研究生: |
羅旭峰 Lo, Hsu-Feng |
---|---|
論文名稱: |
開發以LabVIEW程式控制的攜帶型人體呼氣感測裝置之研究 Development of Portable Breath Measurement Device Based on LabVIEW Program |
指導教授: |
林震煌
Lin, Cheng-Huang |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 自組裝人體呼氣感測裝置 、氣體感測器 、人體呼氣 、肺活量 、呼吸商 |
英文關鍵詞: | Self-assembly human breath sensing device, Gas sensor, Human breath, Vital capacity, Respiratory quotient |
DOI URL: | http://doi.org/10.6345/NTNU202000587 |
論文種類: | 學術論文 |
相關次數: | 點閱:215 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究透過自行編寫的LabVIEW程式控制自組裝的氣體感測裝置,並利用此裝置對人體的呼氣進行測量。過往在人體呼氣的研究當中,大多是利用氣相層析質譜儀來對樣品進行分析,雖然氣相層析質譜儀有高靈敏度和高解析度等優點,但儀器本身昂貴龐大無法輕易搬運,而且樣品也需要經過複雜的前處理步驟,因此較不適合應用在即時偵測上,所以本研究選擇使用體積較小操作簡單且價格較便宜的氣體感測器,但氣體感測器一般都是使用在環境的濃度測量當中,無法對氣體樣品的量進行測量,因此將氣體感測器與氣哨聲波技術結合,讓自組裝的呼氣感測裝置的定量分析變為可能。
在人體深層肺部呼吸和淺層肺部呼吸的實驗結果發現,當受試者在固定的身體條件下進行不同吹氣量的呼氣測試,其呼出氣體的濃度會和呼氣量呈現線性關係,二氧化碳濃度隨著吹氣量增加而上升,反之,氧氣濃度隨著吹氣量增加而下降,並且藉由觀察二氧化碳濃度的線性斜率來了解身體的耗氧能力,也可以間接得知受試者的心肺能力以及肺活量大小。在人體呼氣中二氧化碳濃度與血糖的相關性探討中,從所有受試者的結果可以發現,在喝下糖水後的60分鐘會達到二氧化碳濃度的最大值,並且在喝下糖水後的120分鐘二氧化碳濃度會回復到正常水平,這些變化和口服糖耐力測試的血糖變化趨勢相同,證明了二氧化碳濃度與血糖的相關性,這些結果對於未來開發非侵入性的血糖檢測方法具有一定的潛力。
In this study, we developed a portable human breath sensing device controlled by LabVIEW program. In the past studies of exhalation, most of them used gas chromatography mass spectrometry to analyze samples. Although the GC-MS is sensitive and resolution, the components are expensive and large. Sample also needs to undergo complicated pre-processing steps, so it is less suitable for real-time detection. We chose to use small size, simple operation, and cheap price gas sensor. However, gas sensors are usually used in the concentration measurement of the environment, and the amount of gas samples cannot be measured. It became possible the gas sensor can allow quantitative analysis because of combined with the whistle sound wave technology. The test of deep and shallow lung breathing found that when subject breath with different insufflation volume under the same body condition, the concentration of exhaled will have a linear relationship with exhalation volume. The carbon dioxide concentration rises with blowing volume. We can also know subject's cardiopulmonary capacity and vital capacity by the linear slope of carbon dioxide. We found after drinking glucose water it will be maximum carbon dioxide concentration in 60 mins, and it will return to normal level in 120 mins. These changes are the same as the blood glucose trend of oral glucose tolerance test. These results prove the correlation between carbon dioxide concentration and blood glucose.
1. Kronborg, O., et al., Randomised study of screening for colorectal cancer with faecal-occult-blood test. The Lancet, 1996. 348(9040): p. 1467-1471.
2. Goulle, J.P., et al., Metal and metalloid multi-elementary ICP-MS validation in whole blood, plasma, urine and hair. Reference values. Forensic Sci Int, 2005. 153(1): p. 39-44.
3. Haque, R., et al., Diagnosis of amebic liver abscess and amebic colitis by detection of Entamoeba histolytica DNA in blood, urine, and saliva by a real-time PCR assay. J Clin Microbiol, 2010. 48(8): p. 2798-801.
4. Adamowicz, P., D. Zuba, and K. Sekula, Analysis of UR-144 and its pyrolysis product in blood and their metabolites in urine. Forensic Sci Int, 2013. 233(1-3): p. 320-7.
5. Blaszkewicz, M., K. Munoz, and G.H. Degen, Methods for analysis of citrinin in human blood and urine. Arch Toxicol, 2013. 87(6): p. 1087-94.
6. Dijkstra, S., P.F. Mulders, and J.A. Schalken, Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin Biochem, 2014. 47(10-11): p. 889-96.
7. American Diabetes, A., Standards of medical care in diabetes--2013. Diabetes Care, 2013. 36 Suppl 1: p. S11-66.
8. American Diabetes, A., Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014. 37 Suppl 1: p. S81-90.
9. American Diabetes, A., 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2018. Diabetes Care, 2018. 41(Suppl 1): p. S13-S27.
10. American Diabetes, A., 6. Glycemic Targets: Standards of Medical Care in Diabetes-2018. Diabetes Care, 2018. 41(Suppl 1): p. S55-S64.
11. American Diabetes, A., 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2019. Diabetes Care, 2019. 42(Suppl 1): p. S34-S45.
12. American Diabetes, A., 6. Glycemic Targets: Standards of Medical Care in Diabetes-2019. Diabetes Care, 2019. 42(Suppl 1): p. S61-S70.
13. Al-Mulla, M.R., F. Sepulveda, and M. Colley, A review of non-invasive techniques to detect and predict localised muscle fatigue. Sensors (Basel), 2011. 11(4): p. 3545-94.
14. Kim, J.B., et al., Non-invasive detection of a small number of bioluminescent cancer cells in vivo. PLoS One, 2010. 5(2): p. e9364.
15. Li, X., et al., Raman spectroscopy combined with principal component analysis and k nearest neighbour analysis for non-invasive detection of colon cancer. Laser Physics, 2016. 26(3).
16. Malik, S., et al., Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva. Springerplus, 2016. 5(1): p. 701.
17. Qiu, S., et al., Non-invasive detection of nasopharyngeal carcinoma using saliva surface-enhanced Raman spectroscopy. Oncol Lett, 2016. 11(1): p. 884-890.
18. Schaefer, A.L., et al., The non-invasive and automated detection of bovine respiratory disease onset in receiver calves using infrared thermography. Res Vet Sci, 2012. 93(2): p. 928-35.
19. Song, M.Y., et al., Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS One, 2012. 7(3): p. e33608.
20. Ejaimi, G. and S. Saeed, An Introduction to Airway Assessment and Management (Concise Airway Anatomy and Pathophysiology). Annals of International medical and Dental Research, 2016. 3(1).
21. Date, H., et al., Changes in alveolar oxygen and carbon dioxide concentration and oxygen consumption during lung preservation The maintenance of aerobic metabolism during lung preservation. The Journal of Thoracic and Cardiovascular Surgery, 1993. 105(3): p. 492-501.
22. Jonckheere, A.I., J.A. Smeitink, and R.J. Rodenburg, Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis, 2012. 35(2): p. 211-25.
23. Ramzan, R., et al., Mitochondrial respiration and membrane potential are regulated by the allosteric ATP-inhibition of cytochrome c oxidase. Biochim Biophys Acta, 2010. 1797(9): p. 1672-80.
24. Castillo, S., et al., Data analysis tool for comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Anal Chem, 2011. 83(8): p. 3058-67.
25. Hanaoka, T., S. Hiasa, and Y. Edashige, Syngas production by CO2/O2 gasification of aquatic biomass. Fuel Processing Technology, 2013. 116: p. 9-15.
26. Niu, Y., et al., Characterization of odor-active compounds of various cherry wines by gas chromatography-mass spectrometry, gas chromatography-olfactometry and their correlation with sensory attributes. J Chromatogr B Analyt Technol Biomed Life Sci, 2011. 879(23): p. 2287-93.
27. Poole, C.F. and S.K. Poole, Ionic liquid stationary phases for gas chromatography. J Sep Sci, 2011. 34(8): p. 888-900.
28. Schug, K.A., et al., Vacuum ultraviolet detector for gas chromatography. Anal Chem, 2014. 86(16): p. 8329-35.
29. Chen, M., et al., Porous ZnO Polygonal Nanoflakes: Synthesis, Use in High-Sensitivity NO2 Gas Sensor, and Proposed Mechanism of Gas Sensing. The Journal of Physical Chemistry C, 2011. 115(26): p. 12763-12773.
30. Guo, J., et al., High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors and Actuators B: Chemical, 2014. 199: p. 339-345.
31. Hu, N., et al., Gas sensor based on p-phenylenediamine reduced graphene oxide. Sensors and Actuators B: Chemical, 2012. 163(1): p. 107-114.
32. Steinebach, H., et al., H2 gas sensor performance of NiO at high temperatures in gas mixtures. Sensors and Actuators B: Chemical, 2010. 151(1): p. 162-168.
33. Wang, L., et al., ZnO nanorod gas sensor for ethanol detection. Sensors and Actuators B: Chemical, 2012. 162(1): p. 237-243.
34. Yoon, H.J., et al., Carbon dioxide gas sensor using a graphene sheet. Sensors and Actuators B: Chemical, 2011. 157(1): p. 310-313.
35. Baker, D.J., The Structure of the Airways and Lungs, in Artificial Ventilation. 2016. p. 25-39.
36. Potkay, J.A., A simple, closed-form, mathematical model for gas exchange in microchannel artificial lungs. Biomed Microdevices, 2013. 15(3): p. 397-406.
37. Tabuchi, A., et al., Precapillary oxygenation contributes relevantly to gas exchange in the intact lung. Am J Respir Crit Care Med, 2013. 188(4): p. 474-81.
38. Kreit, J.W., Alterations in gas exchange due to low-tidal volume ventilation. Ann Am Thorac Soc, 2015. 12(2): p. 283-6.
39. Brahmajothi, M.V., et al., Transport rather than diffusion-dependent route for nitric oxide gas activity in alveolar epithelium. Free Radic Biol Med, 2010. 49(2): p. 294-300.
40. Yoshida, S., et al., Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc Natl Acad Sci U S A, 2013. 110(17): p. E1604-12.
41. Burton, J.H., et al., Does end-tidal carbon dioxide monitoring detect respiratory events prior to current sedation monitoring practices? Acad Emerg Med, 2006. 13(5): p. 500-4.
42. Paiva, E.F., J.H. Paxton, and B.J. O'Neil, The use of end-tidal carbon dioxide (ETCO2) measurement to guide management of cardiac arrest: A systematic review. Resuscitation, 2018. 123: p. 1-7.
43. Kierzek, G., et al., End-tidal carbon dioxide monitoring in the emergency department. Acad Emerg Med, 2006. 13(10): p. 1086.
44. Kartal, M., et al., ETCO(2): a predictive tool for excluding metabolic disturbances in nonintubated patients. Am J Emerg Med, 2011. 29(1): p. 65-9.
45. Dikovska, A.O., et al., Periodically structured ZnO thin films for optical gas sensor application. Sensors and Actuators A: Physical, 2007. 140(1): p. 19-23.
46. Paliwal, A., et al., Carbon monoxide (CO) optical gas sensor based on ZnO thin films. Sensors and Actuators B: Chemical, 2017. 250: p. 679-685.
47. Esposito, S., et al., Synthesis of cobalt doped silica thin film for low temperature optical gas sensor. Journal of Sol-Gel Science and Technology, 2011. 60(3): p. 388-394.
48. Cittadini, M., et al., Graphene oxide coupled with gold nanoparticles for localized surface plasmon resonance based gas sensor. Carbon, 2014. 69: p. 452-459.
49. Bogue, R., Detecting gases with light: a review of optical gas sensor technologies. Sensor Review, 2015. 35(2): p. 133-140.
50. Barsi, J., et al., Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sensing, 2014. 6(11): p. 11607-11626.
51. Jimenez-Munoz, J.C., et al., Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 2014. 11(10): p. 1840-1843.
52. Tsai, C.F. and M.S. Young, Pyroelectric infrared sensor-based thermometer for monitoring indoor objects. Review of Scientific Instruments, 2003. 74(12): p. 5267-5273.
53. Dossi, N., et al., An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip, 2012. 12(1): p. 153-8.
54. Lee, J., et al., Low power consumption solid electrochemical-type micro CO2 gas sensor. Sensors and Actuators B: Chemical, 2017. 248: p. 957-960.
55. Menart, E., V. Jovanovski, and S.B. Hočevar, Novel hydrazinium polyacrylate-based electrochemical gas sensor for formaldehyde. Sensors and Actuators B: Chemical, 2017. 238: p. 71-75.
56. Schwandt, C., R.V. Kumar, and M.P. Hills, Solid state electrochemical gas sensor for the quantitative determination of carbon dioxide. Sensors and Actuators B: Chemical, 2018. 265: p. 27-34.
57. Sekhar, P.K. and E.L. Brosha, Trace Detection of 2, 4, 6-Trinitrotoluene Using Electrochemical Gas Sensor. IEEE Sensors Journal, 2015. 15(3): p. 1624-1629.
58. Yan, D., et al., Electrochemical deposition of ZnO nanostructures onto porous silicon and their enhanced gas sensing to NO2 at room temperature. Electrochimica Acta, 2014. 115: p. 297-305.
59. Anderwald, C., et al., Mechanism and effects of glucose absorption during an oral glucose tolerance test among females and males. J Clin Endocrinol Metab, 2011. 96(2): p. 515-24.
60. Bartoli, E., G.P. Fra, and G.P. Carnevale Schianca, The oral glucose tolerance test (OGTT) revisited. Eur J Intern Med, 2011. 22(1): p. 8-12.
61. Black, M.H., et al., Clinical outcomes of pregnancies complicated by mild gestational diabetes mellitus differ by combinations of abnormal oral glucose tolerance test values. Diabetes Care, 2010. 33(12): p. 2524-30.
62. Corrado, F., et al., Correspondence between first-trimester fasting glycaemia, and oral glucose tolerance test in gestational diabetes diagnosis. Diabetes Metab, 2012. 38(5): p. 458-61.
63. Lerchbaum, E., et al., Assessment of glucose metabolism in polycystic ovary syndrome: HbA1c or fasting glucose compared with the oral glucose tolerance test as a screening method. Hum Reprod, 2013. 28(9): p. 2537-44.
64. Silber, H.E., N. Frey, and M.O. Karlsson, An integrated glucose-insulin model to describe oral glucose tolerance test data in healthy volunteers. J Clin Pharmacol, 2010. 50(3): p. 246-56.
65. Tura, A., et al., Shape of glucose, insulin, C-peptide curves during a 3-h oral glucose tolerance test: any relationship with the degree of glucose tolerance? Am J Physiol Regul Integr Comp Physiol, 2011. 300(4): p. R941-8.