簡易檢索 / 詳目顯示

研究生: 薛紹君
Hsueh, Shao-Chun
論文名稱: 微採樣技術結合表面增強拉曼光譜法在藝術品分析上的應用
The Application of Spot Tests Combined with Surface-Enhanced Raman Scattering in the Analysis of Artworks
指導教授: 林震煌
Lin, Cheng-Huang
口試委員: 李君婷
Li, Chun-Ting
何佳安
Ho, Ja-An
林震煌
Lin, Cheng-Huang
口試日期: 2023/06/06
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: BPG點測法表面增強拉曼光譜法毛細作用孔雀石綠草酸鹽酞青藍畫作(藝術品)
英文關鍵詞: BPG Spot Tests, surface-enhanced Raman spectroscopy (SERS), capillary action, malachite green oxalate, phthalocyanine blue, paintings
研究方法: 實驗設計法行動研究法比較研究現象分析
DOI URL: http://doi.org/10.6345/NTNU202300932
論文種類: 學術論文
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一章 緒論 1 一、研究目的 1 二、研究背景 2 第二章 分析原理 3 一、拉曼散射歷史與簡介 3 二、微採樣技術介紹 4 三、增強因子計算 7 第三章 儀器與材料 9 一、儀器設備 9 二、實驗材料 19 三、實驗方法 23 第四章 研究過程與討論 27 一、不同濃度的MG分析物之SERS-Raman比較 27 二、不同形狀的紙片之毛細現象效果 37 三、最佳毛細現象作用時間 41 四、關於毛細現象以及奈米銀顆粒的探討 43 五、真實樣品的應用 51 第五章 結論 56 參考文獻 58

    [1]Wang, H.; Zhang, S.; Hu, S.; Zhen, Z.; Gomez, M. A.; Yao, S. A Systematic Study of the Synthesis Conditions of Blue and Green Ultramarine Pigments via the Reclamation of the Industrial Zeolite Wastes and Agricultural Rice Husks. Environ. Sci. Pollut. Res., 2020, 27 (10), 10910–10924.
    [2]Darwish, S. Scientific Investigation of the Materials and Techniques Used in a 19th Century Egyptian Cemetery Wall Painting (Hawsh Al-Basha). Int. J. Conserv. Sci., 2013, 4, 145–152.
    [3]Carbó, M. T. D.; Reig, F. B.; Adelantado, J. V. G.; Martínez, V. P. Fourier Transform Infrared Spectroscopy and the Analytical Study of Works of Art for Purposes of Diagnosis and Conservation. Anal. Chim. Acta, 1996, 330 (2), 207–215.
    [4]Juraviciene, E.; Kiuberis, J.; Beganskienė, A.; Senvaitiene, J.; Kareiva, A. XRD and FTIR Characterisation of Historical Green Pigments and Their Lead-Based Glazes. Chemija, 2014, 25, 199–205.
    [5]Shearer, J. C.; Peters, D. C.; Hoepfner, G.; Newton, T. FTIR in the Service of Art Conservation. Anal. Chem., 1983, 55 (8), 874A-880A.
    [6]Desnica, V.; Furić, K.; Schreiner, M. Multianalytical Characterisation of a Variety of Ultramarine Pigments. E-Preserv. Sci., 2004.
    [7]Debnath, N. C.; Vaidya, S. A. Application of X-Ray Diffraction Technique for Characterisation of Pigments and Control of Paints Quality. Prog. Org. Coat., 2006, 56 (2), 159–168.
    [8]Doménech-Carbó, M. T.; Doménech-Carbó, A. Spot Tests: Past and Present. ChemTexts, 2021, 8 (1), 4.
    [9]Edwards, H. G. M.; Middleton, P. S.; Jorge Villar, S. E.; de Faria, D. L. A. Romano-British Wall-Paintings II: Raman Spectroscopic Analysis of Two Villa Sites at Nether Heyford, Northants. Anal. Chim. Acta, 2003, 484 (2), 211–221.
    [10]Roh, J. Y.; Matecki, M. K.; Svoboda, S. A.; Wustholz, K. L. Identifying Pigment Mixtures in Art Using SERS: A Treatment Flowchart Approach. Anal. Chem., 2016, 88 (4), 2028–2032.
    [11]Fan, M.; Andrade, G. F. S.; Brolo, A. G. A Review on Recent Advances in the Applications of Surface-Enhanced Raman Scattering in Analytical Chemistry. Anal. Chim. Acta, 2020, 1097, 1–29.
    [12]Ru, E. L.; Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy: And Related Plasmonic Effects; Elsevier, 2008.
    [13]Aroca, R. Surface-Enhanced Vibrational Spectroscopy; John Wiley & Sons, 2006.
    [14]Lee, M.; Oh, K.; Choi, H.-K.; Lee, S. G.; Youn, H. J.; Lee, H. L.; Jeong, D. H. Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface. ACS Sens., 2018, 3 (1), 151–159.
    [15]Futamata, M.; Yu, Y.; Yajima, T. Elucidation of Electrostatic Interaction between Cationic Dyes and Ag Nanoparticles Generating Enormous SERS Enhancement in Aqueous Solution. J. Phys. Chem. C, 2011, 115 (13), 5271–5279.
    [16]King, S. S. T. Application of Infrared Fourier Transform Spectroscopy to Analysis of Micro Samples. J. Agric. Food Chem., 1973, 21 (4), 526–530.
    [17]Hamann, C. S.; Sonntag, M. D. Introduction to Raman Spectroscopy in the Undergraduate Curriculum. In Raman Spectroscopy in the Undergraduate Curriculum; ACS Symposium Series; American Chemical Society, 2018; Vol. 1305, pp 1–11.
    [18]Depciuch, J.; Parlinska-Wojtan, M.; Rahmi Serin, K.; Bulut, H.; Ulukaya, E.; Tarhan, N.; Guleken, Z. Differential of Cholangiocarcinoma Disease Using Raman Spectroscopy Combined with Multivariate Analysis. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2022, 272, 121006.
    [19]Wei, W.; Wang, L.; Huang, Q.; Li, T. Controlled Synthesis of Biocompatible RGO@CD@Au Nanocomposites for Trace Detection for Doxorubicin by Raman Imaging Spectroscopy. J. Alloys Compd., 2019, 783, 37–43.
    [20]Sahin, F.; Celik, N.; Camdal, A.; Sakir, M.; Ceylan, A.; Ruzi, M.; Onses, M. S. Machine Learning-Assisted Pesticide Detection on a Flexible Surface-Enhanced Raman Scattering Substrate Prepared by Silver Nanoparticles. ACS Appl. Nano Mater., 2022, 5 (9), 13112–13122.
    [21]Nilghaz, A.; Mahdi Mousavi, S.; Amiri, A.; Tian, J.; Cao, R.; Wang, X. Surface-Enhanced Raman Spectroscopy Substrates for Food Safety and Quality Analysis. J. Agric. Food Chem., 2022, 70 (18), 5463–5476.
    [22]Shah, K. C.; Shah, M. B.; Solanki, S. J.; Makwana, V. D.; Sureja, D. K.; Gajjar, A. K.; Bodiwala, K. B.; Dhameliya, T. M. Recent Advancements and Applications of Raman Spectroscopy in Pharmaceutical Analysis. J. Mol. Struct., 2023, 1278,
    [23]Zini, J.; Kekkonen, J.; Kaikkonen, V. A.; Laaksonen, T.; Keränen, P.; Talala, T.; Mäkynen, A. J.; Yliperttula, M.; Nissinen, I. Drug Diffusivities in Nanofibrillar Cellulose Hydrogel by Combined Time-Resolved Raman and Fluorescence Spectroscopy. J. Controlled Release, 2021, 334, 367–375.
    [24]Antonio, K. A.; Schultz, Z. D. Advances in Biomedical Raman Microscopy. Anal. Chem., 2014, 86 (1), 30–46.
    [25]Laing, S.; Jamieson, L. E.; Faulds, K.; Graham, D. Surface-Enhanced Raman Spectroscopy for in Vivo Biosensing. Nat. Rev. Chem., 2017, 1.
    [26]Stamatopoulou, E.; Sotiropoulou, M.; Karoglou, M.; Bakolas, A. Characterization of Contemporary Artworks Made on Photosensitized Canvas by Means of Optical Microscopy and Micro-Raman Spectroscopy Techniques. Microchem. J., 2021, 165, 106110.
    [27]Conti, C.; Botteon, A.; Colombo, C.; Pinna, D.; Realini, M.; Matousek, P. Advances in Raman Spectroscopy for the Non-Destructive Subsurface Analysis of Artworks: Micro-SORS. J. Cult. Herit., 2020, 43, 319–328.
    [28]Castro, K.; Pérez-Alonso, M.; Rodrı́guez-Laso, M. D.; Madariaga, J. M. Raman Fibre Optic Approach to Artwork Dating. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2004, 60 (12), 2919–2924.
    [29]Chen, M.; Huang, Y.; Miao, J.; Fan, Y.; Lai, K. A Highly Sensitive Surface-Enhanced Raman Scattering Sensor with MIL-100(Fe)/Au Composites for Detection of Malachite Green in Fish Pond Water. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2023, 292, 122432.
    [30]Mercadal, P. A.; Encina, E. R.; Villa, J. E. L.; Coronado, E. A. A New Figure of Merit to Assess the SERS Enhancement Factor of Colloidal Gold Nanoparticle Aggregates. J. Phys. Chem. C, 2021, 125 (7), 4056–4065.
    [31]Laurence, T. A.; Braun, G. B.; Reich, N. O.; Moskovits, M. Robust SERS Enhancement Factor Statistics Using Rotational Correlation Spectroscopy. Nano Lett., 2012, 12 (6), 2912–2917.
    [32]Muniz-Miranda, M.; Sbrana, G. Quantitative Determination of the Surface Concentration of Phenazine Adsorbed on Silver Colloidal Particles and Relationship with the SERS Enhancement Factor. J. Phys. Chem. B, 1999, 103 (48), 10639–10643.
    [33]Yuan, W.; Dong, G.-Z.; Ning, H.; Guan, X.-X.; Cheng, J.-F.; Shi, Z.-W.; Du, X.-J.; Meng, S.-W.; Liu, D.-S.; Dong, Y.-C. Applying Dynamic Light Scattering to Investigate the Self-Assembly Process of DNA Nanostructures. Chin. Chem. Lett., 2023, 108384.
    [34]Feng, X.; Huang, G.; Qiu, J.; Peng, L.; Luo, K.; Liu, D.; Han, P. Dynamic Light Scattering in Flowing Dispersion. Opt. Commun., 2023, 531, 129225.
    [35]Derkachov, G.; Jakubczyk, D.; Kolwas, K.; Piekarski, K.; Shopa, Y.; Woźniak, M. Dynamic Light Scattering Investigation of Single Levitated Micrometre-Sized Droplets Containing Spherical Nanoparticles. Measurement, 2020, 158, 107681.
    [36]Kuzma, B. A.; Tu, D.; Goss, A.; Iliopoulos, F.; Slade, J. B.; Wiatrowski, A.; Feizpour, A.; Evans, C. L. Instantaneous Topical Drug Quantification Using a 3D Printed Microfluidic Device and Coherent Raman Imaging. OpenNano, 2023, 12, 100151.
    [37]Shabunya-Klyachkovskaya, E. V.; Kulakovich, O. S.; Gaponenko, S. V. Surface Enhanced Raman Scattering of Inorganic Microcrystalline Art Pigments for Systematic Cultural Heritage Studies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2019, 222, 117235.
    [38]Sessa, C.; Steuer, C.; Quintero Balbas, D.; Sciutto, G.; Prati, S.; Stege, H. Analytical Studies on Commercial Artists’ Colour Charts from Das Deutsche Farbenbuch (1925)—Identification of Synthetic and Natural Organic Colourants by Raman Microscopy, Surface-Enhanced Raman Spectroscopy and Metal Underlayer ATR-FTIR Spectroscopy. Herit. Sci., 2022, 10 (1), 109.
    [39]Schmidt, H. Indigo – 100 Jahre Industrielle Synthese. Chem. Unserer Zeit, 1997, 31 (3), 121–128.
    [40]Kjeldgaard, S.; Dugulan, I.; Mamakhel, A.; Wagemaker, M.; Iversen, B. B.; Bentien, A. Strategies for Synthesis of Prussian Blue Analogues. R. Soc. Open Sci., 2021, 8 (1), 201779.
    [41]Chang, J.; Cañamares, M. V.; Aydin, M.; Vetter, W.; Schreiner, M.; Xu, W.; Lombardi, J. R. Surface-Enhanced Raman Spectroscopy of Indanthrone and Flavanthrone. J. Raman Spectrosc., 2009, 40 (11), 1557–1563.
    [42]Borg, B.; Dunn, M.; Ang, A.; Villis, C. The Application of State-of-the-Art Technologies to Support Artwork Conservation: Literature Review. J. Cult. Herit., 2020, 44, 239–259.
    [43]Corradini, M.; de Ferri, L.; Pojana, G. Spectroscopic Characterization of Commercial Pigments for Pictorial Retouching. J. Raman Spectrosc., 2021, 52 (1), 35–58.
    [44]Kaszowska, Z.; Malek, K.; Staniszewska-Slezak, E.; Niedzielska, K. Raman Scattering or Fluorescence Emission? Raman Spectroscopy Study on Lime-Based Building and Conservation Materials. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2016, 169, 7–15.
    [45]Ondieki, A. M.; Birech, Z.; Kaduki, K. A.; Mwangi, P. W.; Mwenze, N. M.; Juma, M.; Jeptoo, C.; Dlamini, M. S.; Maaza, M. Fabrication of Surface-Enhanced Raman Spectroscopy Substrates Using Silver Nanoparticles Produced by Laser Ablation in Liquids. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 2023, 296, 122694.
    [46]Liu, C.; Lei, F.; Li, J.; Wei, Y.; Li, Z.; Zhang, C.; Man, B.; Yu, J. Integrated Accurate Extraction and Fast Detection of Analyte: Capillarity-Based SERS Substrate Using in Effluent Monitoring. Appl. Surf. Sci., 2021, 542, 148735.
    [47]Zhang, Y.; Huang, Y.; Kang, Y.; Miao, J.; Lai, K. Selective Recognition and Determination of Malachite Green in Fish Muscles via Surface-Enhanced Raman Scattering Coupled with Molecularly Imprinted Polymers. Food Control, 2021, 130, 108367.
    [48]Chi, T. T. K.; Le, N. T.; Hien, B. T. T.; Trung, D. Q.; Liem, N. Q. Preparation of SERS Substrates for the Detection of Organic Molecules at Low Concentration. Commun. Phys., 2016, 26 (3), 261–261.
    [49]Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G. Gold Nanoparticle–Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate. Langmuir, 2012, 28 (23), 8782–8790.
    [50]Martins, N. C. T.; Fateixa, S.; Fernandes, T.; Nogueira, H. I. S.; Trindade, T. Inkjet Printing of Ag and Polystyrene Nanoparticle Emulsions for the One-Step Fabrication of Hydrophobic Paper-Based Surface-Enhanced Raman Scattering Substrates. ACS Appl. Nano Mater., 2021, 4 (5), 4484–4495.
    [51]Sun, L.; Cao, C.; Zhi, Y.; Shan, Y.; Zhang, H.; Dou, B.; Zhang, L.; Huang, W. Au–Ag Nanoparticles with Controllable Morphologies for the Surface-Enhanced Raman Scattering Detection of Trace Thiram. ACS Appl. Nano Mater., 2023, 6 (6), 4253–4261.
    [52]Basova, T. V.; Kiselev, V. G.; Schuster, B.-E.; Peisert, H.; Chassé, T. Experimental and Theoretical Investigation of Vibrational Spectra of Copper Phthalocyanine: Polarized Single-Crystal Raman Spectra, Isotope Effect and DFT Calculations. J. Raman Spectrosc., 2009, 40 (12), 2080–2087.

    無法下載圖示 電子全文延後公開
    2025/06/06
    QR CODE