簡易檢索 / 詳目顯示

研究生: 吳明珠
Wu, Ming-Chu
論文名稱: 從科學史中理論模型的發展暨認知學心智模式探討化學概念的理解-層析理論的模型化案例
The role of Models In Concept Acquisition:Through History of Science and Student's Mental Models During The Development of Theories--- The Case of Chromatography
指導教授: 邱美虹
Chiu, Mei-Hung
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 180
中文關鍵詞: 心智模式層析化學模型化認識論科學史
英文關鍵詞: mental model, chromatography, chemistry, modeling, epistemology, history of science
論文種類: 學術論文
相關次數: 點閱:347下載:216
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 模型是一種想法、一個物件、事件、歷程或一個系統的表徵。模型化﹙modeling﹚試圖將「不明確」或「沒有看過」的事物與想法呈現,因此模型蘊含「本源」(source)與「標的」(target)兩個領域。模型化是一種轉換的歷程;在嘗試轉換的程序中,注意力被切換、轉移至特定的意義領域而呈現躍進(leaping)的狀態,因而容易產生創造性的想法,因此模型化(modeling)是一種創造性有意義學習過程。
    層析法(chromatography)是物質科學中最常用的分離技術之一,因此是儀器分析課程中十分重要的一部分。層析法的分離作用源自被分離物質和分離系統間的集體現象,涉及分子間作用力、分子的動態分布等概念;相關研究顯示層析技術作用原理的概念理解對大部分學生是複雜和有困難的。
    本研究分成三個階段。第一階段,從科學史的角度輔以文獻探討的方式,確認出層析理論發展的五個理論模型-過濾模型、吸附模型、板理論模型、速率模型以及效化熱力學模型。
    第二階段,以孔恩的科學革命、拉卡托斯的研究綱領和勞丹的研究傳統等三種科學哲學觀分析層析理論模型的發展,瞭解模型是如何取代。研究結果顯示層析理論的發展是從因果解釋模型如過濾、吸附等分離作用模型發展為兩相間分配板理論模型,隨機分配的速率模型及合併動力學、熱力學形成的最適化模型。理論發展過程中,遭遇必須解決如:成分完全分離、動相的限制、靜相的限制等概念性問題時新理論模型才會出現。新理論模型並促進新的層析儀器的類型的設計和應用,使得分離的一些經驗問題得以解決。因此層析理論模型的發展並非完全累積的,而是聯合、分化和改變的演化歷程,本研究認為層析理論的發展較符合勞丹的科學發展理論。
    本研究的第三階段主要探討學習者對於模型的認識表徵(「模型表徵類別」)與層析單元教學以前之相關化學先備能力對於層析單元學習成效與層析模型建構之影響。受試學生是台北某私立技術學院專科部化工科,選修『儀器分析』課程的64位四年級學生(年齡19-21歲),該課程在實驗期間,由研究者利用透過科學史分析所發展出來的模型化導向教學模式(modeling approach teaching)進行層析單元的教學。研究者首先利用根據Grosslight等人(1991)對於模型認識之相關研究結果所自行發展的「學生模型表徵問卷」將受試學生分為「構念-理論」、「構念-空間」、「實體-理論」以及「實體-空間」等四種模型表徵類別後,分別在層析單元教學前與教學後,探討受試者「模型表徵類別」與「化學先備能力」對於層析模型之建構與層析單元成就之影響。
    第三階段的主要研究發現為(1)受試學生對於模型之表徵類別與化學先備能力均顯著影響其層析單元之學習成就;(2) 受試學生對於模型之表徵類別與化學先備能力對層析單元之學習成就影響無顯著交互作用;(3)受試學生在層析單元教學前,選擇吸附理論模型為適當層析模型者顯著多於另外三種層析模型;(4) 受試學生在層析單元教學後,選擇隨機的兩相分配速率理論模型為適當層析模型者顯著多於另外三種層析模型;(5)受試者「模型表徵類別」與「先備能力」對於教學前、後之層析模型建構均無顯著影響。由以上(3)、(4)發現,可以推論學生的層析模型建構大致符合科學史發展,也符合教學之進度。然而在單元教學後實際要求受試者解釋層析特例時,發現雖然大部分學生在認知上選擇隨機的兩相分配速率模型為最適當的層析模型,然而在解釋層析特例時,卻大都採過濾模型。

    A model is a surrogate object or a conceptual representation of an object, an event, a process or a system. Modeling is the process of using a model to gain an insight of the ambiguous thought or to make invisible event visualable. Hence, a model is always embedded both ‘source’ and ‘target’. Modeling is a conversion process. In the conversion process, attention is shuttled between source and target. When attention is shifted to focus on a specific discipline, then it is in a leaping state and therefore makes thinking more creative. Modeling should be a meaningful learning process.

    Chromatography is one of the most commonly used separation method in the material science. And it is a very important subject in the content of instrumental analysis course. Separation effect of chromatography is resulted from interaction of collective properties of the substances to be separated and the separation system itself. The mechanism of the separation process involved intermolecular forces and molecular dynamic distribution. Related science educational researches show that the concept of chromatography is complicate and difficult to learn for most students.

    Three parts are included in this study. Literature is reviewed and history of science is discussed in the first step. Five theoretical models are recognized from the history and development of theory in chromatography. There are filtration model, adsorption model, plate theory model, rate theory model, and optimized thermodynamic model.

    The study is then followed by discussion of philosophy of science in order to appraise the development of theoretical models of chromatography. Three philosophic perspectives on science evolution, which includes Kuhn’s “Paradigm Shift”, Lakatos’s “Scientific Research Programme”, and Laudan’s “Research Tradition”, were used to illustrate the relation of relevant models and the way a model is replaced. The results revealed that the development of the theory of chromatography is an evolving process from cause-effect model (i.e., filtration, adsorption model), plate theory model, rate theory model, to the optimal model with combination of dynamics and thermodynamic. In the developing process, the new model is built only when the conceptual problem is faced, such as: total separation of composition, limitation of mobile and stationary phase. The merge of a substituted theoretical model always accelerates new design of the instrument or broaden the application of chromatography. It then results in new solution for the encountered problem of separation of varied materials. Hence, the development of theoretical models of chromatography is not totally in according with accumulative perspective. Instead, it is a process of integration, differentiation, and progressive evolution. This study recommends that the development of the theory of chromatography is more consistent with scientific progress theory of Research Tradition of Laudan.

    The third part of the study investigated the relationships between the learners’ epistemological representations of models and the prior knowledge in chemistry with their learning achievement and concept change in chromatography. Sixty-four subjects (age 19-21 years) are from the Chemical Engineering Department of a 5-Years Program of Technical College in Taipei area. All the subjects took the ‘Instrumental Analysis’ course during the experiment. The researcher to teach chromatography applies modeling approach instruction, which developed from analysis of the history of science and philosophy. A developed questionnaire is utilized for categorizing the intrinsic representations of model of the students. Four groups of students: construct- theory, construct -spatiotemporal, concrete-theory, and concrete-spatiotemporal were identified. The results demonstrate that:
    (1) the intrinsic representations of models and the prior knowledge of the students significantly affect their learning achievement
    (2) there is no interaction between the intrinsic representations of models and prior knowledge of the students in the effect of the learning achievement of students
    (3) the adsorption model is chose by the students significantly more than the other three models before the instruction.
    (4) the rate theory model is chose by the students significantly more than the other three models after the instruction.
    (5) influence of the intrinsic representations of models and the prior knowledge of the students on their model construction is not found before and after the instruction.

    From results of (3) and (4), it suggested that students’ model construction is complied with development of science history and teaching plan. After the instruction, it is however found that the students incline to use the filtration model to explain gel permeation chromatography even though they adopted the rate theory model.

    第壹章 緒論 1 第一節 研究動機與研究背景 2 第二節 研究目的與研究問題 9 第三節 名詞解釋 11 第四節 研究假設 14 第五節 研究範圍與研究限制 15 第貳章 文獻探討 17 第一節 科學理論發展的研究 17 第二節 層析法的理論發展史 30 第三節 知識的表徵與科學學習 37 第四節 模型與科學學習 54 第五節 心智模式與概念改變 61 第參章 研究方法 69 第一節 研究對象 69 第二節 研究流程 71 第三節 研究設計 73 第四節 研究工具 79 第五節 資料分析 84 第肆章 研究結果與討論 85 第一節 科學史層析理論模型的確認 86 第二節 層析法理論模型的哲學分析 99 第三節 實證研究的結果 128 第四節 受試學生層析心智模式改變歷程 138 第伍章 結論和建議 149 第一節 理論分析的研究結果 149 第二節 實證研究的結果 151 第三節 結論和建議 152 參考文獻 155 附 錄 164

    一、中文部分
    林麗娟(1996):多媒體電腦圖像設計與視覺記憶的關係。教學科技與媒體,第28期,3-12。
    邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,第八卷第一期,1-34。
    金吾倫(1994):托馬斯‧庫恩。台北:遠流出版社。
    張瓊、于祺明、劉文君(1994):科學理論模型的建構。台北:淑馨出版社。
    黃仁竑,游寶達(1996):遠距教學與虛擬實境。資訊與教育雜誌,第50期,24-27。
    舒煒光(1994):科學哲學導論。台北:五南圖書出版有限公司。
    舒煒光、邱宗仁主編(1991):當代西方科學哲學述評。台北:水牛圖書出版事業有限公司。
    趙金祁(1993):人文與科技平衡中科學教育扮演的角色。科學教育月刊 156 期。
    趙金祁(1993):三維人文科技通識架構芻議。科學教育月刊 156 期。
    戴東源(2003):回顧遺忘了的維也納學圈-重新發現紐拉特。當代,一八六期。
    陳瑞麟(2003):規範的或演化的?「科學哲學自然論」的兩張面孔。當代,一八六期。
    陳衛平譯(1996):科學的進步與問題。台北:桂冠圖書股份有限公司。Laudan, L.(1977). Progress and its problems. Berkeley:The University of California Press.
    周寄中譯(1993):批判與知識的增長。台北:桂冠圖書股份有限公司。Lakatos, I.(1970). Criticism and the Growth of Knowledge. Lakatos and Musgrave ed., Cambridge。
    傅振焜譯(1994):後資本主義社會。台北:時報文化股份有限公司。Druck, P. F.(1993)。 Post-capitalist society. New york: Harper.
    鄒理民譯(1997):社會實體的建構。台北:巨流圖書公司。

    二、英文部分
    Anderson, J. R. (1995). Cognitive Psychology and its Implications. New York: Freeman and Company.
    Antonietti, A. (1991). Why does mental visualization facilitate problem-solving? In R. H. Logie and M. Denis (eds.) Mental Images in Human Cognition. North-Holland: Elsevier Science Publishers.
    Ausubel, D. P.(1963). The psychology of meaningful verbal learning. New York: Grune & Stratton
    Auyang, S. Y. (1999). Foundations of Complex System Theories. Cambridge, New York: Cambridge University Press.
    Buckley, B.C., Boulter, C. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. Gilbert, C. Boulter (ed.) Developing Models In Science Education. Netherland: Kluwer Academic Publisher.
    Benson, D.F., Greenberg, J.P. (1968). Visual from agnosia: A specific defect in visual discrimination. Archives of Neurology, 20, 82-89.
    Biederman, I. (1987). Recognition-by-component: A theory of human image understanding. Psychological Review, 94, 115-147.
    Bradford, D.P., Beret, R.L., Novak, J. (1994). Concept Map as a Tool to Assess Learning Chemistry. J. Chem. Educ., 71, 9-15.
    Buckley, B.C., Boulter, C.J., Gilbert, J.K. (1997). Towards a typology of models for science education. In J.K. Gilbert (ed.) Exploring Models and Modeling in Science and Technology in Science Education (pp. 90-105). Reading: Faculty of Education and Community Studies.
    Carley, K., Palmquist, M. (1992). Extracting, representing and analyzing mental models. Social Forces, 70(3), 601-636.
    Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: The MIT Press.
    Carey, S.,and Smith,C. (1993). On understanding the nature of scientific knowledge.Educational Psychologist 28:235-251.
    Carroll, J. (1962). Words, Meanings, and Concepts. Harvard Educational Review, 32, 178-202.
    Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in sciences. In R. Giere (Eds.) Cognitive mdels of science: Minnesota studies in the philosophy of science (pp.129-186). Minneapolis: University of Minnesota Press.
    Chi, M. T. H., Slotta, J. D., & de Leeuw, N. (1994). From things to process: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
    Chiu, M-H, Chou, C-C., and Liu, C-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39, 713-737.
    Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 22 (9), 1041-1053.
    Craig, D. L., Nersessian, N. J. and Catrambone, R. (2002), Percepual Simulation in Analogical Problem Solving. In L. Magnani and N. J. Nersessian (Eds.) Model-based Reasoning. Science, Technology Values. New York: Kluwer Academic/ Plenum Publishers.
    Craik, K. (1943). The nature of explanation.Cambridge, UK: Cambridge University Press
    diSessa, A. (1993). Towards an epistemology of physics. Cognition and Instruction, 10 (2&3), 105-225.
    Duit, R., & Glynn, S. (1996). Mental modeling. In G. Welford, J. Osborne and P. Scott (Eds.) Research in Science Education in Europe. London: The Falmer Press.
    Dykstra, D. I., Boyle, C. R., & Monarch, I. A. (1992). Studying conceptual change in learning physics. Science Education, 76 (6), 615-652.
    Ettre, L. S., Zlatkis, A. (1979). 75 Years of Chromatography—A Historical Dialogue. Amsterdam: Elsevier.
    Ettre, L. S. (2000). Chromatography:The separation technique of the 20th century. Chromatographia, 51 (1/2), 7-17.
    Ettre, L. S. (1999). Preparative liquid chromatography and the Manhattan Project. LC-GC, 17 (12), 1104-1109.
    Ettre L. S. (1990). Key moments in the evolution of liquid chromatography. J. of Chromatography, 535, 3-42.
    Eysenck, M. W. & Keane, M.T. (1996). Cognitive Psychology: A Student’s Handbook (3rd. ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
    Franco C. and de Barros, H.L. et. al. (1999). From scientists’ and inventors’ minds to some scientific and technological products: relationships between theories, models, mental models and conceptions. Int. J. Sci. Educ., 21(3), 277-291.
    Gabel, D. (1998). The Complexity of Chemistry and Implications for Teaching. In B .J. Fraser and K.G. Tobin (eds.), International Handbook of Science Education, pp. 233-248, Great Britain: Kluwer Academic Publishers.
    Giere, R. N. (1988). Explaining Science: A cognitive approach. Chicago: University of Chicago Press. The philosophy of science. New York: The Free Press.
    Gilbert, J. K. (Ed.) (1993). Models and Modeling in Science Education. Hartfield Herts, UK: Association for Science Education.
    Gilbert, J. K. and Boulter, C. (1998). Learning science through models and modeling. In B. Fraser and K. Tobin (eds.) International Handbook of Science Education. pp 53-66, Netherlands: Kluwer.
    Gobert, J. D. , Synder,J., and Houghton,C., (2002).The influence of students’ understanding of models on model-based reasoning.Presnted at the Annual Meeting of the American Educational Research Association, New Orleans,LO,April 1-5,2002.
    Gobert, J. D. & Pallant, A. (2004). Fostering Student’s Epistemologies of Models via Authentic Model-based tasks. J. of Science Education and Technology. 3 (1), March, 2004.
    Greca, I. M. and Moreira, M. A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22(1), 1-11.
    Greca, I. M. and Moreira, M. A. (2001). Mental, Physical, and Mathematical Models in the Teaching and Learning of Physics. International Journal of Science Education, 23 , 107-121.
    Greca, I. M. and Moreira, M. A. (1997). The kinds of mental representations – models, propositions and images – used by college physics students regarding the concept of field. International Journal of Science Education, 19(6), 711-724.
    Grob, R. L. (1995). Modern Practice of Gas Chromatography. 3rd. Ed., New York: John Willey & Son Inc.
    Grosslight, L., Unger, C., Jay, E. & Smith, C. (1991). Understanding Models and their use in science: Conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
    Hall, R. (1996). Representation as Shared Activity: Situated Cognition and Dewey's Cartography of Experience. The Journal of The Learning Science, 5, 209-238.
    Harrison, A.G. and Treagust, D.F. (1996) Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-34.
    Hayes, D. A. & Readence, J. E. (1983). Transfer of learning from illustration -dependent text. Journal of Educational Research, 76(4), 245-248.
    Heines, S. (1969). J. Chem. Educ. 46, 315-346.
    Hempel, C. (1966). Philosophy of Nature Science, Englewood Cliff, NJ: Prentice Hall
    Holton, G. (1972). On trying to understand scientific genius. American scholar, 41, 95-110.
    Holton, D. (1988). Toward a philosophically move valid science curriculum. Science Education, 72, 19-40.
    Holton, D. (2003). What Historians of Science and Science Educator Can Do for One Another. Science&Education, 12, 603-616.
    Hurd, P. (1990). Guest edition: Change and challenge in science education. Journal of Research in Science Teaching, 27, 413-414.
    Johnson-Laird, P. N.(1983). Mental models: Towards a Cognitive Science of Language, Inference, and Consciousness. Cambridge, MA: Harvard University Press.
    Johnson-Laird, P. N. (1989). Mental models. In M. I. Ponsner (ed.) Foundation of Cognitive Science. Cambridge, MA: The MIT Press.
    Johnson, S. K., Stewart J. (2002). Revising and Assessing Explanatory Models in A High School Genetics Class: A Comparison of Unsuccessful and Successful Performance. Science Education, 86, 463-480.
    Justi, R.S. and Gilbert, J.K. (2002). Modeling, teachers’ view on the nature of modeling, and implications for the education of modelers. Int. J. Sci. Educ., 24(4), 369-387.
    Justi, R. and Gilbert, J. K. (1999a). History and Philosophy of Science through Models: the case of chemical kinetics. Science and Education, 8(3), 287-307.
    Kaput, J. (1987). Representation Systems and Mathematics Problems of Representation. In C. Javier (Ed.) Teaching and Learning of Mathematic.
    Karger, B. L. (1997). HPLC: Early and Recent Perspectives. J. Chem. Educ., 74(1), 45-48.
    Kipnis, N. (1998). Theories as Models in Teaching Physics. Science & Education, 7, 245-260.
    Kosslyn, S.M., Flynn, R.A., Amsterdam, J.B. and Wang, G. (1990). Components of high level vision: A cognitive neuroscience analysis and accounts of neurological syndromes. Cognition, 34, 203-277.
    Kuhn, T.S. (1970). The structure of scientific revolutions (2nd ed.) Chicago: University of Chicago Press.
    Lakatos, I. (1984). The methodology of scientific research programs. Philosophical Papers, Volume I, Worral, J., Currie, G. (ed.), Cambridge: University Press.
    Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.
    Latour, B. & Woolgar, S. (1986). Laboratory Life: The Social Construction of Scientific Facts. Princeton, NJ: Princeton University Press
    Leslie, A. M. (1984). Some implications of pretense for mechanism underlying the child’s theory of mind. In J.W. Astington, P. L. Harris & D. R. Olson (eds.) Developing theories of mind, pp.19-45, Cambridge University Press
    Levie, W. H. (1987). Research on Pictures: A guide to the literature. In D. M. Willows & H. A. Houghton (eds.) The psychology of illustration, Vol. 1, Basic Research,pp.1-50, New York: Springer-Verlag.
    Levin, J. R. (1982). Picture as Prose-learning Devices. In A. Flammer & W. Kinstch (eds.) Discourse Processing, pp.412-444, North-Holland Publishing
    Loeff, C.E. and Anderson, T. (1994). What is Virtual Reality? In C. E. Loeff & T. Anderson (eds.) The Virtual Reality Casebook, New York: Van Nostrans Reinhold.
    Loving, C.C.(1991). The Scientific Theory Profile: A Philosophy of Science Model or Science Teachers. Journal of Research in Science Teaching, 28, 823-838.
    Mandav, N. B. and Yoichiro, I.(1988). Countercurrent chromatography:theory and practice.New York:Marcel Dekker.
    Marr, D. and Nishihara, K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Philosophical Ttransactions of the Royal Society (London), B200, 269-294.
    Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. San Francisco: W. H. Freeman.
    Martin,A. J.P.,&Synge, R. L. M. (1941). Biochem. J., 35, 1358–1368
    Matthews, M.R. (1994). Science Teaching: The Role of History and Philosophy of Science, London: Routledge.
    Mayer, R. E. & Anderson, R. B. (1991). Animations and narrations: An experimental test of dual-coding hypothesis. Journal of Educational Psychology, 83(4), 484-490.
    Mayer, R. E. & Anderson, R. B. (1992). The instructive animation: Helping students build connections between word and pictures in multimedia learning. Journal of Educational Psychology, 84(4), 444-452.
    Mayer, R. E., Sims, V. K. (1994). For Whom is a Picture Worth a Thousand Words? Extensions of a Dual-coding Theory of Multimedia Learning. Journal of Educational Psychology, 86(3), 389-401.
    McClleland, J. L. & Rumelhart, D. E. (1985), Distributed memory and the representation of general and specific information. Journal of Experimental Psychology, General, 114, 159-188.
    Mcnenllan, H. (1996). Being digital, Implications for Education. Education Technology, November -December.
    Nagel, E. (1987). The Structure of Science. Indianapolis, IN: Hackett.
    Nersessian, N. J. (1992). How do scientist think? Capturing the dynamics of conceptual change in science, Minnesota Studies in the Philosophy of Science (XV): Cognitive Models of Science. R. N. Giere (Eds.), Minneapolis: the University of Minnesota Press.
    Norman, D. A. (1983). Some observations on mental models. In D. Genteer & A. Steven (Eds.) Mental Models. Hillsdale, NJ: Lawrence Erlbaum.
    Novak,J. D. (1998). Learning, Creating, and Using Knowledge. New Jersey: Lawrence Erlbaum Associates, Inc.
    Paivio, A. (1990). Mental representation: A dual coding approach. New York: Oxford University Press.
    Passmore, C. & Stwart, J. (2002). A Modeling Approach to Teaching Evolutionary Biology in High Schools. J. of Reasearch in Science Teaching, 39, 185-204.
    Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.
    Ratciff, G. & Newcombe, F. (1982). Object recognition: Some deductions from the clinical evidence. In A. W. Ellis (Ed.) Normality and Pathology in cognitive function. London: Academic Press.
    Rieber, L.P. (1995). A historical review of visualization in human cognition. Educational Technology Research and Development, 43(1), 45-56.
    Rogers,Y., Rutherford,A. and Bibby ,P.A. (1992). Model in the Mind-Theory, Perspective and Application, London: Academic Press.
    Roth, W.-M.& McGinn, M. K. (1997). A cognitive ability or culture practice. Science Education, 81, 91-106.
    Roth, W.–M. & McGinn, M. K. (1998a), Undelete science education: /lives/work/voices. Journal of Research in Science Teaching.
    Roth, W. -M. & McGinn, M. K. (1998b), Inscription: Toward a Theory of Representing as Social Practice. Review of Educational Research, 68, 35-59.
    Sasse, M-A. (1991). How to trap user’s mental models. In M. J. Tauber & D. Ackerman (Eds.) Mental Models and human-computer interaction,Vol.2, Amsterdam: Elsevier.
    Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1-36.
    Shepard, R. (1988). The Imagination of the scientist, In K. Egan & D. Nadaner (eds.) Imagination and Education, pp.153-185, New York: Teacher’s College Press
    Shepard, R. N. (1967). Recognition memory for words, sentences and pictures. Journal of Verbal Learning and Verbal Behavior, 6, 156-163.
    Smith, E. (1989). Concepts and induction. In M. Posner (Ed.) Foundations of Cognitiver Science. pp.501-526, Cambridge, MA: MIT Press.
    Simon, H. A. (1973). The structure of ill-structures problems. Artificial Intelligence, 4, 181-201.
    Simon, H. A. (1980). Problem solving and education. In D. T. Tuma & F. Reif (Ed.) Problem solving and education : Issue in teaching and research. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Spaziani, M. A., Fermann, J. T. and Vining, W. J.,(1999). A Computer-based, Interactive, Multimedia Software System for Teaching and Independent Student Learning of Liquid Chromatography. Chem. Educato, 4, 226-230
    Strain, H. & Sherma, J. (1967). J. Chem. Educ., 44, 238-240.
    Synder, L. R. (1997). Modern Practice of Liquid Chromatography: Before and After 1971. J. Chem. Educ., 74(1), 37-44.
    Thargard, P. (1992). Conceptual Revolutions. Princeton, NJ: Princeton University Press.
    Turkle, S. (1995). Life on The Screen. New York: Touchstone.
    Turner,S., Sullenger, K. (1999). Kuhn in the Classroom,Lakatos in the Lab: Science Educators Confront the Nature-of-Science Dabet. Science,Technology,&Human Values,1, 5-30
    Turoff, M. (1997). Virtuality. Communications of the ACM, 40, 38-43.
    Vosniadou, S., & Brewer, W. F. (1994). Mental models of day/ night cycle, Cognition Science, 18, 123-183.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
    Vosniadou, S., Kayser, D., Champesme, M., Ioannides, M. (1999). Modelling Elementary School Students’ Solution of Mechanics Problems. In S. Vosniadou & D. Kayser (Eds.) Modelling changes in Understanding: Case Studies in Physical Reasoning. Oxford: Pergamon.
    Wandersee, J.H., Mintzes, J.J., and Novak, J.D. (1994). Research on alternativeconceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp.177-210). New York: Mqacmillan
    Wertheimer, M. (1959). Productive Thinking. New York: Harper

    QR CODE