簡易檢索 / 詳目顯示

研究生: 歐俊佑
論文名稱: 以環烯單元為共軛架橋之非金屬系光敏染料暨太陽能電池
Dye Sensitized Solar Cell using Metal-free Sensitizers with Locked Olefin Entities in the Spacer
指導教授: 葉名倉
Yeh, Ming-Chang
林建村
Lin, Jiann-Tsuen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 103
中文關鍵詞: 染料敏化太陽能電池環烯單元電荷轉移吸收
論文種類: 學術論文
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用Stille coupling、Buchwald-Hartwig coupling、McMurry reaction與Knoevenagel condensation等反應,合成出一系列新穎非金屬系有機光敏染料(metal-free organic dyes)。此系列染料以arylamine作為電子予體(donor),2-cyanoacrylic acid為電子受體(acceptor),兩者之間的共軛架橋(spacer)則由環烯單元(locked olefin)搭配呋喃(furan)、噻吩(thiophene)等芳香雜環所組成。
    此系列染料有明顯的電荷轉移吸收,其吸收波長(λabs)約在428−455 nm之間,莫耳消光係數也可達24000−41500 M-1 cm-1。由電化學量測推算出此系列染料之HOMO與LUMO能階範圍分別約在5.43−5.69與3.35−3.52 eV之間,因此染料皆可以順利還原再生及其電子皆有利於注入TiO2光導電極。其組裝成的染料敏化太陽能電池(dye-sensitized solar cells, DSSCs)呈現不錯的光電轉換效率,其範圍為3.10−5.86%。在相同條件下和N719染料製成的標準元件比較,可達N719染料元件效率的43−82%。

    A novel series of metal-free organic dyes were synthesized via Stille coupling, Buchwald-Hartwig coupling, McMurry reaction and Knoevenagel condensation. These dyes are composed of a diarylamine moiety as the electron donor, a conjugated spacer containing locked olefin, furan and thiophene as the electron transmitting bridge, and 2-cyanoacrylic acid as the electron acceptor and anchoring group to the TiO2 surface.
    These dyes possess a π−π* transition band ranging from 428 to 455 nm in the electronic absorption spectra. The band has prominent charge transfer character and the molar extinction coefficient ranges from 24000 to 41500 M-1cm-1. From cyclic voltammetry measurement, the HOMO and LUMO energy levels of these dyes calculated from the cyclic voltammograms were in the range of 5.43−5.69 and 3.35−3.52 eV, respectively, which facilitated both electron injection and dye regeneration. Nanocrystalline TiO2 dye-sensitized solar cells (DSSCs) using these dyes exhibit high solar energy-to-electricity conversion efficiencies ranging between 3.10−5.86%, which reach 43−82% of a standard device of N719 fabricated and measured under same conditions.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 V 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 太陽能及其光譜 2 1.3 太陽能電池簡介 4 第二章 DSSC文獻回顧與研究動機 10 2.1 DSSC基本結構 10 2.2 DSSC的工作原理及特性 16 2.3 DSSC電壓–電流輸出參數及其說明 20 2.4 DSSC光電轉換效率IPCE特性說明 22 2.5 染料種類之文獻回顧及介紹 23 2.6 研究動機與策略 29 第三章 實驗部分 32 3.1 實驗儀器之原理與操作 32 3.2 實驗藥品及溶劑 37 3.3 化合物合成步驟 39 3.4 元件製作 75 第四章 結果與討論 77 4.1 合成及反應機構之探討 77 4.2 光物理性質之探討 83 4.3 電化學性質之探討 88 4.4 元件效率之探討 90 4.5 理論計算之探討 94 4.6 結論 102 參考文獻 103

    (1)H. Kallmans and M. Pope, J. Chem. Phys. 1958, 30, 585.
    (2)D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys. 1954, 25, 676.
    (3)黄建昇, 結晶矽太陽能電池發展近況, 工業材料雜誌 2003, 203, 150.
    (4)郭明村, 薄膜太陽能電池發展近況, 工業材料雜誌 2003, 203, 138.
    (5)http://www.Spectrolab.com
    (6)S. Chaberek, A. Sheep, and R. J. Allen, J. Am. Chem. Soc. 1967, 89, 5456.
    (7)H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, Nature 1976, 261, 402.
    (8)B. O’ Regan and M. Grätzel, Nature. 1991, 353, 737.
    (9)M. Grätzel, Inorg. Chem. 2005, 44, 6841.
    (10)H. Shirakawa, C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
    (11)X. Peng; M. C. Schlamp, A. Kadavanich, and A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019.
    (12)S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841.
    (13)A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, Chem. Eur. J. 2008, 14, 4458.
    (14)S. H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, and Y.-E. Sung, Adv. Mater. 2008, 20, 54.
    (15)J. Xia, N. Masaki, K. Jiang, and S. Yanagida, J. Phys. Chem. C, 2007, 111, 8092.
    (16)C. Klein, Md. K. Nazeeruddin, D. D. Censo, P. Liska, and M. Grätzel, Inorg. Chem. 2004, 43, 4216.
    (17)K. Tennakone, G. R. R. A. Kumara, A. R. Kumarasinghe, K. G. U. Wijayantha, and P. M. Sirimanne, Semicond. Sci. Technol. 1995, 10, 1689.
    (18)A. Hagfeldtt and M. Grätzel, Chem, Rev. 1995, 95, 49.
    (19)A. B. F. Martinson, T. W. Hamann, M. J. Pellin, and J. T. Hupp, Chem. Eur. J. 2008, 14, 4458.
    (20)A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
    (21)Md. K. Nazeeruddin, M. S. Zakerruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, and M. Grätzel, Inorg. Chem. 1999, 38, 6298.
    (22)Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel, J. Phys. Chem. B, 2003, 107, 8981.
    (23)Md. K. Nazeeruddin, P. Péchy, T. Renouard, M. S. Zakerruddin, R. Humphry-Baker, P. Comte, P. Liska, Le Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, and M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
    (24)(a) D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, and L. Sun, Chem. Commun. 2006, 2245. (b) S.-L. Li, K.-J. Jiang, K.-F. Shao, and L.-M. Yang, Chem. Commun. 2006, 2792. (c) N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki, and K. Hara, J. Am. Chem. Soc. 2006, 128, 14256. (d) P. Qin, X. Yang, R. Chen, L. Sun, T. Marinado, T. Edvinsson, G. Baschloo, and A. Hagfeldt, J. Phys. Chem. C. 2007, 111, 1853.
    (25)G. Zhang, H. Bala, Y. Cheng, D. Shi, X. Lv, Q. Yu, and P. Wang, Chem. Commun. 2009, 16, 2198.
    (26)(a) K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, Chem Commun. 2001, 569. (b) K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama, and H. Arakawa, New. J. Chem. 2003, 27, 783.
    (27)(a) T. Horiuchi, H. Miura, and S. Uchida, Chem Commun. 2003, 3036. (b) T. Horiuchi, H. Miura, and S. Uchida, J. Photochem. Photobiol. A Chem. 2004, 164, 29. (c) T. Horiuchi, H. Miura, K. Sumioka, and S. Uchida, J. Am. Chem. Soc. 2004, 126, 12218. (d) S. Ito, M. Zakeeruddin, R. Hummphrey-Baker, P. Liska, R. Charvet, P. Comte, Md. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, and M. Grätzel, Adv. Mater. 2006, 18, 1202.
    (28)(a) T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian, and S. Yanagida, Chem. Mater. 2004, 16, 1806. (b) M. Velusamy, K. R. Justin Thomas, J. T. Lin, Y.-C. Hsu, and K. C. Ho, Org. Lett. 2005, 7, 1899. (c) D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, and L. Sun, Chem. Commun., 2006, 2245. (d) S.Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, and C. Kim, Chem. Commun., 2007, 4887.
    (29)A. Ehret, L. Stuhl, and M. T. Spitler, J. Phys. Chem. B. 2001, 105, 9960.
    (30)(a) Q.-H. Yao, F.-S. Meng, F.-Y. Li, H. Tian, and C.-H. Huang, J. Mater. Chem. 2003, 13, 1048. (b) Z.-S. Wang, F.-Y. Li, and C.-H. Huang, Chem. Commun. 2000, 2063.
    (31)(a) A. C. Khazraji, S. Hotchandani, S. Das, and P. V. Kamat, J. Phys. Chem. B. 1997, 103, 4693. (b) K. Sayama, K. Hara, N. Mori, M. Satsuki, S. Suga, S. Tsukagoshi, Y. Abe, H. Sughara, and H. Arakawa, Chem Commun. 2000, 1173. (c) K. Sayama, S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga, and H. Arakawa, Sol. Energy Mater. Sol. Cells. 2003, 80, 47.
    (32)(a) Q. Wang, W. M. Campbell, E. E. Bonfantani, K. W. Jolley, D. L. Officer, P. J. Walsh, K. C. Gordon, R. Humphry-Baker, M. K. Nazeeruddin, and M. Grätzel, J. Phys. Chem. B. 2005, 109, 15397. (b) S. Eu, S.Hayashi, T. Umeyama, A. Oguro, M. Kawasaki, N. Kadota, Y. Matano, and H. Imahori, J. Phys. Chem. C. 2007, 111, 3528. (c) W. M. Campbell, K. W. Jolley, P. Wagner, K. Wagner, P. J. Walsh, K. C. Gordon, L. Schmidt-Mende, M. K. Nazeeruddin, Q. Wang, and M.Grätzel, D. L. Officer, J. Phys. Chem. C. 2007, 111, 11760.
    (33)(a) S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F. D. Angelis, D. D. Censo, Md. K. Nazeeruddin, and M. Grätzel, J. Am. Chem. Soc. 2006, 128, 16701. (b) H. Choi, C. Baik, S. O. Kang, J. Ko, M.-S. Kang, Md. K. Nazeeruddin, and M. Grätzel, Angew. Chem. Int. Ed. 2008, 47, 327. (c) H. Choi, J. K. Lee, K. Song, S. O. Kang, and J. Ko, Tetrahedron. 2007, 63, 3115. (d) S. Kim, H. Choi, D. Kim, K. Song, S. O. Kang, and J. Ko, Tetrahedron. 2007, 63, 9206.
    (34)M. Velusamy, K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, and K.-C. Ho, Org. Lett. 2005, 7, 1899.
    (35)K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, and K.-C. Ho, Chem. Commun. 2005, 32, 4098.
    (36)M.-S. Tsai, Y.-C. Hsu, J. T. Lin, H.-C. Chen, and C.-P. Hsu, J. Phys. Chem. C. 2007, 111, 18785.
    (37)S.-T. Huang, Y.-C. Hsu, Y.-S. Yen, H.-H. Chou, J. T. Lin, C.-W. Chang, C.-P. Hsu, C. Tasi, and D.-J. Yin, J. Phys. Chem. C. 2008, 112, 19739.
    (38)J. T. Lin, P.-C. Chen, Y.-S. Yen, Y.-C. Hsu, H.-H. Chou, and M.-C. P. Yeh, Org. Lett. 2009, 11, 97.
    (39)K. Staub, G. A. Levina, S. Barlow, T. C. Kowalczyk, H. S. Lackritz, M. Barzoukas, A. Fortd, and S. R. Marder, J. Mater. Chem. 2003, 13, 825.
    (40)Z.-S. Wang, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, H. Arakawa, and H. Sugihara, J. Phys. Chem. B. 2005, 109, 3907.
    (41)D. Milstein and J. K. Stille, J. Am. Chem. Soc. 1978, 100, 3636.
    (42)F. Paul, J. Patt, and J. F. Hartwig, J. Am. Chem. Soc. 1994, 116, 5969.
    (43)J. E. McMurry and M. P. Fleming, J. Am. Chem. Soc. 1974, 96, 4708.
    (44)E. Knoevenagel, Ber. 1898, 31, 2596.
    (45)J. M. Kuiper and J. B. F. N. Engberts, Langmuir 2004, 20, 1152.
    (46)(a) K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K.Sayama, H. Sugihara, and H. Arakawa, J. Phys. Chem. B. 2003, 107, 597. (b) K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, Sol. Energy Mater. Sol. Cells. 2003, 77, 89.
    (47)A. Hagfeldt and M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
    (48)S. H. Kang, S.-H. Choi, M.-S. Kang, J.-Y. Kim, H.-S. Kim, T. Hyeon, and Y.-E. Sung, Adv. Mater. 2008, 20, 54.
    (49)R. C. Hiborn, Am. J. Phys. 1982, 50, 982.

    無法下載圖示 本全文未授權公開
    QR CODE