研究生: |
陳建蒲 Jian-Pu Chen |
---|---|
論文名稱: |
使用大尺度環境因子預報熱帶氣旋生成之特性研究 Using large-scale environmental variables to predict seasonal tropical cyclone genesis characteristics |
指導教授: |
陳正達
Chen, Cheng-Ta |
學位類別: |
碩士 Master |
系所名稱: |
地球科學系 Department of Earth Sciences |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 熱帶氣旋 、熱帶氣旋潛在生成指數 |
英文關鍵詞: | Tropical cyclone, Genesis potential indices |
論文種類: | 學術論文 |
相關次數: | 點閱:252 下載:16 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然災害中颱風造成的人員傷亡和經濟損失影響甚大,在全球氣候暖化下熱帶氣旋如何改變,一直以來都是備受廣泛討論的問題。近年來,許多研究對於熱帶氣旋主要發展區域,利用動力模式來作出颱風季節預報。
利用全球模式和區域模式模擬熱帶氣旋通常利用客觀的方法在熱帶區域偵測出類似熱帶氣旋的渦旋和渦旋的演變。不過,受到解析度的關係,模擬出的渦旋強度無法與實際觀測的相比,且就算模式解析度達到幾十公里,氣旋中心內的複雜的動力機制也無法得到完善的解釋。故另一種方法是研究大尺度環境場與實際觀測颱風個數之間的關係,發展出大尺度環境場與熱帶氣旋生成相關的潛在生成指數,則可以簡單的利用模式模擬出的環境場作颱風季節預報。
本篇研究目的是使用不同的熱帶氣旋潛在生成指數來比較季節預報上的可行性,並使用不同的熱帶氣旋潛在生成指數應用在ECHAM4和ECHAM5全球模式。以季節循環、空間分佈、年際變化來探討模式的模擬的能力,也分析各項環境條件對於熱帶氣旋生成的影響。
Typhoon is one of the most ruinous natural catastrophes that cause loss of life and colossal property damage. How tropical cyclone (TC) would change in a warmer climate has been a controversial issues topic. In recent years, many studies have showed reasonable skill in forecasting seasonal typhoon activities over major ocean basins using dynamical models.
TC simulations with global and regional climate models typically use detection and tracking scheme to find typhoon-like vortices and their evolution in the tropical region and beyond. Nevertheless, the intensity of vortices in the model is much weaker than the observation. The complicated inner core dynamics of typhoon can not be properly resolved by even with model resolution of few tens of kilometer. It raised some doubts on whether it is realistic to compute the TC statistics based on their analog simulated in the model. An alternative approach is to study the empirical between large-scale environmental and the observed number of TC genesis. By developing indices that link TC activities with modeled large-scale circulation, one can simply use modeled environment condition to make the seasonal typhoon forecast.
Our research aims on using different TC genesis potential indices (GPI) developed in previous literature for experimental tropical cyclone seasonal activity prediction. ECHAM4 and ECHAM5 climate models forced by observed sea surface temperature and sea ice condition are used to test the potential skill on the model simulated large-scale environmental variables to be used in various GPI. We would compare the model’s ability in capturing the seasonal evolution, interannual variability, and long-term trend when different GPIs are used.
梁信謙,2011 : 系集動力模式對於西北太平洋之颱風季節模擬。國立臺灣師範大學地球科學系碩士論文。
Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 52, 233–240.
Bister, M., and K. A. Emanuel, 2002a: Low frequency variability of tropical cyclone potential intensity. 1. Interannual to interdecadal variability.J. Geophys.Res.,107,4801, doi:10.1029/2001JD000776.
Bister, M., and K. A. Emanuel, 2002b: Low frequency variability of tropical cyclone potential intensity. 2. Climatology for 1982–1995. J. Geophys. Res., 107, 4621, doi:10.1029/2001JD000780.
Bye, J., and K. Keay, 2008: A new hurricane index for the Caribbean. Interscience, 33, 556–560.
Camargo, S. J., A. G. Barnston, and S. E. Zebiak, 2005: A statistical assessment of tropical cyclone activity in atmospheric general circulation models. Tellus, 57A: 589-604.
Camargo, S. J., K. A. Emanuel, and A. H. Sobel, 2007a: Use of genesis potential index to diagonose ENSO effects on tropical cyclone genesis. J. Climate, 20, 4819–4834.
Camargo, S. J., H. Li, L. Sun, 2007b: Feasibility study for downscaling seasonal tropical cyclone activity using the NCEP regional spectral model. Int. J. Climate, 27, 311-325.
Camargo, S. J., M. C.Wheeler, and A. H. Sobel, 2009: Diagnosis of the MJO modulation of tropical cyclogenesis using an empirical index. J. Atmos. Sci., 66, 3061–3074.
Carton, J.A., B.S. Giese, and S.A. Grodsky, 2005: Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J. Geophys. Res., 110, C09006, doi:10.1029/2004JC002817.
Chan, J. C. L., 1985: Tropical cyclone activity in the northwest Pacific in relation to the El Niño/Southern Oscillation phenomenon. Mon. Wea. Rev., 113, 599–606.
Chan, J. C. L., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorol. Atmos. Phys., 89, 143-152.
Chia, H. H., and C. F. Ropelewski, 2002: The interannual variability in the genesis location of tropical cyclones in the northwest Pacific. J. Climate, 15, 2934–2944.
Clark, J. D., and P.-S. Chu, 2002: Interannual variation of tropical cyclone activity over the Central North Pacific. J. Meteor. Soc. Japan, 80, 403–418.
Dong, K., 1988: El Niño and tropical cyclone frequency in the Australian region and the North-western Pacific. Aust. Meteor. Mag., 36, 219–255.
Elsner, J. B., and A. B. Kara, 1999: Hurricanes of the North Atlantic: Climate and Society. Oxford University Press, 488 pp.
Elsner, J. B., and K. B. Liu, 2003: Examining the ENSO-typhoon hypothesis. Climate Res., 25, 43–54.
Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 1143–1155.
Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 3969–3976.
Emanuel, K. A., and D. S. Nolan, 2004: Tropical cyclone activity and global climate. Preprints, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Amer. Meteor. Soc., 240–241.
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans, Royal Meteorological Society, 155–218.
Gray, W. M., 1984: Atlantic seasonal hurricane frequency. Part I: El Niño and 30 mb quasi-biennial oscillation influences. Mon. Wea. Rev., 112, 1649–1668.
Gray, W. M., and J. D. Sheaffer, 1991: El Niño and QBO influences on tropical cyclone activity. Teleconnections Linking Worldwide Anomalies, M. H. Glantz, R. W. Katz, and N. Nicholls, Eds., Cambridge University Press, 257–284.
Gray, W. M., C. W. Landsea, P. W. Mielke Jr., and K. J. Berry, 1993: Predicting Atlantic basin seasonal tropical cyclone activity by 1 August. Wea. Forecasting, 8, 73–86.
Kotal, S. D., P. K. Kundu, and S. K. R. Bhowmik, 2009: Analysis of cyclogenesis parameter for developing and nondeveloping low-pressure systems over the Indian Sea. Nat. Hazards, 50, 389–402.
Knaff, J. A., 1997: Implications of summertime sea level pressure anomalies in the tropical Atlantic region. J. Climate, 10, 789– 804.
Lander, M. A., 1994: An exploratory analysis of the relationship between tropical storm formation in the western North Pacific and ENSO. Mon. Wea. Rev., 122, 636–651.
Lander, M. A., 1996: Specific tropical cyclone track types and unusual tropical cyclone motions associated with a reverse-oriented monsoon trough in the western North Pacific. Wea. Forecasting, 11, 170–186.
Leipper, D., and D. Volgenau, 1972: Hurricane heat potential of the Gulf of Mexico. J. Phys. Oceanogr., 2, 218–224.
Lin X., and R. H. Johnson, 1996: Kinematic and thermodynamic characteristics of the flow over the western Pacific warm pool during TOGA COARE. J. Atmos. Sci., 53,695–715.
Louis, J. 1979: A parametric model of vertical eddy fluxes in the atmosphere., Bound.-Layer Meteor.,17,187-202.
Lyon, B., and S. J. Camargo, 2009: The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Climate Dyn., 32, 125–141.
Morcrette, J.-J., Smith, L. and Fouquart, Y., 1986: Pressure and temperature dependence of the absorption in longwave radiation parametrizations.Beitr. Phys. Atmos.,59,455-469.
Murakami, H., and B. Wang, 2010: Future change of North Atlantic tropical cyclone tracks: Projection by a 20-km-mesh global atmospheric model. J. Climate, 23, 2699–2721.
Nolan, D. S., E. D. Rappin, and K. A. Emanuel, 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiativeconvective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 2085–2107.
Nordeng, T. E.,1994: Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics. Technical Memorandum 206, ECMWF, Reading, UK.
Roeckner E., Coauthors, 1996: The atmospheric general circulation model ECHAM4: Model description and simulation of present day climate. Max Planck Institute for Meteorology Rep.,218.
Roeckner, E., R. Brokopf, M. Esch, M. Giorgetta, S. Hagemann, L. Kornblueh, E. Manzini, U. Schlese, and U. Schulzweida,2006: Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model, J. Climate,19,3771-3791.
Royer, J.-F., F. Chauvin, B. Timbal, P. Araspin, and D. Grimal, 1998: A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclone. Climatic Change, 38, 307–343.
Ryan, B. F., I. G. Watterson, and J. L. Evans, 1992: Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: Validation of GCM tropical climates. Geophys. Res. Lett., 19, 1831–1834.
Sall, S. M., H. Sauvageot, A. T. Gaye, A. Viltard, and P. de Felice, 2006:Acyclogenesis index for tropical Atlantic off the African coasts. Atmos. Res., 79, 123–147.
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev.,117,1779-1800.
Tippett, M. K., S. J. Camargo, and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 2335–2357.
Tompkins A. M., 2002: A prognostic parameterization for the subgrid-scale variability of water vapor and clouds in large-scale models and its use to diagnose cloud cover. J. Atmos. Sci.,59,1917–1942.
Vecchi, G. A., and B. J. Soden, 2007a: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 1066–1070.
Wang, B., and J. C. L. Chan, 2002: How strong ENSO events affect tropical storm activity over the western North Pacific. J. Climate, 15, 1643–1658.
Watterson, I. G., J. L. Evans, and B. F. Ryan, 1995: Seasonal and interannual variability of tropical cyclogenesis: Diagnostics from large-scale fields. J. Climate, 8, 3052–3066.
Whitney, L. D., and J. Hobgood, 1997: The relationship between sea surface temperatures and maximum intensities of tropical cyclones in the eastern North Pacific Ocean. J. Climate, 10, 2921–2930.
Yokoi, S., and Y.N. Takayuba, 2009: Multi-model projection of global warming impact on tropical cyclone genesis frequency over the western North Pacific. J. Meteor. Soc. Japan, 87, 525–538.
Yokoi, S., and Y.N. Takayuba, and J. C. L. Chan, 2009: Tropical cyclone genesis frequency over the western North Pacific simulated in mediumresolution coupled general circulationmodels. ClimateDyn., 33, 665–683.
Yumoto, M., and T. Matsuura, 2001: Interdecadal variability of tropical cyclone active in the western north pacific. J. Meteor. Soc. Japan, 79. 23-35.
Xie, S.P., K.-M. Hu,J. Hafner, H. Tokinaga, Y. Du, G. Huang, and T. Sampe, 2009: Indian capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate,22,730-747.
Zhan, R., Wang Y., and Lei, X., 2011: Contributions of enso and east Indian ocean ssta to the interannual variability of northwest pacific tropical cyclone frequency. J. Climate,24,509-521.