簡易檢索 / 詳目顯示

研究生: 李亭慧
Li, Ting-Hui
論文名稱: 以液晶感測器篩選抗胰島類澱粉蛋白聚集的小分子
Screening small molecules with varying inhibitory effects on islet amyloid polypeptide aggregation using liquid crystal-based sensors
指導教授: 杜玲嫻
Tu, Ling-Hsien
口試委員: 杜玲嫻
Tu, Ling-Hsien
陳志欣
Chen, Chih-Hsin
李以仁
Lee, I-Ren
口試日期: 2024/05/29
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 80
中文關鍵詞: 人類胰島類澱粉蛋白抗聚集藥物液晶感測器
英文關鍵詞: islet amyloid polypeptide, anti-aggregation drug, liquid crystal sensor
DOI URL: http://doi.org/10.6345/NTNU202401117
論文種類: 學術論文
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 澱粉樣蛋白纖維(amyloid fibrils)的形成及其在細胞外累積所造成的細胞毒性是許多類澱粉沉積症的共同特徵,胰島類澱粉蛋白(islet amyloid polypeptide, IAPP)就是其中具有高傾向聚集形成澱粉樣纖維的胜肽之一。IAPP在人體中與胰島素由胰島β細胞共同分泌,在特定的環境下會發生錯誤的聚集摺疊形成具有細胞毒性的寡聚物與不可溶的澱粉樣纖維,影響β細胞正常功能,是導致第二型糖尿病(Type 2 diabetes, T2D)的重要成因之一,在過去研究中,許多文獻都曾提及此症患者的胰島周邊可發現該蛋白沉積。因此,對聚集有抑制效果的分子或材料陸續被開發出來,然而他們所使用的篩選工具都過於耗時且花費成本過高,在本研究中,我們期望利用液晶感測器可以用於快速篩選對IAPP有抑制效果的小分子,並利用一個只會形成寡聚體但不會形成澱粉樣纖維的IAPP變異體 (I26P-IAPP),來進一步討論液晶感測器的響應機制。在研究的第一部分,我們嘗試利用會帶負電兩親性離子的十二烷基硫酸鈉(sodium dodecyl sulfate, SDS)作為界面活性劑誘導液晶呈現整齊排列,藉由IAPP與SDS間的電荷相互作用,單體會在界面吸附形成高濃度環境,使得IAPP開始聚集,並透過蛋白質體積的變化影響液晶排列,產生光學訊號暗到亮的轉變。然而,在結果中發現SDS與液晶間誘導作用的穩定性不足以無法克服小分子本身結構中具有的氫鍵或苯環結構對液晶排列的干擾。因此,在第二部分的研究中我們嘗試以對液晶分子會有更強誘導的4-正辛氧基聯苯-4-甲酸(4’-n-octyloxybiphenyl-4-carboxylic acid, 8OCBA)作為液晶摻雜物,除了長碳鏈端的疏水性作用,其與液晶分子間會有π-π堆積作用。以此分子摻雜的液晶系統在500 nM IAPP的濃度下就能表現出蛋白質聚集的現象,透過利用這項獨特的功能,我們可以評估分子阻礙 IAPP 聚集的能力並比較其抑制效果,達到快速簡單篩選的目的。

    The formation of amyloid fibrils which cause cellular toxicity are commonly seen in amyloidosis. Islet amyloid polypeptide(IAPP)is one of the peptides with a high tendency to form amyloid which may contribute to the development of type 2 diabetes(T2D).IAPP is co-secreted with insulin by pancreatic beta cells in the human body. Under specific conditions, it undergoes erroneous aggregation and folding, forming cytotoxic oligomers and insoluble amyloid fibers. This behavior impairs the normal function of beta cells, ultimately contributing to the development of T2D. Previous studies have noted the presence of protein deposits around the pancreatic islets in patients with this disease. In the past, many amyloid inhibitors including small molecules and materials were developed, but the process is time-consuming and high cost. In this study, we aim to develop a liquid crystal(LC)-based sensor system for quick screening of molecules that are capable of inhibiting the aggregation of IAPP. In parallel, we utilize a non-amyloidogenic IAPP variant, I26P-IAPP to investigate the detection mechanism of LC-based sensors. In the initial stage of our research, we explored the use of sodium dodecyl sulfate(SDS), an amphiphilic surfactant that carries the negatively charge , to induce ordered alignment of liquid crystals. Through the interaction between IAPP and SDS, IAPP monomers were adsorbed at the interface, creating a high-concentration environment conducive to IAPP aggregation. Changes in protein volume then influenced the arrangement of LCs, resulting in a transition from dark to bright optical signals. However, during the experiment, we encountered challenges in mitigating the interference of small molecules on the LC arrangement, possibly due to hydrogen bonds or aromatic interactions. We surmise that the induction effect between SDS and liquid crystals may not be sufficiently robust. Subsequently, in the latter part of our study, we turned to utilize 4'-n-octyloxybiphenyl-4-carboxylic acid(8OCBA)as a liquid crystal dopant with stronger inducing properties. In addition to its hydrophobic effect at the end of the long carbon chain, 8OCBA exhibits π-π stacking interactions with liquid crystal molecules. LC systems doped with this molecule demonstrated protein aggregation phenomena observed at a very low concentration of 500 nM IAPP. By utilizing this unique feature, we can evaluate molecules for their capability to hinder IAPP aggregation and compare the effectiveness of their inhibitory effects. The LC sensor streamlines a rapid and simple screening process.

    第一章 介紹 1 1.1 類澱粉蛋白 1 1.1.1 簡介及其相關病症 1 1.1.2 結構及其聚集機制 2 1.2 胰島類澱粉蛋白及其相關病症 6 1.3 抗聚集小分子及其相關機制 7 1.3.1 小分子在螢光動力學分析中存在的干擾 8 1.4 液晶感測器 10 1.4.1 液晶及液晶感測器簡介 10 1.4.2 水相-液晶相感測系統建立及應用 11 1.5 動機 17 第二章 材料及方法 18 2.1 實驗儀器及藥品 18 2.2 胜肽合成、純化及鑑定 21 2.2.1 胜肽合成 21 2.3 純化及鑑定 25 2.3.1 胜肽純化 25 2.3.2 胜肽鑑定 28 2.4 胜肽樣品的準備及前處理 29 2.5 ThT螢光測定(ThT fluorescence assay) 30 2.6 穿透式電子顯微鏡(Transmission electron microscopy, TEM) 32 2.7 液晶感測器前處理 34 2.7.1 製備培養皿 34 2.7.2 製備修飾DMOAP的玻璃基板 34 2.7.3 製備SDS水溶液 34 2.7.4 製備Tris 緩衝水溶液 34 2.7.5 製備摻雜液晶 35 2.7.6 製備胜肽待測溶液 35 2.7.7 製備小分子母液 35 2.8 製備液晶感測器元件 36 第三章 結果與討論 37 3.1 胜肽合成、純化及鑑定 37 3.2 以SDS作為界面活性劑建立液晶感測器 38 3.2.1 設計以SDS作為界面活性劑的液晶感測器及其感測機制說明 38 3.2.2 SDS濃度變化對液晶排列的影響 39 3.2.3 初步檢測IAPP聚集行為的可行性 40 3.2.4 證明IAPP在界面上聚集行為對液晶訊號響應 41 3.3 當小分子在SDS系統中進行共培育的檢測結果 42 3.3.1 液晶系統條件優化 42 3.3.2 探討小分子對SDS系統的干擾 44 3.3.3 小分子與IAPP共培育結果 46 第四章 以8OCBA作為摻雜建立液晶感測器 47 4.1 以8OCBA作為摻雜的液晶感測機制 48 4.1.1 探針分子摻雜濃度及水溶液條件優化 49 4.2 探討小分子對8OCBA摻雜液晶系統的干擾性 51 4.3 初步檢測IAPP聚集行為的可行性 52 4.4 證明IAPP在界面上聚集行為對液晶訊號響應 53 4.5 與小分子在8OCBA摻雜系統中進行共培育的檢測結果 57 4.5.1 與小分子共培育的實驗手法優化 57 4.5.2 探討不同小分子在相同濃度下的抑制效果差異 60 4.5.3 將液晶光學訊號進行量化比較 68 4.5.4 與螢光分析中小分子的抑制排序進行比較 69 第五章 結論 74 參考文獻 76

    Stefani, M.; Dobson, C. M., Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Journal of molecular medicine 2003, 81, 678-699.
    Gregersen, N.; Bross, P.; Vang, S.; Christensen, J. H., Protein misfolding and human disease. Annu. Rev. Genomics Hum. Genet. 2006, 7, 103-124.
    Morgan, C.; Colombres, M.; Nuñez, M. T.; Inestrosa, N. C., Structure and function of amyloid in Alzheimer's disease. Progress in neurobiology 2004, 74 (6), 323-349.
    Scheltens, P.; Blennow, K.; Breteler, M. M.; De Strooper, B.; Frisoni, G. B.; Salloway, S.; Van der Flier, W. M., Alzheimer's disease. The Lancet 2016, 388 (10043), 505-517.
    Bates, G., Huntingtin aggregation and toxicity in Huntington's disease. The Lancet 2003, 361 (9369), 1642-1644.
    Conway, K. A.; Harper, J. D.; Lansbury, P. T., Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 2000, 39 (10), 2552-2563.
    Branden, C. I.; Tooze, J., Introduction to protein structure. Garland Science: 2012.
    Perutz, M. F.; Finch, J. T.; Berriman, J.; Lesk, A., Amyloid fibers are water-filled nanotubes. Proceedings of the National Academy of Sciences 2002, 99 (8), 5591-5595.
    Xi, W.-H.; Wei, G.-H., Amyloid-β peptide aggregation and the influence of carbon nanoparticles. Chinese Physics B 2016, 25 (1).
    Geddes, A. J.; Parker, K. D.; Atkins, E. D. T.; Beighton, E., “Cross-β” conformation in proteins. Journal of Molecular Biology 1968, 32 (2), 343-358.
    Cao, Q.; Boyer, D. R.; Sawaya, M. R.; Ge, P.; Eisenberg, D. S., Cryo-EM structure and inhibitor design of human IAPP (amylin) fibrils. Nat Struct Mol Biol 2020, 27 (7), 653-659.
    Röder, C.; Kupreichyk, T.; Gremer, L.; Schäfer, L. U.; Pothula, K. R.; Ravelli, R. B. G.; Willbold, D.; Hoyer, W.; Schröder, G. F., Cryo-EM structure of islet amyloid polypeptide fibrils reveals similarities with amyloid-β fibrils. Nature Structural & Molecular Biology 2020, 27 (7), 660-667.
    Waugh, D. F.; Wilhelmson, D. F.; Commerford, S. L.; Sackler, M. L., Studies of the nucleation and growth reactions of selected types of insulin fibrils. Journal of the American Chemical Society 1953, 75 (11), 2592-2600.
    Kulikova, A. A.; Makarov, A. A.; Kozin, S. A., Roles of zinc ions and structural polymorphism of β-amyloid in the development of Alzheimer’s disease. Molecular Biology 2015, 49 (2), 217-230.
    Hudson, S. A.; Ecroyd, H.; Kee, T. W.; Carver, J. A., The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J 2009, 276 (20), 5960-72.
    Marek, P. J.; Patsalo, V.; Green, D. F.; Raleigh, D. P., Ionic strength effects on amyloid formation by amylin are a complicated interplay among Debye screening, ion selectivity, and Hofmeister effects. Biochemistry 2012, 51 (43), 8478-90.
    Bulaj, G., Formation of disulfide bonds in proteins and peptides. Biotechnol Adv 2005, 23 (1), 87-92.
    P Westermark, U. E., K H Johnson, G T Westermark, and C Betsholtz, Islet amyloid polypeptide pinpointing amino acid residues linked to amyloid fibril formation. Proceedings of the National Academy of Sciences 1990, 87, 5036-5040.
    King, K. M.; Bevan, D. R.; Brown, A. M., Molecular dynamics simulations indicate aromaticity as a key factor in the inhibition of IAPP((20-29)) aggregation. ACS Chem Neurosci 2022, 13 (11), 1615-1626.
    Ahmad, E.; Ahmad, A.; Singh, S.; Arshad, M.; Khan, A. H.; Khan, R. H., A mechanistic approach for islet amyloid polypeptide aggregation to develop anti-amyloidogenic agents for type-2 diabetes. Biochimie 2011, 93 (5), 793-805.
    Hull, R. L.; Westermark, G. T.; Westermark, P.; Kahn, S. E., Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. The Journal of Clinical Endocrinology & Metabolism 2004, 89 (8), 3629-3643.
    Alrouji, M.; Al-Kuraishy, H. M.; Al-Gareeb, A. I.; Alexiou, A.; Papadakis, M.; Saad, H. M.; Batiha, G. E., The potential role of human islet amyloid polypeptide in type 2 diabetes mellitus and Alzheimer's diseases. Diabetol Metab Syndr 2023, 15 (1), 101.
    Tang, Y.; Zhang, D.; Zhang, Y.; Liu, Y.; Gong, X.; Chang, Y.; Ren, B.; Zheng, J., Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS Appl Bio Mater 2020, 3 (12), 8286-8308.
    Dhouafli, Z.; Cuanalo-Contreras, K.; Hayouni, E. A.; Mays, C. E.; Soto, C.; Moreno-Gonzalez, I., Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol Life Sci 2018, 75 (19), 3521-3538.
    Young, L. M.; Saunders, J. C.; Mahood, R. A.; Revill, C. H.; Foster, R. J.; Tu, L.-H.; Raleigh, D. P.; Radford, S. E.; Ashcroft, A. E., Screening and classifying small-molecule inhibitors of amyloid formation using ion mobility spectrometry–mass spectrometry. Nature chemistry 2015, 7 (1), 73-81.
    Abioye, R. O.; Okagu, O. D.; Udenigwe, C. C., Inhibition of islet amyloid polypeptide fibrillation by structurally diverse phenolic compounds and fibril disaggregation potential of rutin and quercetin. Journal of Agricultural and Food Chemistry 2021, 70 (1), 392-402.
    Young, L. M.; Cao, P.; Raleigh, D. P.; Ashcroft, A. E.; Radford, S. E., Ion mobility spectrometry–mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. Journal of the American Chemical Society 2014, 136 (2), 660-670.
    PS, V.; CF, C., Fluorescent stains, with special reference to amyloid and connective tissues. Archives of pathology 1959, 68, 487-498.
    Porat, Y.; Abramowitz, A.; Gazit, E., Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chemical biology & drug design 2006, 67 (1), 27-37.
    Tu, L. H.; Young, L. M.; Wong, A. G.; Ashcroft, A. E.; Radford, S. E.; Raleigh, D. P., Mutational analysis of the ability of resveratrol to inhibit amyloid formation by islet amyloid polypeptide: critical evaluation of the importance of aromatic-inhibitor and histidine-inhibitor interactions. Biochemistry 2015, 54 (3), 666-76.
    Kelker, H., Survey of the early history of liquid crystals. Molecular Crystals and Liquid Crystals 1988, 165 (1), 1-43.
    Blinov, L. M., Structure and properties of liquid crystals. Springer Science & Business Media: 2010; Vol. 123.
    Gray, G. W.; Harrison, K. J.; Nash, J., New family of nematic liquid crystals for displays. Electronics Letters 1973, 6 (9), 130-131.
    Dunmur, D., The magic of cyanobiphenyls: celebrity molecules. Liquid Crystals 2015, 42 (5-6), 678-687.
    Chen, W.-L.; Ho, T. Y.; Huang, J.-W.; Chen, C.-H., Continuous monitoring of pH level in flow aqueous system by using liquid crystal-based sensor device. Microchemical Journal 2018, 139, 339-346.
    Wang, Z.; Xu, T.; Noel, A.; Chen, Y.-C.; Liu, T., Applications of liquid crystals in biosensing. Soft Matter 2021, 17 (18), 4675-4702.
    Rouhbakhsh, Z.; Huang, J.-W.; Ho, T. Y.; Chen, C.-H., Liquid crystal-based chemical sensors and biosensors: From sensing mechanisms to the variety of analytical targets. TrAC Trends in Analytical Chemistry 2022, 157, 116820.
    Liao, S.; Qiao, Y.; Han, W.; Xie, Z.; Wu, Z.; Shen, G.; Yu, R., Acetylcholinesterase liquid crystal biosensor based on modulated growth of gold nanoparticles for amplified detection of acetylcholine and inhibitor. Analytical chemistry 2012, 84 (1), 45-49.
    Du, X.; Liu, Y.; Wang, F.; Zhao, D.; Gleeson, H. F.; Luo, D., A fluorescence sensor for Pb2+ detection based on liquid crystals and aggregation-induced emission luminogens. ACS Applied Materials & Interfaces 2021, 13 (19), 22361-22367.
    Kahn, F. J., Orientation of liquid crystals by surface coupling agents. Applied Physics Letters 1973, 22 (8), 386-388.
    Jeffrey M. Brake, A. D. M., and Nicholas L. Abbott, Effect of surfactant structure on the orientation of liquid
    crystals at aqueous-liquid crystal interfaces. Langmuir 2003, 19, 6436-6442.
    Zhou, L.; Hu, Q.; Kang, Q.; Fang, M.; Yu, L., construction of a liquid crystal-based sensing platform for sensitive and selective detection of l-phenylalanine based on alkaline phosphatase. Langmuir 2019, 35 (2), 461-467.
    Carlton, R. J.; Gupta, J. K.; Swift, C. L.; Abbott, N. L., Influence of simple electrolytes on the orientational ordering of thermotropic liquid crystals at aqueous interfaces. Langmuir 2012, 28 (1), 31-6.
    Sadati, M.; Apik, A. I.; Armas‐Perez, J. C.; Martinez‐Gonzalez, J.; Hernandez‐Ortiz, J. P.; Abbott, N. L.; de Pablo, J. J., Liquid crystal enabled early stage detection of beta amyloid formation on lipid monolayers. Advanced Functional Materials 2015, 25 (38), 6050-6060.
    Yang, X.; Li, H.; Zhao, X.; Liao, W.; Zhang, C. X.; Yang, Z., A novel, label-free liquid crystal biosensor for Parkinson's disease related alpha-synuclein. Chemical communications 2020, 56 (40), 5441-5444.
    Wang, Y.; Zhou, L.; Kang, Q.; Yu, L., Simple and label-free liquid crystal-based sensor for detecting trypsin coupled to the interaction between cationic surfactant and BSA. Talanta 2018, 183, 223-227.
    Merrifield, R. B., Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of the American Chemical Society 1963, 85 (14), 2149-2154.
    Wöhr, T.; Wahl, F.; Nefzi, A.; Rohwedder, B.; Sato, T.; Sun, X.; Mutter, M., Pseudo-prolines as a solubilizing, structure-disrupting protection technique in peptide synthesis. Journal of the American Chemical Society 1996, 118 (39), 9218-9227.
    Palasek, S. A.; Cox, Z. J.; Collins, J. M., Limiting racemization and aspartimide formation in microwave‐enhanced Fmoc solid phase peptide synthesis. Journal of peptide science: an official publication of the European Peptide Society 2007, 13 (3), 143-148.
    Kaufmann, R., Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology. Journal of biotechnology 1995, 41 (2-3), 155-175.
    Beavis, R.; Chaudhary, T.; Chait, B., α‐Cyano‐4‐hydroxycinnamic acid as a matrix for matrixassisted laser desorption mass spectromtry. Organic mass spectrometry 1992, 27 (2), 156-158.
    Smith, P. K.; Krohn, R. I.; Hermanson, G. T.; Mallia, A. K.; Gartner, F. H.; Provenzano, M. D.; Fujimoto, E. K.; Goeke, N. M.; Olson, B. J.; Klenk, D. C., Measurement of protein using bicinchoninic acid. Analytical Biochemistry 1985, 150 (1), 76-85.
    Wiechelman, K. J.; Braun, R. D.; Fitzpatrick, J. D., Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry 1988, 175 (1), 231-237.
    Khurana, R.; Coleman, C.; Ionescu-Zanetti, C.; Carter, S. A.; Krishna, V.; Grover, R. K.; Roy, R.; Singh, S., Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 2005, 151 (3), 229-38.
    Hawe, A.; Sutter, M.; Jiskoot, W., Extrinsic fluorescent dyes as tools for protein characterization. Pharm Res 2008, 25 (7), 1487-99.
    Biancalana, M.; Koide, S., Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 2010, 1804 (7), 1405-12.
    Chun-Ying Tsai, Y.-C. C., Fu-Rong Chen, Hollow cone dark field imaging for biological
    material. 科儀新知 2016, 208, 56-64.
    Kajava, A. V.; Aebi, U.; Steven, A. C., The parallel superpleated beta-structure as a model for amyloid fibrils of human amylin. J Mol Biol 2005, 348 (2), 247-52.
    Goldsbury, C.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Wall, J. S.; Aebi, U.; Muller, S. A., Amyloid structure and assembly: insights from scanning transmission electron microscopy. J Struct Biol 2011, 173 (1), 1-13.
    穿透式電子顯微鏡裝置示意圖. https://www.technologynetworks.com/analysis/articles/sem-vs-tem-331262].
    Cheng, B.; Liu, X.; Gong, H.; Huang, L.; Chen, H.; Zhang, X.; Li, C.; Yang, M.; Ma, B.; Jiao, L., Coffee components inhibit amyloid formation of human islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. Journal of agricultural and food chemistry 2011, 59 (24), 13147-13155.
    Hudson, S. A.; Ecroyd, H.; Kee, T. W.; Carver, J. A., The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. The FEBS journal 2009, 276 (20), 5960-5972.
    Ying Wang, T. H., Jingjing Wei, Xiaoying Yin, Zhonghong Gao *; , H. L., Inhibitory activities of flavonoids from Scutellaria baicalensis Georgi on
    amyloid aggregation related to type 2 diabetes and the possible structural
    requirements for polyphenol in inhibiting the nucleation phase of
    hIAPP aggregation International Journal of Biological Macromolecules 2022, 215, 531-540.
    Noor, H.; Cao, P.; Raleigh, D. P., Morin hydrate inhibits amyloid formation by islet amyloid polypeptide and disaggregates amyloid fibers. Protein Science 2012, 21 (3), 373-382.
    Cheng, B.; Gong, H.; Li, X.; Sun, Y.; Zhang, X.; Chen, H.; Liu, X.; Zheng, L.; Huang, K., Silibinin inhibits the toxic aggregation of human islet amyloid polypeptide. Biochemical and biophysical research communications 2012, 419 (3), 495-499.
    Kyte, J.; Doolittle, R. F., A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 1982, 157 (1), 105-132.
    Pertinhez, T. A.; Bouchard, M.; Smith, R. A. G.; Dobson, C. M.; Smith, L. J., Stimulation and inhibition of fibril formation by a peptide in the presence of different concentrations of SDS. FEBS Letters 2002, 529 (2), 193-197.
    Verma, I.; Valsala Selvakumar, S. L.; Pal, S. K., Surfactin-laden aqueous–liquid crystal interface enabled identification of secondary structure of proteins. The Journal of Physical Chemistry C 2019, 124 (1), 780-788.
    MacArthur, M. W.; Thornton, J. M., Influence of proline residues on protein conformation. Journal of Molecular Biology 1991, 218 (2), 397-412.
    Andisheh Abedini, F. M., and Daniel P. Raleigh, A-single-point-mutation-converts-the-highly-amyloidogenic-human-islet-amyloid-polypeptide. Journal of the American Chemical Society 2007, 129, 11300-11301.
    Abedini, A.; Plesner, A.; Cao, P.; Ridgway, Z.; Zhang, J.; Tu, L. H.; Middleton, C. T.; Chao, B.; Sartori, D. J.; Meng, F.; Wang, H.; Wong, A. G.; Zanni, M. T.; Verchere, C. B.; Raleigh, D. P.; Schmidt, A. M., Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. Elife 2016, 5.

    下載圖示
    QR CODE