簡易檢索 / 詳目顯示

研究生: 柴世濂
論文名稱: 硫酸對氧化石墨烯結構的影響
The Effect of Sulfuric Acid on Graphene Oxide
指導教授: 洪偉修
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 107
中文關鍵詞: 氧化石墨烯石墨烯硫酸還原
英文關鍵詞: graphene oxide, rGO, sulfuric acid, reduction
論文種類: 學術論文
相關次數: 點閱:205下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為(一)不同的硫酸濃度對GO 進行反應與(二)稀硫酸濃
    度0.6M 對GO 進行不同的反應時間。
    利用粉末X 光繞射儀、拉曼散射儀、X 光光電子能譜儀和四點
    探針等儀器鑑定,對其材料進行分析。結構上,根據拉曼散射的D band
    和G band 之比值可以得知材料的石墨化程度。隨著硫酸濃度增加至
    18M,ID/IG 比值會從2.17 下降至1.46,表示脫水還原形成石墨烯。
    然而,在稀硫酸0.6M 反應1.5 小時,GO 結構會進行開環,ID/IG 比值
    從2.17 上升至2.89,表面缺陷增加;24 小時則會進行部份脫水還原,
    ID/IG 比值從2.17 下降至1.71。電性上,隨著硫酸濃度的提升,導電
    率從1.67×10-3S/m 提升至1.40×102S/m,由於高濃度的硫酸對GO 進
    行脫水反應,使原本GO 表面的含氧官能基部分脫去,導電性因此變
    高;然而0.6M 稀硫酸對GO 反應時間的增加,導電率從1.67×10-3S/m
    提升至5.73×10-2S/m。
    此研究是硫酸對GO 的時間和濃度影響,因此結果可提供以環
    保的方式製備石墨烯以及GO 的結構修飾,作為重要的參考價值。

    This thesis consists of two parts which are related to the treatment of
    graphene oxides (GO) with H2SO4. The first part focuses on the reaction of GO
    in solution of H2SO4 with various concentrations. The second part reports the
    study for the reaction of GO in 0.6M H2SO4 for different reaction time.
    The GO and GO-related materials were characterized with powder X-ray
    diffraction, Raman spectrometry, X-ray photoelectron spectroscopy and four
    probes measurement. According to Raman spectrometry, the intensity ratio of
    D- and G-band (ID/IG) provides the degree of graphitization of GO after
    treatment in solution of H2SO4. GO was treated in a solution of 18 M H2SO4
    for 1.5 hr and the value of ID/IG decreased from 2.17 to 1.46 because the
    hydroxyl groups were removed by the reaction of dehydration. The ratio of
    ID/IG decreases with the increase the concentration of H2SO4. GO mainly
    undergoes the ring-opening reactions of epoxyl groups in 0.6M H2SO4 at the
    initial period and the value of ID/IG is 2.89 for the GO after a reaction time of
    1.5 hr. The prolonged reaction decreases the value of ID/IG to 1.71, due to the
    reduction of defects. The electrical measurements also indicates that the
    conductivity of GO increases from 1.67×10-3 S/m to 1.40×102 S/m after the
    reaction with 18 M H2SO4 for 1.5 hr, consistent with measurements of Raman
    spectroscopy. However, the conductivity of GO increases only up to 5.73×
    10-2S/m after treatment in 0.6 M H2SO4 for 24 hr.
    This thesis provides a environmental method of synthesizing graphene
    and modification of GO’s framework. It is an important viewpoint for
    producing graphene .

    摘要.......................................................................................................................... I Abstract ........................................................................................................................ II 致謝.............................................................................................................................. III 目錄............................................................................................................................... V 圖目錄 ...................................................................................................................... VIII 表目錄 ......................................................................................................................... XI 第一章 前言 ................................................................................................................. 1 第二章文獻回顧 ......................................................................................................... 5 2-1 石墨烯(GRAPHENE) ---------------------------------------------------------------------------------------- 5 2-1-1 石墨烯的發展歷史 ----------------------------------------------------------------------------------- 5 2-1-2 石墨烯的結構及性質 -------------------------------------------------------------------------------- 6 2-2 氧化石墨烯(Graphene Oxide, GO) ------------------------------------------------------------------ 9 2-2-1 GO的官能基修飾 ---------------------------------------------------------------------------------- 12 2-2-2 化學還原法得到石墨烯(rGO) -------------------------------------------------------------------- 15 2-2-3 rGO的官能基修飾 --------------------------------------------------------------------------------- 16 2-3-1 硫酸脫水35 ------------------------------------------------------------------------------------------- 18 2-3-2 硫酸催化 --------------------------------------------------------------------------------------------- 19 第三章實驗步驟與結構鑑定 ................................................................................... 21 3-1 實驗藥品 ---------------------------------------------------------------------------------------------------- 21 3-2 實驗流程 ---------------------------------------------------------------------------------------------------- 22 3-2-1 製備氧化石墨烯(GO) ------------------------------------------------------------------------------ 23 3-2-2 製備還原石墨烯(rGO) 32 -------------------------------------------------------------------------- 24 3-2-3 製備GO 開環結構(GO-OR-0.6M-時間變因) -------------------------------------------------- 24 3-2-4 製備脫水還原石墨烯(GO-OR-濃度變因) ------------------------------------------------------ 24 3-2-5 製備rGO-a 和GO-OR-18M-a -------------------------------------------------------------------- 25 3-2-6 製備電化學阻抗之工作電極 ---------------------------------------------------------------------- 25 3-2-7 製備四點探針量測之壓碇碳材 ------------------------------------------------------------------ 25 3-3 結構鑑定 ---------------------------------------------------------------------------------------------------- 26 3-3-1 粉末X 光繞射儀(powder X-Ray Diffraction, XRD)37 ----------------------------------------- 26 3-3-2 熱重分析儀(thermo gravity analysis, TGA)37 --------------------------------------------------- 29 3-3-3 全反射式-傅立葉轉換紅外線光譜儀(ATR-IR)38 ---------------------------------------------- 29 3-3-4 拉曼光譜Raman spectrum 37 --------------------------------------------------------------------- 30 3-3-5 X 光光電子能譜分析儀(X-ray photoelectron spectroscopy, XPS) 37 ------------------------ 33 VI 3-3-6 原子力顯微鏡(atomic force microscopy, AFM)45 ---------------------------------------------- 36 3-3-6 四點探針(four probe measurement)46 47 --------------------------------------------------------- 38 3-3-7 循環伏安法(cyclic voltammetry, CV) ------------------------------------------------------------ 40 3-3-8 電化學阻抗(electrochemical impedance spectroscopy,EIS) ------------------------------- 43 第四章 結果與討論 ................................................................................................... 45 4-1 氧化石墨烯(GRAPHENE OXIDE, GO) ------------------------------------------------------------------- 45 4-1-1 氧化石墨烯結構鑑定之XRD --------------------------------------------------------------------- 45 4-1-2 氧化石墨烯結構鑑定之ATR-IR 光譜 ---------------------------------------------------------- 46 4-1-3 氧化石墨烯結構鑑定之TGA --------------------------------------------------------------------- 47 4-1-4 氧化石墨烯結構鑑定之XPS --------------------------------------------------------------------- 48 4-1-6 氧化石墨烯結構鑑定之AFM -------------------------------------------------------------------- 51 4-2 還原氧化石墨烯(RGO) ---------------------------------------------------------------------------------- 53 4-2-1 還原氧化石墨烯(rGO)結構鑑定之XRD ------------------------------------------------------- 53 4-2-2 還原氧化石墨烯(rGO)結構鑑定之TGA-------------------------------------------------------- 54 4-2-3 還原氧化石墨烯(rGO)結構鑑定之XPS -------------------------------------------------------- 55 4-2-4 還原氧化石墨烯(rGO)結構鑑定之Raman ----------------------------------------------------- 56 4-2-5 還原氧化石墨烯(rGO)結構鑑定之ATR-IR ---------------------------------------------------- 57 4-3 硫酸對氧化石墨烯結構的影響(GO-OR-濃度變因) ------------------------------------------------ 59 4-3-1 GO-OR-濃度變因結構鑑定之XRD ------------------------------------------------------------- 59 4-3-2 GO-OR-濃度變因結構鑑定之TGA ------------------------------------------------------------- 60 4-3-3 GO-OR-濃度變因之TA-Mass(偵測溫度=187℃) --------------------------------------------- 61 4-3-4 GO-OR-濃度變因之TA-Mass(偵測溫度=227℃) --------------------------------------------- 65 4-3-5 GO-OR-濃度變因結構鑑定之XPS -------------------------------------------------------------- 71 4-3-6 GO-OR-濃度變因結構鑑定之Raman ---------------------------------------------------------- 75 4-3-7 GO-OR-濃度變因結構鑑定之ATR-IR ---------------------------------------------------------- 77 4-4 硫酸對氧化石墨烯結構的影響(GO-OR-時間變因) ------------------------------------------------ 79 4-4-1 GO-OR-時間變因結構鑑定之XRD ------------------------------------------------------------- 79 4-4-2 GO-OR-0.6M-時間變因結構鑑定之TGA ------------------------------------------------------ 81 4-4-3 GO-OR-0.6M-時間變因結構鑑定之XPS ------------------------------------------------------- 82 4-4-4 GO-OR-0.6M-時間變因結構鑑定之Raman --------------------------------------------------- 85 4-4-5 GO-OR-0.6M-時間變因結構鑑定之ATR-IR -------------------------------------------------- 87 4-5 RGO-A 與GO-OR-18M-A 之高溫退火(ANNEALING) ---------------------------------------------- 89 4-5-1 rGO-a 與GO-OR-18M-a 結構鑑定之XRD ---------------------------------------------------- 89 4-5-2 rGO-a 與GO-OR-18M-a 結構鑑定之TGA ---------------------------------------------------- 93 4-5-3 rGO-a 與GO-OR-18M-a 結構鑑定之XPS ----------------------------------------------------- 94 4-5-4 rGO-a 與GO-OR-18M-a 結構鑑定之Raman ------------------------------------------------- 95 4-5-5 GO-OR-18M-a 和rGO-a 結構鑑定之ATR-IR ------------------------------------------------ 97 4-6 碳材結構之相關電性量測 ------------------------------------------------------------------------------- 99 VII 4-6-1 碳材結構之四點探針量測 ------------------------------------------------------------------------- 99 4-6-2 碳材結構之電化學阻抗 -------------------------------------------------------------------------- 100 參考文獻 ................................................................................................................... 104 圖目錄 圖1. 1 三維結構的石墨1 碳材 --------------------------------------------------------------- 1 圖1. 2 製成各個石墨烯場效電晶體示意圖,由左至右分別是back gate MOSFET; 將graphene 轉移至矽晶圓上之top gate MOSFET; 磊晶石墨烯之top gate MOSFET。4 ------------------------------------------------------------------------------- 2 圖1. 3 光學調變器示意圖5 ------------------------------------------------------------------- 2 圖1. 4 機械剝離法製備石墨烯7 ------------------------------------------------------------ 3 圖1. 5 在銅箔上以化學氣相沉積法製備單層石墨烯9 --------------------------------- 4 圖1. 6 化學液相法製備石墨烯之流程示意圖10 ------------------------------------------ 4 圖2. 1 不同維度之石墨烯的構型12 --------------------------------------------------------- 6 圖2. 2 石墨烯能帶結構15 --------------------------------------------------------------------- 8 圖2. 3 氧化石墨烯(GO)之示意圖23 -------------------------------------------------------- 9 圖2. 4 氧化石墨烯被水撐開之結構示意圖24 ------------------------------------------- 10 圖2. 5 氧化石墨烯(GO)結構之SEM 25 -------------------------------------------------- 11 圖2. 6 單層氧化石墨烯分散在不同溶劑下之AFM 圖28 ----------------------------- 11 圖2. 7 利用不同的有機分子修飾在GO 結構上29 ------------------------------------- 12 圖2. 8 藉由ATRP 合成PDMAEMA 與GO 的複合材料30 ------------------------- 13 圖2. 9 polyallylamine 有機聚合物31 ------------------------------------------------------ 14 圖2. 10 利用GO 與DNA 的非共價鍵作用力之感測器示意圖32 ------------------ 14 圖2. 11 利用聯胺對環氧基做還原之反應機構33 -------------------------------------- 15 圖2. 12 經過化學還原法得到的石墨烯結構之SEM 圖33 ---------------------------- 15 圖2. 13 rGO 官能基修飾之重氮反應示意圖34 ----------------------------------------- 16 圖2. 14 sulfonated polyaniline, SPANI 之單體結構式35 ------------------------------- 16 圖2. 15 rGO 和SPANI 形成的複合材料模擬示意圖13 ------------------------------- 17 圖2. 16 GO 和rGO 利用共價作用力之官能基修飾整理圖13 ----------------------- 18 圖2. 17 硫酸對GO 反應之分子內脫水機制示意圖 ----------------------------------- 19 圖2. 18 硫酸對GO 反應之分子間脫水機制示意圖 ----------------------------------- 19 圖2. 19 硫酸當做環氧基開環催化劑之反應機制37 ----------------------------------- 20 圖3. 1 布拉格繞射原理(Bragg’s Law)之示意圖。 ------------------------------------- 27 圖3. 2 密勒指標之三維晶面圖示。 ------------------------------------------------------ 28 圖3. 3 拉曼散射機制 ------------------------------------------------------------------------ 30 圖3. 4 瑞立及拉曼散射過程 --------------------------------------------------------------- 32 圖3. 5 拉曼散射之振動模式示意圖45 --------------------------------------------------- 33 圖3. 6X 光電子激發之示意圖 ------------------------------------------------------------- 34 圖3. 7 半球形聚焦電子能量分析儀(hemispherical sector analyzer, --------------- 35 圖3. 8 Lennard-Jones 距離與位能關係圖 ------------------------------------------------ 37 圖3. 9AFM 三種不同掃描模式示意圖 --------------------------------------------------- 38 圖3. 10 四點探針在材料上面的排列48 ------------------------------------------------- 39 圖3. 11 循環伏安法之波形 ----------------------------------------------------------------- 41 圖3. 12 循環伏安法之電流圖 -------------------------------------------------------------- 42 圖3. 13 電化學三電極系統裝置示意圖。 ----------------------------------------------- 42 圖3. 14 等效電路 ----------------------------------------------------------------------------- 43 圖3. 15 為時間函數的電位波形 ----------------------------------------------------------- 44 圖4. 1 氧化石墨烯與石墨之XRD 繞射圖譜 -------------------------------------------- 46 圖4. 2 氧化石墨烯(GO)之ATR-IR 光譜圖 --------------------------------------------- 47 圖4. 3 氧化石墨烯(GO)之熱重分析圖 --------------------------------------------------- 48 圖4. 4 GO 結構的XPS 圖譜之碳峰 ------------------------------------------------------ 49 圖4. 5 GO 結構之Raman 散射圖 --------------------------------------------------------- 50 圖4. 6 單層GO 結構之AFM 圖 ---------------------------------------------------------- 52 圖4. 7 rGO 結構鑑定之XRD -------------------------------------------------------------- 53 圖4. 8 rGO 結構鑑定之TGA -------------------------------------------------------------- 54 圖4. 9 rGO 結構鑑定之XPS 圖譜之碳峰 ----------------------------------------------- 55 圖4. 10 rGO 結構鑑定之Raman 散射圖 ------------------------------------------------- 56 圖4. 11 rGO 與GO 之ATR-IR 圖譜 ------------------------------------------------------ 57 圖4. 12 GO-OR-濃度變化之XRD 繞射圖。 -------------------------------------------- 59 圖4. 13 GO-OR-濃度變化之熱重分析圖 ------------------------------------------------ 60 圖4. 14 當溫度在187℃時,GO 之TA-Mass 圖譜。 --------------------------------- 61 圖4. 15 當溫度在187℃時,GO-OR-0.6M 之TA-Mass 圖譜。--------------------- 62 圖4. 16 當溫度在187℃時,GO-OR-1.8M 之TA-Mass 圖譜。--------------------- 63 圖4. 17 GO-OR-1.8M 之酯化反應結構圖23 -------------------------------------------- 63 圖4. 18 當溫度在187℃時,GO-OR-6M 之TA-Mass 圖譜。 ----------------------- 64 圖4. 19 當溫度在187℃時,GO-OR-18M 之TA-Mass 圖譜。 --------------------- 65 圖4. 20 當溫度在227℃時,GO 之TA-Mass 圖譜。 --------------------------------- 66 圖4. 21 當溫度在227℃時,GO-OR-0.6M 之TA-Mass 圖譜。--------------------- 67 圖4. 22 當溫度在227℃時,GO-OR-1.8M 之TA-Mass 圖譜。--------------------- 68 圖4. 23 當溫度在227℃時,GO-OR-6M 之TA-Mass 圖譜。 ----------------------- 68 圖4. 24 當溫度在227℃時,GO-OR-18M 之TA-Mass 圖譜。 --------------------- 69 圖4. 25 在溫度為187℃之CO2 氣體脫付含量長條柱狀圖 -------------------------- 70 圖4. 26 在溫度為187℃之CO2 氣體脫付含量長條柱狀圖 -------------------------- 70 圖4. 27 GO-OR-0.6M-1.5hr 結構鑑定之XPS 圖譜之碳峰 --------------------------- 71 圖4. 28 GO-OR-1.8M 結構鑑定之XPS 圖譜之碳峰 ---------------------------------- 72 圖4. 29 GO-OR-6M 結構鑑定之XPS 圖譜之碳峰 ------------------------------------- 73 圖4. 30 GO-OR-18M 結構鑑定之XPS 圖譜之碳峰 ----------------------------------- 74 圖4. 31 GO-OR-濃度變因(濃度變因=0.6M、1.8M、6M、18M)之拉曼散射圖 - 76 圖4. 32 GO-OR-0.6M-時間變因之ATR-IR 圖譜 --------------------------------------- 78 圖4. 33 GO-OR-時間變化之XRD 繞射圖。 -------------------------------------------- 80 圖4. 34 GO-OR-0.6M-24hr 與rGO 之繞射圖比較 ------------------------------------- 81 圖4. 35 GO-OR-時間變化之熱重分析圖 ------------------------------------------------ 82 圖4. 36 GO-OR-0.6M-1.5hr 結構鑑定之XPS 圖譜之碳峰 --------------------------- 83 圖4. 37 GO-OR-0.6M-9hr 結構鑑定之XPS 圖譜之碳峰 ----------------------------- 84 圖4. 38 GO-OR-0.6M-24hr 結構鑑定之XPS 圖譜之碳峰 ---------------------------- 84 圖4. 39 GO-OR-0.6M-時間變化(時間變化=1.5hr、9hr、24hr)之拉曼散射圖 ---- 86 圖4. 40 GO-OR-0.6M-時間變因之ATR-IR 圖譜 --------------------------------------- 88 圖4. 41 rGO-annealing(rGO-a)結構鑑定之XRD --------------------------------------- 89 圖4. 42 rGO vs. rGO-a 結構鑑定之XRD 繞射圖 -------------------------------------- 90 圖4. 43 GO-OR-18M-annealing(GO-OR-18M-a)結構鑑定之XRD ------------------ 91 圖4. 44 GO-OR-18M vs. GO-OR-18M-a 結構鑑定之XRD 繞射圖 ----------------- 91 圖4. 45 rGO-a 與GO-OR-18M-a 結構鑑定之XRD 繞射圖 -------------------------- 92 圖4. 46 rGO-a 與GO-OR-18M-a 結構鑑定之TGA ------------------------------------ 93 圖4. 47 rGO-a 結構鑑定之XPS 圖譜之碳峰 ------------------------------------------- 94 圖4. 48 GO-OR-18M-a 結構鑑定之XPS 圖譜之碳峰 --------------------------------- 95 圖4. 49 rGO-a 結構鑑定之Raman 散射圖 ---------------------------------------------- 96 圖4. 50 GO-OR-18M-a 結構鑑定之Raman 散射圖 ------------------------------------ 96 圖4. 51 GO-OR-18M-a 和rGO-a 之ATR-IR 圖譜 ------------------------------------- 98 圖4. 52 碳材結構內電阻量測之電化學阻抗 ------------------------------------------ 101 表目錄 表4. 1 官能基代表的波數範圍 ------------------------------------------------------------ 47 表4. 2 GO 之ID/IG 和ID”/IG 比值 ---------------------------------------------------------- 51 表4. 3 rGO 之ID/IG 和ID”/IG 比值 --------------------------------------------------------- 56 表4. 4 GO-OR-濃度變因之ID/IG 和ID”/IG 比值 ----------------------------------------- 77 表4. 5 GO-OR-0.6M-時間變因之ID/IG 和ID”/IG 比值 ---------------------------------- 87 表4. 6 rGO-a 和GO-OR-18M-a 之半高寬(FWHM) ------------------------------------ 92 表4. 7 GO-OR-18M-a vs. rGO-a 之ID/IG 和ID”/IG 比值 -------------------------------- 97 表4. 8 碳材電性之四點探針測量數據表 ------------------------------------------------ 99 表4. 9 rGO 與GO-OR-18M 和商用GCE 電極之內電阻 ---------------------------- 101

    1. Wissler, M., Graphite and carbon powders for electrochemical applications. J.
    Power Sources 2006, 156 (2), 142-150.
    2. Wu, Z.-S.; Ren, W.; Gao, L.; Zhao, J.; Chen, Z.; Liu, B.; Tang, D.; Yu, B.; Jiang,
    C.; Cheng, H.-M., Synthesis of Graphene Sheets with High Electrical Conductivity
    and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation. ACS Nano 2009,
    3 (2), 411-417.
    3. Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb Carbon: A Review of
    Graphene. Chem. Rev. (Washington, DC, U. S.) 2009, 110 (1), 132-145.
    4. Schwierz, F., Graphene transistors. Nat Nano 2010, 5 (7), 487-496.
    5. Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang,
    X., A graphene-based broadband optical modulator. Nature 2011, 474 (7349), 64-67.
    6. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.
    V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon
    Films. Science 2004, 306 (5696), 666-669.
    7. Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. I.; Seal, S., Graphene
    based materials: Past, present and future. Progress in Materials Science 2011, 56 (8),
    1178-1271.
    8. Somani, P. R.; Somani, S. P.; Umeno, M., Planer nano-graphenes from camphor
    by CVD. Chem. Phys. Lett. 2006, 430 (1–3), 56-59.
    9. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.;
    Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S., Large-Area Synthesis
    of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324
    (5932), 1312-1314.
    10. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution
    processing of large-scale graphene. Nat Nano 2009, 4 (1), 25-29.
    11. Wallace, P. R., The Band Theory of Graphite. Phys. Rev. 1947, 71 (9), 622-634.
    12. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3),
    183-191.
    13. Loh, K. P.; Bao, Q.; Ang, P. K.; Yang, J., The chemistry of graphene. J. Mater.
    Chem. 2010, 20 (12), 2277.
    14. Xu, K.; Cao, P.; Heath, J. R., Graphene Visualizes the First Water Adlayers on
    Mica at Ambient Conditions. Science 2010, 329 (5996), 1188-1191.
    15. Ando, T., The electronic properties of graphene and carbon nanotubes. NPG Asia
    Mater 2009, 1, 17-21.
    16. Lee, C.; Wei, X.; Kysar, J. W.; Hone, J., Measurement of the Elastic Properties
    and Intrinsic Strength of Monolayer Graphene. Science 2008, 321 (5887), 385-388.
    105
    17. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau,
    C. N., Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8
    (3), 902-907.
    18. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J. Am. Chem.
    Soc. 1958, 80 (6), 1339-1339.
    19. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of
    graphene oxide. Chem. Soc. Rev. 2010, 39 (1), 228-240.
    20. Park, S.; Ruoff, R. S., Chemical methods for the production of graphenes. Nat
    Nano 2009, 4 (4), 217-224.
    21. Lerf, A.; He, H.; Forster, M.; Klinowski, J., Structure of Graphite Oxide
    Revisited‖. J. Phys. Chem. B 1998, 102 (23), 4477-4482.
    22. Hofmann, U.; Holst, R., Über die Säurenatur und die Methylierung von
    Graphitoxyd. Berichte der deutschen chemischen Gesellschaft (A and B Series) 1939,
    72 (4), 754-771.
    23. Gao, W.; Alemany, L. B.; Ci, L.; Ajayan, P. M., New insights into the structure
    and reduction of graphite oxide. Nat Chem 2009, 1 (5), 403-408.
    24. Srinivas, G.; Burress, J. W.; Ford, J.; Yildirim, T., Porous graphene oxide
    frameworks: Synthesis and gas sorption properties. J. Mater. Chem. 2011, 21 (30),
    11323-11329.
    25. Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H. B.;
    Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S., Preparation and characterization of
    graphene oxide paper. Nature 2007, 448 (7152), 457-460.
    26. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev,
    A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved Synthesis of Graphene Oxide. ACS
    Nano 2010, 4 (8), 4806-4814.
    27. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S.,
    Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater.
    (Weinheim, Ger.) 2010, 22 (35), 3906-3924.
    28. Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D., Graphene
    Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560-10564.
    29. Liu, Z.-B.; Xu, Y.-F.; Zhang, X.-Y.; Zhang, X.-L.; Chen, Y.-S.; Tian, J.-G.,
    Porphyrin and Fullerene Covalently Functionalized Graphene Hybrid Materials with
    Large Nonlinear Optical Properties. J. Phys. Chem. B 2009, 113 (29), 9681-9686.
    30. Yang, Y.; Wang, J.; Zhang, J.; Liu, J.; Yang, X.; Zhao, H., Exfoliated Graphite
    Oxide Decorated by PDMAEMA Chains and Polymer Particles. Langmuir 2009, 25
    (19), 11808-11814.
    31. Park, S.; Dikin, D. A.; Nguyen, S. T.; Ruoff, R. S., Graphene Oxide Sheets
    Chemically Cross-Linked by Polyallylamine. J. Phys. Chem. C 2009, 113 (36),
    106
    15801-15804.
    32. Lu, C.-H.; Yang, H.-H.; Zhu, C.-L.; Chen, X.; Chen, G.-N., A Graphene Platform
    for Sensing Biomolecules. Angewandte Chemie International Edition 2009, 48 (26),
    4785-4787.
    33. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia,
    Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S., Synthesis of graphene-based nanosheets via
    chemical reduction of exfoliated graphite oxide. Carbon 2007, 45 (7), 1558-1565.
    34. Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W.-F.; Tour, J. M.,
    Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene
    Sheets. J. Am. Chem. Soc. 2008, 130 (48), 16201-16206.
    35. Bai, H.; Xu, Y.; Zhao, L.; Li, C.; Shi, G., Non-covalent functionalization of
    graphene sheets by sulfonated polyaniline. Chem. Commun. (Cambridge, U. K.) 2009,
    (13), 1667-1669.
    36. L. G. Wade, J., Organic Chemistry fifth edition. Pearson Education, Inc. 2003,
    300.
    37. Eddingsaas, N. C.; VanderVelde, D. G.; Wennberg, P. O., Kinetics and Products
    of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy
    Alcohols. J. Phys. Chem. A 2010, 114 (31), 8106-8113.
    38. 汪建民, 材料分析. 中國材料科學學會1998.
    39. Douglass A.Skoog, F. J. H., Stanley R. Crouch, Principles of Instrumental
    Analysis 6th Edition. Thomson Learning Company 2007.
    40. Jawhari, T.; Roid, A.; Casado, J., Raman spectroscopic characterization of some
    commercially available carbon black materials. Carbon 1995, 33 (11), 1561-1565.
    41. Robertson, J., Amorphous carbon. Advances in Physics 1986, 35 (4), 317-374.
    42. White, D. S. K. a. W. B., Characterization of diamond films by Raman
    spectroscopy. J. Mater. Res. 1989, 4, pp 385-393.
    43. Nikiel, L.; Jagodzinski, P. W., Raman spectroscopic characterization of graphites:
    A re-evaluation of spectra/ structure correlation. Carbon 1993, 31 (8), 1313-1317.
    44. Rouzaud, J. N.; Oberlin, A.; Beny-Bassez, C., Carbon films: Structure and
    microtexture (optical and electron microscopy, Raman spectroscopy). Thin Solid
    Films 1983, 105 (1), 75-96.
    45. Ferrari, A. C.; Robertson, J., Interpretation of Raman spectra of disordered and
    amorphous carbon. Phys. Rev. B 2000, 61 (20), 14095-14107.
    46. 林珊, Fabrication and Characterization of Electrografted Aminophenyl Groups at
    Gold and Silicon Surfaces. 國立台灣師範大學化學系碩士論文2008.
    47. 張俊彥, 施敏., 半導體元件物理與製作技術. 高立1996.
    48. Logan, M. A., An AC Bridge for Semiconductor Resistivity Measurements Using
    a Four-Point Probe. Bell System Technical Journal 1961, 885-919.
    107
    49. Lerf, A.; He, H.; Riedl, T.; Forster, M.; Klinowski, J., 13C and 1H MAS NMR
    studies of graphite oxide and its chemically modified derivatives. Solid State Ionics
    1997, 101-103, Part 2 (0), 857-862.
    50. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J., Probing the
    Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ
    X-ray-Based Spectroscopies. J. Phys. Chem. C 2011, 115 (34), 17009-17019.
    51. Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.;
    Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr, C. A.; Ruoff, R. S., Chemical
    analysis of graphene oxide films after heat and chemical treatments by X-ray
    photoelectron and Micro-Raman spectroscopy. Carbon 2009, 47 (1), 145-152.
    52. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G., Processable
    aqueous dispersions of graphene nanosheets. Nat Nano 2008, 3 (2), 101-105.
    53. Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G., Flexible Graphene Films via the Filtration
    of Water-Soluble Noncovalent Functionalized Graphene Sheets. J. Am. Chem. Soc.
    2008, 130 (18), 5856-5857.

    下載圖示
    QR CODE