簡易檢索 / 詳目顯示

研究生: 廖宏銘
Laio, Hung-Min
論文名稱: 橢圓曲線上的整數點
Integral Points on Elliptic Curves
指導教授: 紀文鎮
Chi, Wen-Chen
學位類別: 碩士
Master
系所名稱: 數學系
Department of Mathematics
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 34
中文關鍵詞: 橢圓曲線整數點
英文關鍵詞: elliptic curves, integral point
論文種類: 學術論文
相關次數: 點閱:225下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們已經知道,橢圓曲線上的有理點形成一有限生成的交換群,而其上的整數點亦是有限多個。那如何找出所有的整數點呢?在本篇論文裡,假設已知一組基底,那麼透過許多不等式的運用,我們能夠確確實實的找出在其上所有的整數點。

    Let E be an elliptic curve over Q. A well-known theorem of Siegel asserts that the
    number of integral points on E is finite. So, for a given elliptic curve E over Q, it would
    be interesting to find all the integral points. In [Za], Zagier describes several methods for
    explicitly computing large integral points on elliptic curves defined over Q. In this thesis,
    follow the line of [ST1], we shall discuss a method of computing all the integral points on an
    elliptic curve over Q under the hypothesis that a basis for the free part of the Mordell-Weil
    group is given.
    In [ST1], R. J. Stroeker and N. Tzanakis adopt a natural approach, in which the linear
    relation between an integral point and the generators of the free part of the Mordell-Weil
    group is directly transformed into a linear form in elliptic logarithms. In order to produce
    upper bounds for the coefficients in the original linear relation, we need an effective lower
    bound for the linear form in elliptic logarithms. Thanks to S. David [D, Th´eor`eme 2.1], such
    an explicit lower bound was established. The upper bound for the linear form in elliptic
    logarithms was established in [ST1], where one needs to deduce an upper bound for the
    function  (see section 2.2) described in [Za].
    In section 2, we discuss three main inequalities which are given in [ST1], as well as a special
    case of David’s lower bound which is described in the appendix of [ST1]. In section 3, by
    combining the main inequalities and David’s lower bound, we obtain an upper bound for the
    coefficients in the original linear relation. However, the upper bound obtained in section 3 is
    too large to search all the integral points. So, we need to apply the LLL-reduction procedure
    to reduce the upper bound of the coefficients. This will constitute section 4. In the final
    section, some examples are given.

    1. Introduction ...........................................2 2. Notations and Main Inequalities ........................3 2.1. Height ...............................................4 2.2. Group Law on E(R) ....................................8 2.3. Weierstrass }-function and Elliptic Logarithm .......10 2.4. A Special Case of S. David’s Theorem ...............14 3. Principal Inequality ..................................16 4. Reduction of the Upper Bound of M .....................19 4.1. LLL-Reduction .......................................20 4.2. Reduction of M ......................................24 5. Examples ..............................................26 5.1. Example 1 ...........................................26 5.2. Example 2 ...........................................29 References ...............................................34

    [AS] M. Abramowitz and I. Stegun (eds. ), Handbook of Mathematical Functions,Dover, New York, 1964.
    [B] J. -B. Bost et J. -F. Mestre, Moyenne arithm´etico-g´eom´etrique et p´eriodes des courbes de genre 1 et 2,
    Gazette de Math´ematiciens, S. M. F. , Octobre 1988.
    [C] D. A. Cox, The arithmetic-geometric mean of Gauss, Enseign. Math. 30 (1984), 275-330.
    [D] S. David, Minorations de formes lin´eaires de logarithmes elliptiques , Publ. Math. Univ. Pierre et Marie
    Curie 106, Probl`emes diophantiens 1991-1992, expos´e no. 3.
    [GZ] Josef Gebel and Horst G. Zimmer Computing the Mordell-Weil group of an elliptic curve over Q, CRM
    Proceedings and Lecture Notes, vol. 4, 1994, 61-83.
    [La] S. Lang, Elliptic Curves; Diophantine Analysis, Grundlehren Math. Wiss. 231, Springer, Berlin, 1978.
    [LLL] A. K. Lenstra, H. W. Lenstra Jr. , and L. Lov´asz, Factoring polynomials with rational coefficients,
    Math. Ann. 261 (1982), 515-534.
    [Mz] B. Mazur, Rational points on modular curves, in:Modular Functions of One Variable V, Lecture Notes
    in Math. 601, Springer, Berlin. 1977, 107-148.
    [Sl] J. H. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in Math. 106, Springer, New York,
    1986.
    [S2] -, Computing heights on elliptic curves, Math. Comp. 51 (1988), 339-358.
    [S3] -, The difference between the Weil height and the canonical height on elliptic curves, ibid. 55 (1990),
    723-743.
    [ST1] R. J. Stroeker and N. Tzanakis, Solving elliptic diophantine equations by estimating linear forms in
    elliptic logarithms, Acta Arith. 67 (1994), 177-196.
    [ST2] -,On the elliptic logarithm method for elliptic diophantine equations: Reflections and an improvement,
    Experimental Mathematics 8:2 (1999), 135-149.
    [WW] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, 4th ed. , Cambridge University
    Press, New York, 1978.
    [Za] D. Zagier, Large integral points on elliptic curves, Math. Comp. 48 (1987), 425-436.

    QR CODE