A. & Brooks, G. (1984). Metabolic base of excess post-exercise oxygen consumption: a reciew. Medicine and Science in Sports and Exercise, 16, 29-43.
    Gaesser, G. A., & Wilson, L. A. (1988). Effects of continuous and interval training on the parameters of the power-endurance time relationship for high-intensity exercise. International Journal of Sports Medicine, 9, 417-421.
    Chenier, D., & Leger, L. (1991). Measurement of VO2max with 2 rowing ergometers on the water in a skiff. Abstract. Canadian Journal of Sports Science, 16(4), 258-263.
    Gibson, P. B., Szimonisz, S. M., & Rowland, T. W. (2000). Rowing ergometry for assessment of aerobic fitness in children. International Journal of Sports Medicine, 21(8), 579-582.
    Ginn, E. M., & Mackinnon, L. T. (1989). The equivalence of onset of blood lactate accumulation, critical power and maximal lactate steady state during kayak ergometer.Abstract. Proceedings of the First IOC World Congress on Sport Sciences, 34.
    Gladden, L. B. & Welch, H. G. (1978). Efficiency of anaerobic work. Journal of Applied Physiology, 44(4), 564-570.
    Hagerman, F. G., Connors, M. C., Gault, J. A. Hagerman, G. R. & Polinski, W. J. (1978). Energy expenditure during simulated rowing. Journal of Applied Physiology, 45(1), 87-93.
    Hagerman, F. C. (1984). Applied physiology of rowing. Sports Medicine, 1, 303-326.
    Hagerman, F. C. (2000). Rowing. In Exercise and Sport Science(edited by W. E. Garrett, Jr. & Kirkendall, D. J.), 843-874. Baltimore, MD: Lippincott, Williams & Wilkins.
    Hausswirth, C., & Lehnaff, D. (2001). Physiological demands of running during long distance runs and triathlons. Sports Medicine, 31(9), 679-689.
    Hill, D. W., Alain, C., & Kennedy, M. D. (2003). Modeling the relationship between velocity and time to fatigue in rowing. Medicine and Science in Sports and Exercise, 35(12), 2098-3105.
    Hill, D. W., & Rowell, A. L. (1996). Significance of time to exhaustion during exercise at velocity associated with VO2max. European Journal of Applied Physiology, 72, 383-386.
    Houmard, J., Costill, D., Mitchell, J., Park, S., Hickner, R., & Roemmich, J. (1990). Reduced training maintains performance in distance runners. International Journal of Sports Medicine, 11, 46-52.
    Hughson, R. L., Orok, C. J., Staudt, L. E. (1984). A high velocity treadmill running test to assess endurance running potential. International Journal of Sports Medicine, 24, 175-182.
    Ingham, S. A., Whyte, G. P., Jones, K., & Nevill, A. M. (2002). Determinants of 2000m rowing ergometer performance in elite rowers. European Journal of Applied Physiology, 88(3), 243-246.
    Itoh, M., Fukuoka, Y., Endo, M., Kagawa, J., Araki, H., & Nishi, K. (2002a). Ventilatory and gas exchange responses under spontaneous and fix breathing modes during arm exercise. Journal of Physiological Anthropology and Applied Human Science, 21(5), 239-245.
    Itoh, M., Fukuoka, Y., Endo, M., & Nishi, K. (2002b). Effect of locomotor-respiratory on ventilatory and metabolic responses during walking in humans. Advance in Exercise and Sports Physiology, 8(2), 23-29.
    Jenkins, D. G., & Quigley, B. M. (1990). Blood lactate in trained cyclists during cycle ergometry at critical power. European Journal of Applied Physiology, 61(3-4), 278-283.

    Jenkins, D. G., & Quigley, B. M. (1992). Endurance training enhances critical power. Medicine and Science in Sports and Exercise, 24(11), 1283-1289.
    Jensen, R.L., Freedson, P.S., & Hamill, J. (1996). The prediction of power and efficiency during near-maximal rowing. European Journal of Applied Physiology, 73(1-2), 98-104.
    Kennedy, M. D. & Bell, G. J. (2000). A comparison of critical velocity estimates to actual velocity in predicting simulated rowing performance. Canadian Journal of Applied Physiology, 25(4), 223-235.
    Kolbe,T., Dennis,S.C., Selley,E., Noakes,T.D. & Lambert,M.I. (1995) The relationship between critical power and running performance. Journal of Sports Sciences, 13, 265-269.
    Kramer, J. F., Leger, A., Paterson, D. H., & Morrow, A. (1994). Rowing performance and selected descriptive, field, and laboratory variables. Canadian Journal Applied Physiology, 19(2), 174-184.
    Kranenburg,K.J. & Smith,D.J. (1996) Comparison of critical speed determined from track running and treadmill tests in elite runners. Medicine and Science in Sports and Exercise, 28(5), 614-618.
    Krahenbuhl, G. S., & Williams, T. J. (1992). Running economy: changes with age during childhood and adolescence. Medicine and Science in Sports and Exercise, 24(4), 462-466.
    Kuipers, H., & Keiaer, H. (1988). Overtraining in elite athletes. Sports Medicine, 6, 79-92.
    Lakomy, H. K. A., & Lakomy, J. (1993). Estimation of maximal oxygen uptake from submaximal exercise on a Concept II rowing ergometer. Journal of Sports Science, 11, 227-232.
    Maclennan, S. E., Silvestri, G. A., Ward, J., & Mahler, D. A. (1994). Does entrained breathing improve the economy of rowing? Medicine and Science in Sports and Exercise, 26(5), 610-614.

    Mahony, N., Donne, B., & O'Brien, M. (1999). A comparison of physiological responses to rowing on friction-loaded and air-braked ergometers. Journal of Sports Science, 17(2), 143-149.
    Martin, P. E., Rothstein, D. E., & Larish, D. D. (1992). Effects of age and physical activity status on the speed-aerobic demand relationship of walking. Journal of Applied Physiology, 73(1), 200-206.
    McDowell, S.L., Kenney, K. B., Hughes, R. A., Housh, T. J. & Johnson, G. J. (1988). The relationship between ventilatory threshold and critical velocity. Abstracts of the Research Presentations at the National AAPHERD Convention, APPHERD Publications.
    McLellan, T. M., & Cheung, K. S. Y. (1992). A comparative evaluation of the individual anaerobic threshold and the critical power. Medicine and Science in Sports and Exercise, 25(2), 275-282.
    Mickelson, T. C. & Hagerman, F. C. (1982). Anaerobic threshold measurements of elite oarsmen. Medicine and Science in Sports and Exercise, 14, 440-444.
    Millet, G. P., Millet, G. Y. Hofmann, M. D., & Candau, R. B. (2000). Alterations in running economy and mechanics after maximal cycling in triathletes: influence of performance level. International Journal of Sports Medicine, 21, 127-132.
    Monod, H., & Scherrer, J. (1965). The work capacity of a synergic muscular group. Ergonomics, 8, 329-338.
    Morgan, D. W., Martin, F. B., Krahenbuhl, G. S. (1990). Effects of a prolonged maximal run on running economy and running mechanics. Medicine and Science in Sports and Exercise, 22, 834-840.
    Morgan, D. W., Martin, P. E., Krahenbuhl, G. S. & Baldini, F. D. (1991). Variability in running economy and mechanics among trained male runners. Medicine and Science in Sports and Exercise, 22(3), 378-383.
    Morgan, D. W., & Craib, M. (1992). Physiological aspects of running economy. Medicine and Science in Sports and Exercise, 24(2), 456-461.

    Moritani, T., Nagata, A., de Vries, H. A., & Muro, M. (1981). Critical power as measure of physical work capacity and anaerobic threshold. Ergonomics, 24(5), 339-350.
    Moyna, N. M., Robertson, R. J., Meckes, C. L., Peoples, J. A., Millich, N. B., & Thompson, P. D. (2001). Intermodal comparison of energy expenditure at exercise intensities corresponding to the perceptual preference range. Medicine and Science in Sports and Exercise, 33(8), 1404-1410.
    Noakes, T.D. (1988). Implications of exercise testing for prediction of athletic performance: a contemporary perspective. Medicine and Science in Sports and Exercise,20(4),319~330.
    Overend, T. J., Cunningham, D. A., Peterson, D. H., & Smith, W. D. (1992). Physiological responses of young and elderly men to prolonged exercise at critical power. European Journal of Applied Physiology, 64(2), 187-193.
    Paavolainen, L. Hkkinen, K., Hmlinen, I. Nummela, A., & Rusko, K. (1999). Explosive-strength training improves 5-km running time by improving running economy and muscle power. Journal of Applied Physiology, 86(5), 1527-1533.
    Pepper, M. L., Housh, T. J., & Johnson, G.. O. (1992). The accuracy of the critical velocity test for predicting time to exhaustion during treadmill runningInternational Journal of Sports Medicine, 13, 121-124.
    Peltonen, J. & Rusko, H. (1993). Interrelations between power, force production and energy metabolism in maximal leg work using a modified rowing ergometer. Journal of Sports Science, 11, 233-240.
    Peltonen, J.E., Rusko, H.K., Rantamaki, J., Sweins, K., Niittymaki, S., & Viitasalo, J.T. (1997). Effects of oxygen fraction in inspired air on force production and electromyogram activity during ergometer rowing. European Journal of Applied Physiology, 76(6), 495-503.
    Pierce, S. J., Hahn, A. G., Davie, A., & Lawton, E. W. (1999). Prolonged incremental tests do not necessarily compromise VO2max in well-trained athletes. Abstract. Journal of Science and Medicine in Sports, 2(4), 356-363.
    Pinnington, H., & Dowson, B. (1999). Energy cost and running economy of Australian surf iron men and trained male runners running on soft dry beach sand and grass. 5th IOC World Congress on Sports Science, Sydney, Australia.
    Powers, S. K., Dodd, S., & Beadle, R.E. (1985). Oxygen uptake kinetics in trained athletes differing in VO2max. European Journal of Applied Physiology, 54(3), 306-608.
    Pripstein, L. P., Rhodes, E. C., McKenzie, D. C., & Coutts, K. D. (1999). Aerobic and anaerobic energy during a 2-km race simulation in female rowers. European Journal of Applied Physiology, 79, 491-494.
    Riechman, S. E., Zoeller, R. F., Balasekaran, G., Goss, F. L, & Robertson, R. J. (2002). Prediction of 2000m indoor rowing performance using a 30s sprint and maximal oxygen uptake. Journal of Sports Science, 20, 681-687.
    Riley, M., Wasserman, K., Fu, P. C., & Cooper, C. B. (1996). Muscle substrate utilization from alveolar gas exchange in trained cyclists. European Journal of Applied Physiology, 72(4), 341-348.
    Roberts, C.L., Wilkerson, D.P., & Jones. A.M. (2005). Pulmonary O2 uptake on-kinetics in rowing and cycle ergometer exercise. Respiratory Physiology and Neurobiology, 146(2-3), 247-258.
    Rosiello, R.A., Mahler, D.A., & Ward, J.L. (1987). Cardiovascular responses to rowing. Medicine and Science in Sports and Exercise, 19(3), 239-245.
    Russell, A. P., Le Rossignol, P. F., Sparrow, W. A. (1998). Prediction of elite schoolboy 2000-m rowing ergometer performance from metabolic, anthropometric and strength variables. Journal of Sports Science, 16, 749-754.
    Secher, N. H. (1993). Physiological and biomechanical aspects of rowing. Sports Medicine, 15(1), 24-42.
    Schabort, E. J., Hawley, J. A., Hopkins, W. G., Blum, H. (1999). High reliability of performance of well-trained rowers on a rowing ergometer. Journal of Sports Science, 17, 627-632.
    Smith, T.B., Hopkins, W.G., & Taylor, N.A. (1994). Respiratory responses of elite oarsmen, former oarsmen, and highly trained non-rowers during rowing, cycling and running. European Journal of Applied Physiology, 69(1), 44-49.
    Steinacker, J. M. (1993). Physiological aspects of training in rowing. International Journal of Sports Medicine, 14, S3-S10.
    Thomas, D. Q., Fernhall, B., & Granat, H. (1999). Changes in running economy during a 5-km run in trained men and women runners. Journal of Strength and Conditioning Research, 13(2), 162-167.
    Wakayoshi, K. Ikuta, L. Yoshida, T., Udo, M., Moritani, T., Mutoh, Y., & Miyashita, M. (1992). Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. European Journal of Applied Physiology, 64, 153-157.
    Whipp, B J. & Wasserman, K. (1969). Efficiency of muscular work. Journal of Applied Physiology, 26(5), 644-648.
    Whipp, B. J. (1994). The slow component of oxygen uptake kinetics during heavy exercise. Medicine and Science in Sports and Exercise, 26, 153-166.
    Williams, C. S., Smith, J. C., Low, T. D., Poole, D. C., & Hill, D. W. (1997). Responses to exercise at intensities equal to or slightly above critical power. Abstract. Medicine and Science in Sports and Exercise, 29(5), S266.

    QR CODE