研究生: |
柴世濂 |
---|---|
論文名稱: |
硫酸對氧化石墨烯結構的影響 The Effect of Sulfuric Acid on Graphene Oxide |
指導教授: | 洪偉修 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 107 |
中文關鍵詞: | 氧化石墨烯 、石墨烯 、硫酸 、還原 |
英文關鍵詞: | graphene oxide, rGO, sulfuric acid, reduction |
論文種類: | 學術論文 |
相關次數: | 點閱:278 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究分為(一)不同的硫酸濃度對GO 進行反應與(二)稀硫酸濃
度0.6M 對GO 進行不同的反應時間。
利用粉末X 光繞射儀、拉曼散射儀、X 光光電子能譜儀和四點
探針等儀器鑑定,對其材料進行分析。結構上,根據拉曼散射的D band
和G band 之比值可以得知材料的石墨化程度。隨著硫酸濃度增加至
18M,ID/IG 比值會從2.17 下降至1.46,表示脫水還原形成石墨烯。
然而,在稀硫酸0.6M 反應1.5 小時,GO 結構會進行開環,ID/IG 比值
從2.17 上升至2.89,表面缺陷增加;24 小時則會進行部份脫水還原,
ID/IG 比值從2.17 下降至1.71。電性上,隨著硫酸濃度的提升,導電
率從1.67×10-3S/m 提升至1.40×102S/m,由於高濃度的硫酸對GO 進
行脫水反應,使原本GO 表面的含氧官能基部分脫去,導電性因此變
高;然而0.6M 稀硫酸對GO 反應時間的增加,導電率從1.67×10-3S/m
提升至5.73×10-2S/m。
此研究是硫酸對GO 的時間和濃度影響,因此結果可提供以環
保的方式製備石墨烯以及GO 的結構修飾,作為重要的參考價值。
This thesis consists of two parts which are related to the treatment of
graphene oxides (GO) with H2SO4. The first part focuses on the reaction of GO
in solution of H2SO4 with various concentrations. The second part reports the
study for the reaction of GO in 0.6M H2SO4 for different reaction time.
The GO and GO-related materials were characterized with powder X-ray
diffraction, Raman spectrometry, X-ray photoelectron spectroscopy and four
probes measurement. According to Raman spectrometry, the intensity ratio of
D- and G-band (ID/IG) provides the degree of graphitization of GO after
treatment in solution of H2SO4. GO was treated in a solution of 18 M H2SO4
for 1.5 hr and the value of ID/IG decreased from 2.17 to 1.46 because the
hydroxyl groups were removed by the reaction of dehydration. The ratio of
ID/IG decreases with the increase the concentration of H2SO4. GO mainly
undergoes the ring-opening reactions of epoxyl groups in 0.6M H2SO4 at the
initial period and the value of ID/IG is 2.89 for the GO after a reaction time of
1.5 hr. The prolonged reaction decreases the value of ID/IG to 1.71, due to the
reduction of defects. The electrical measurements also indicates that the
conductivity of GO increases from 1.67×10-3 S/m to 1.40×102 S/m after the
reaction with 18 M H2SO4 for 1.5 hr, consistent with measurements of Raman
spectroscopy. However, the conductivity of GO increases only up to 5.73×
10-2S/m after treatment in 0.6 M H2SO4 for 24 hr.
This thesis provides a environmental method of synthesizing graphene
and modification of GO’s framework. It is an important viewpoint for
producing graphene .
1. Wissler, M., Graphite and carbon powders for electrochemical applications. J.
Power Sources 2006, 156 (2), 142-150.
2. Wu, Z.-S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang,
C.; Cheng, H.-M., Synthesis of Graphene Sheets with High Electrical Conductivity
and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. ACS Nano 2009,
3 (2), 411-417.
3. Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon: A Review of
Graphene. Chem. Rev. (Washington, DC, U. S.) 2009, 110 (1), 132-145.
4. Schwierz, F., Graphene transistors. Nat Nano 2010, 5 (7), 487-496.
5. Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang,
X., A graphene-based broadband optical modulator. Nature 2011, 474 (7349), 64-67.
6. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.
V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon
Films. Science 2004, 306 (5696), 666-669.
7. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S., Graphene
based materials: Past, present and future. Progress in Materials Science 2011, 56 (8),
1178-1271.
8. Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor
by CVD. Chem. Phys. Lett. 2006, 430 (1–3), 56-59.
9. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.;
Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis
of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324
(5932), 1312-1314.
10. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution
processing of large-scale graphene. Nat Nano 2009, 4 (1), 25-29.
11. Wallace, P. R., The Band Theory of Graphite. Phys. Rev. 1947, 71 (9), 622-634.
12. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3),
183-191.
13. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. J. Mater.
Chem. 2010, 20 (12), 2277.
14. Xu, K.; Cao, P.; Heath, J. R., Graphene Visualizes the First Water Adlayers on
Mica at Ambient Conditions. Science 2010, 329 (5996), 1188-1191.
15. Ando, T., The electronic properties of graphene and carbon nanotubes. NPG Asia
Mater 2009, 1, 17-21.
16. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties
and Intrinsic Strength of Monolayer Graphene. Science 2008, 321 (5887), 385-388.
105
17. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau,
C. N., Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8
(3), 902-907.
18. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem.
Soc. 1958, 80 (6), 1339-1339.
19. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of
graphene oxide. Chem. Soc. Rev. 2010, 39 (1), 228-240.
20. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat
Nano 2009, 4 (4), 217-224.
21. Lerf, A.; He, H.; Forster, M.; Klinowski, J., Structure of Graphite Oxide
Revisited‖. J. Phys. Chem. B 1998, 102 (23), 4477-4482.
22. Hofmann, U.; Holst, R., Über die Säurenatur und die Methylierung von
Graphitoxyd. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1939,
72 (4), 754-771.
23. Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M., New insights into the structure
and reduction of graphite oxide. Nat Chem 2009, 1 (5), 403-408.
24. Srinivas, G.; Burress, J. W.; Ford, J.; Yildirim, T., Porous graphene oxide
frameworks: Synthesis and gas sorption properties. J. Mater. Chem. 2011, 21 (30),
11323-11329.
25. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.;
Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of
graphene oxide paper. Nature 2007, 448 (7152), 457-460.
26. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev,
A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS
Nano 2010, 4 (8), 4806-4814.
27. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S.,
Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater.
(Weinheim, Ger.) 2010, 22 (35), 3906-3924.
28. Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D., Graphene
Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560-10564.
29. Liu, Z.-B.; Xu, Y.-F.; Zhang, X.-Y.; Zhang, X.-L.; Chen, Y.-S.; Tian, J.-G.,
Porphyrin and Fullerene Covalently Functionalized Graphene Hybrid Materials with
Large Nonlinear Optical Properties. J. Phys. Chem. B 2009, 113 (29), 9681-9686.
30. Yang, Y.; Wang, J.; Zhang, J.; Liu, J.; Yang, X.; Zhao, H., Exfoliated Graphite
Oxide Decorated by PDMAEMA Chains and Polymer Particles. Langmuir 2009, 25
(19), 11808-11814.
31. Park, S.; Dikin, D. A.; Nguyen, S. T.; Ruoff, R. S., Graphene Oxide Sheets
Chemically Cross-Linked by Polyallylamine. J. Phys. Chem. C 2009, 113 (36),
106
15801-15804.
32. Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N., A Graphene Platform
for Sensing Biomolecules. Angewandte Chemie International Edition 2009, 48 (26),
4785-4787.
33. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia,
Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via
chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
34. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M.,
Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene
Sheets. J. Am. Chem. Soc. 2008, 130 (48), 16201-16206.
35. Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G., Non-covalent functionalization of
graphene sheets by sulfonated polyaniline. Chem. Commun. (Cambridge, U. K.) 2009,
(13), 1667-1669.
36. L. G. Wade, J., Organic Chemistry fifth edition. Pearson Education, Inc. 2003,
300.
37. Eddingsaas, N. C.; VanderVelde, D. G.; Wennberg, P. O., Kinetics and Products
of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy
Alcohols. J. Phys. Chem. A 2010, 114 (31), 8106-8113.
38. 汪建民, 材料分析. 中國材料科學學會1998.
39. Douglass A.Skoog, F. J. H., Stanley R. Crouch, Principles of Instrumental
Analysis 6th Edition. Thomson Learning Company 2007.
40. Jawhari, T.; Roid, A.; Casado, J., Raman spectroscopic characterization of some
commercially available carbon black materials. Carbon 1995, 33 (11), 1561-1565.
41. Robertson, J., Amorphous carbon. Advances in Physics 1986, 35 (4), 317-374.
42. White, D. S. K. a. W. B., Characterization of diamond films by Raman
spectroscopy. J. Mater. Res. 1989, 4, pp 385-393.
43. Nikiel, L.; Jagodzinski, P. W., Raman spectroscopic characterization of graphites:
A re-evaluation of spectra/ structure correlation. Carbon 1993, 31 (8), 1313-1317.
44. Rouzaud, J. N.; Oberlin, A.; Beny-Bassez, C., Carbon films: Structure and
microtexture (optical and electron microscopy, Raman spectroscopy). Thin Solid
Films 1983, 105 (1), 75-96.
45. Ferrari, A. C.; Robertson, J., Interpretation of Raman spectra of disordered and
amorphous carbon. Phys. Rev. B 2000, 61 (20), 14095-14107.
46. 林珊, Fabrication and Characterization of Electrografted Aminophenyl Groups at
Gold and Silicon Surfaces. 國立台灣師範大學化學系碩士論文2008.
47. 張俊彥, 施敏., 半導體元件物理與製作技術. 高立1996.
48. Logan, M. A., An AC Bridge for Semiconductor Resistivity Measurements Using
a Four-Point Probe. Bell System Technical Journal 1961, 885-919.
107
49. Lerf, A.; He, H.; Riedl, T.; Forster, M.; Klinowski, J., 13C and 1H MAS NMR
studies of graphite oxide and its chemically modified derivatives. Solid State Ionics
1997, 101-103, Part 2 (0), 857-862.
50. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J., Probing the
Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ
X-ray-Based Spectroscopies. J. Phys. Chem. C 2011, 115 (34), 17009-17019.
51. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.;
Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A.; Ruoff, R. S., Chemical
analysis of graphene oxide films after heat and chemical treatments by X-ray
photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
52. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable
aqueous dispersions of graphene nanosheets. Nat Nano 2008, 3 (2), 101-105.
53. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible Graphene Films via the Filtration
of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc.
2008, 130 (18), 5856-5857.